Matchings in bipartite graphs

Lecture 13
Matchings

A matching in a graph is a set of non-loop edges that are pairwise disjoint. The size of a maximum matching in G is denoted by $\alpha'(G)$.

Given a matching M in a graph G, an M-alternating path in G is a path that alternates between edges in M and not in M.

An M-augmenting path is an M-alternating path whose endpoints are not in any edge of M.

Theorem 3.1 (Berge)
(A) A matching M in a graph G is maximum if and only if (B) G does not contain any M-augmenting path.
Bipartite graphs

Given a bipartite graph $G = (X, Y; E)$, certainly, $\alpha'(G) \leq \min\{|X|, |Y|\}$. But it can be smaller.

The fundamental result for bipartite graphs is the Hall Theorem.
Hall’s Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching covering X if and only if

$$|N(S)| \geq |S| \quad \forall S \subseteq X.$$

(1)
Hall’s Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching covering X if and only if

$$|N(S)| \geq |S| \quad \forall S \subseteq X.$$

(1)

Proof. The ”only if” part is evident. We prove the ”if” part by induction on $|E(G)|$. Let a bigraph $G = (X, Y; E)$ satisfy (1). Then $d(x) \geq 1$ for each $x \in X$.

Hall’s Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching covering X if and only if

$$|N(S)| \geq |S| \quad \forall S \subseteq X.$$ \hspace{1cm} (1)

Proof. The "only if" part is evident. We prove the "if" part by induction on $|E(G)|$. Let a bigraph $G = (X, Y; E)$ satisfy (1). Then $d(x) \geq 1$ for each $x \in X$.

Base of induction: $|E(G)| = 1$. Since $d(x) \geq 1$ for each $x \in X$, this means $|X| = 1$, and the unique edge of G forms a matching covering X.

Hall’s Theorem

Theorem 3.2 (P. Hall): An X, Y-bigraph G has a matching covering X if and only if

$$|N(S)| \geq |S| \quad \forall S \subseteq X. \quad (1)$$

Proof. The ”only if” part is evident. We prove the ”if” part by induction on $|E(G)|$. Let a bigraph $G = (X, Y; E)$ satisfy (1). Then $d(x) \geq 1$ for each $x \in X$.

Base of induction: $|E(G)| = 1$. Since $d(x) \geq 1$ for each $x \in X$, this means $|X| = 1$, and the unique edge of G forms a matching covering X.

Induction Step. Suppose the theorem is true for all graphs with less than m edges. Let $G = (X, Y; E)$ have m edges.
Case 1: $|N(S)| = |S|$ for some $\emptyset \neq S \subsetneq X$. Define induced subgraphs G_1 and G_2 of G: $V(G_1) = S \cup N_G(S)$ and $G_2 = G - V(G_1)$.

Claim 1. (1) holds for G_1.

Claim 2. (1) holds for G_2. Indeed, if there is $T \subset X - S$ with $|N_{G_2}(T)| < |T|$, then $|N_{G_2}(S \cup T)| = |N_G(S)| + |N_{G_2}(T)| < |S| + |T| = |S \cup T|$, a contradiction.
Case 1: $|N(S)| = |S|$ for some $\emptyset \neq S \subsetneq X$. Define induced subgraphs G_1 and G_2 of G: $V(G_1) = S \cup N_G(S)$ and $G_2 = G - V(G_1)$.

Claim 1. (1) holds for G_1.

Claim 2. (1) holds for G_2.
Case 1: \(|N(S)| = |S|\) for some \(\emptyset \neq S \subset X\). Define induced subgraphs \(G_1\) and \(G_2\) of \(G\): \(V(G_1) = S \cup N_G(S)\) and \(G_2 = G - V(G_1)\).

Claim 1. (1) holds for \(G_1\).

Claim 2. (1) holds for \(G_2\).

Indeed, if there is \(T \subset X - S\) with \(|N_{G_2}(T)| < |T|\), then

\[
|N_G(S \cup T)| = |N_G(S)| + |N_{G_2}(T)| < |S| + |T| = |S \cup T|,
\]

a contradiction.
In view of Claims 1 and 2, by the induction assumption, \(G_1 \) has a matching \(M_1 \) covering \(S \) and \(G_2 \) has a matching \(M_2 \) covering \(X - S \). Now \(M_1 \cup M_2 \) covers \(X \).
In view of Claims 1 and 2, by the induction assumption, G_1 has a matching M_1 covering S and G_2 has a matching M_2 covering $X - S$. Now $M_1 \cup M_2$ covers X.

Case 2:

\[|N_{G}(S)| \geq |S| + 1 \quad \forall \emptyset \neq S \subset X. \quad (2) \]

Choose any $x_0 \in X$. Since $d(x_0) \geq 1$, there is $y_0 \in N(x_0)$. Let $G' = G - x_0 - y_0$.
In view of Claims 1 and 2, by the induction assumption, G_1 has a matching M_1 covering S and G_2 has a matching M_2 covering $X - S$. Now $M_1 \cup M_2$ covers X.

Case 2:

$$|N_G(S)| \geq |S| + 1 \quad \forall \emptyset \neq S \subsetneq X. \quad (2)$$

Choose any $x_0 \in X$. Since $d(x_0) \geq 1$, there is $y_0 \in N(x_0)$. Let $G' = G - x_0 - y_0$.

By (2), for each $\emptyset \neq S \subset X - x_0$,

$$|N_{G'}(S)| \geq |N_G(S)| - 1 \geq (|S| + 1) - 1 = |S|.$$
In view of Claims 1 and 2, by the induction assumption, \(G_1 \) has a matching \(M_1 \) covering \(S \) and \(G_2 \) has a matching \(M_2 \) covering \(X - S \). Now \(M_1 \cup M_2 \) covers \(X \).

Case 2:

\[
|N_G(S)| \geq |S| + 1 \quad \forall \emptyset \neq S \subsetneq X. \tag{2}
\]

Choose any \(x_0 \in X \). Since \(d(x_0) \geq 1 \), there is \(y_0 \in N(x_0) \). Let \(G' = G - x_0 - y_0 \).

By (2), for each \(\emptyset \neq S \subset X - x_0 \),

\[
|N_{G'}(S)| \geq |N_G(S)| - 1 \geq (|S| + 1) - 1 = |S|.
\]

So (1) holds for \(G' \), and by IH, \(G' \) has a matching \(M' \) covering \(X - x_0 \).

Then matching \(M' \cup \{x_0y_0\} \) covers \(X \), as claimed. \(\square \)
Corollary 3.3 (Marriage Theorem) For each $k \geq 1$ every k-regular bipartite graph has a perfect matching.
Marriage Theorem:

Corollary 3.3 (Marriage Theorem) For each \(k \geq 1 \) every \(k \)-regular bipartite graph has a perfect matching.

Proof. Let \(B = (X, Y; E) \) be a \(k \)-regular bipartite graph. Since each edge of \(B \) has exactly one endpoint in \(X \), and exactly one in \(Y \),

\[
|E(B)| = \sum_{v \in X} d(v) = k|X|,
\]

and

\[
|E(B)| = \sum_{v \in Y} d(v) = k|Y|,
\]

so \(|X| = |Y| \).

Thus each matching that covers \(X \) is perfect. Let us check that Hall’s condition is satisfied.
Let $S \subseteq X$. There are exactly $k|S|$ edges incident with vertices in S, so there are at least $k|S|$ edges incident with $N(S)$, and the total number of edges incident with $N(S)$ is $k|N(S)|$, so

$$k|S| \leq k|N(S)|,$$

which is equivalent to Hall’s condition. Thus, we are done by Hall’s Theorem.

Systems of distinct representatives.
Vertex covers

A vertex cover of a graph G is a set S of vertices in G such that each edge of G has at least one end in S.

Trivially, $V(G)$ is a vertex cover of G. The problem is to find a vertex cover of the minimum cardinality.

The minimum cardinality of a vertex cover of G is denoted by $\beta(G)$.
Vertex covers

A vertex cover of a graph G is a set S of vertices in G such that each edge of G has at least one end in S.

Trivially, $V(G)$ is a vertex cover of G. The problem is to find a vertex cover of the minimum cardinality.

The minimum cardinality of a vertex cover of G is denoted by $\beta(G)$.

Observation A: A set $S \subseteq V(G)$ is a vertex cover if and only if $V(G) - S$ is an independent set.

Observation B: For each n-vertex graph G, $\alpha(G) + \beta(G) = n$.

Vertex covers

A vertex cover of a graph G is a set S of vertices in G such that each edge of G has at least one end in S.

Trivially, $V(G)$ is a vertex cover of G. The problem is to find a vertex cover of the minimum cardinality.

The minimum cardinality of a vertex cover of G is denoted by $\beta(G)$.

Observation A: A set $S \subset V(G)$ is a vertex cover if and only if $V(G) - S$ is an independent set.

Observation B: For each n-vertex graph G, $\alpha(G) + \beta(G) = n$.

Observation C: For each graph G, $\alpha'(G) \leq \beta(G) \leq 2\alpha'(G)$.
Theorem 3.4 (König, Egerváry, 1931): For each bipartite graph G,

$$\alpha'(G) = \beta(G).$$ (3)
Theorem 3.4 (König, Egerváry, 1931): For each bipartite graph G,

$$\alpha'(G) = \beta(G).$$

(3)

Proof. Let $G = (X, Y; E)$ be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \geq \beta(G)$.

Let Q be a vertex cover of G with $|Q| = \beta(G)$.
Theorem 3.4 (König, Egerváry, 1931): For each bipartite graph G,
\[\alpha'(G) = \beta(G). \] \hfill (3)

Proof. Let $G = (X, Y; E)$ be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \geq \beta(G)$.

Let Q be a vertex cover of G with $|Q| = \beta(G)$.

Claim: (i) $\forall A \subseteq Q \cap X$, \[|N(A) - Q \cap Y| \geq |A|. \]
(ii) $\forall B \subseteq Q \cap Y$, \[|N(B) - Q \cap X| \geq |B|. \]
Theorem 3.4 (König, Egerváry, 1931): For each bipartite graph G,
\[\alpha'(G) = \beta(G). \] (3)

Proof. Let $G = (X, Y; E)$ be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \geq \beta(G)$.

Let Q be a vertex cover of G with $|Q| = \beta(G)$.

Claim: (i) $\forall A \subseteq Q \cap X, \ |N(A) - Q \cap Y| \geq |A|$.
(ii) $\forall B \subseteq Q \cap Y, \ |N(B) - Q \cap X| \geq |B|$.

Proof of Claim (i). If for some $A \subseteq Q \cap X \ |N(A) - Q \cap Y| < |A|$, then the set $(Q - A) \cup N(A)$ is a smaller vertex cover. The proof of (ii) is symmetric.
Theorem 3.4 (König, Egerváry, 1931): For each bipartite graph G,

$$\alpha'(G) = \beta(G).$$

(3)

Proof. Let $G = (X, Y; E)$ be a bipartite graph with parts X and Y. By Observation C, we need only to prove $\alpha'(G) \geq \beta(G)$.

Let Q be a vertex cover of G with $|Q| = \beta(G)$.

Claim: (i) $\forall A \subseteq Q \cap X, \quad |N(A) - Q \cap Y| \geq |A|$.
(ii) $\forall B \subseteq Q \cap Y, \quad |N(B) - Q \cap X| \geq |B|$.

Proof of Claim (i). If for some $A \subseteq Q \cap X \quad |N(A) - Q \cap Y| < |A|$, then the set $(Q - A) \cup N(A)$ is a smaller vertex cover. The proof of (ii) is symmetric.

By the claim and Hall's Theorem, graph $G[(Q \cap X) \cup (Y - Q)]$ has a matching M_X covering $Q \cap X$ and graph $G[(Q \cap Y) \cup (X - Q)]$ has a matching M_Y covering $Q \cap Y$.