Reconstruction of n-vertex trees from the set of ($5 n-11$)/6-vertex induced subgraphs

Alexandr Kostochka
University of Illinois at Urbana-Champaign
joint work with M. Nahvi, D.B. West and D. Zirlin

AMS Meeting, March 23, 2024

Extending the classical problem

A card of a graph G is an induced subgraph $G-v$. The deck of a graph is the multiset of its cards.

Extending the classical problem

A card of a graph G is an induced subgraph $G-v$. The deck of a graph is the multiset of its cards.

Reconstruction Conjecture: Kelly-Ulam, 1942. Each graph with at least 3 vertices is determined by its deck.

Extending the classical problem

A card of a graph G is an induced subgraph $G-v$. The deck of a graph is the multiset of its cards.

Reconstruction Conjecture: Kelly-Ulam, 1942. Each graph with at least 3 vertices is determined by its deck.
k-deck $\mathcal{D}_{k}(G)=$ all k-vertex induced subgraphs.

Extending the classical problem

A card of a graph G is an induced subgraph $G-v$. The deck of a graph is the multiset of its cards.

Reconstruction Conjecture: Kelly-Ulam, 1942. Each graph with at least 3 vertices is determined by its deck.
k-deck $\mathcal{D}_{k}(G)=$ all k-vertex induced subgraphs.
Observation: $\mathcal{D}_{k}(G)$ determines $\mathcal{D}_{k-1}(G)$.

Extending the classical problem

A card of a graph G is an induced subgraph $G-v$. The deck of a graph is the multiset of its cards.

Reconstruction Conjecture: Kelly-Ulam, 1942. Each graph with at least 3 vertices is determined by its deck.
k-deck $\mathcal{D}_{k}(G)=$ all k-vertex induced subgraphs.
Observation: $\mathcal{D}_{k}(G)$ determines $\mathcal{D}_{k-1}(G)$.
Conjecture: Manvel, 1964, 1969. $\forall \ell \in \mathbf{N} \exists M_{\ell} \in \mathbf{N}$: each graph with $n \geq M_{\ell}$ vertices is determined by its $n-\ell$-deck.
$M_{2} \geq 6$

Some known reconstructible graphs

1. Regular graphs with at least 3 vertices are 1-reconstructible. Mohar asked if regular graphs with "many" vertices are 2-reconstructible.

Some known reconstructible graphs

1. Regular graphs with at least 3 vertices are 1-reconstructible. Mohar asked if regular graphs with "many" vertices are 2-reconstructible.

K-N-W-Z, 2021: 3-regular graphs are 2-reconstructible.

Some known reconstructible graphs

1. Regular graphs with at least 3 vertices are 1 -reconstructible. Mohar asked if regular graphs with "many" vertices are 2-reconstructible.

K-N-W-Z, 2021: 3-regular graphs are 2-reconstructible.
2. Kelly, 1957: Disconnected graphs with at least 3 vertices are 1-reconstructible.
The claim that disconnected graphs with at least 6 vertices are 2 -reconstructible would imply the Reconstruction Conjecture.

Some known reconstructible graphs

1. Regular graphs with at least 3 vertices are 1-reconstructible. Mohar asked if regular graphs with "many" vertices are 2-reconstructible.

K-N-W-Z, 2021: 3-regular graphs are 2-reconstructible.
2. Kelly, 1957: Disconnected graphs with at least 3 vertices are 1-reconstructible.
The claim that disconnected graphs with at least 6 vertices are 2-reconstructible would imply the Reconstruction Conjecture.
3. Kelly, 1957: Trees with at least 3 vertices are 1-reconstructible.

Giles, 1976: Trees with at least 6 vertices are 2 -reconstructible.

Nýdl, 1981: Some distinct 2ℓ-vertex trees have the same ℓ-deck.
Conjecture [Nýdl, 1981]: If $n \geq 2 \ell+1$ then n-vertex trees are weakly ℓ-reconstructible.

Nýdl, 1981: Some distinct 2ℓ-vertex trees have the same ℓ-deck.
Conjecture [Nýdl, 1981]: If $n \geq 2 \ell+1$ then n-vertex trees are weakly ℓ-reconstructible.

Groenland, Johnston, Scott, and Tan: there are distinct 13-vertex trees with the same 7-deck.

Nýdl, 1981: Some distinct 2ℓ-vertex trees have the same ℓ-deck.
Conjecture [Nýdl, 1981]: If $n \geq 2 \ell+1$ then n-vertex trees are weakly ℓ-reconstructible.

Groenland, Johnston, Scott, and Tan: there are distinct 13-vertex trees with the same 7-deck.

Theorem 1 [Groenland, Johnston, Scott, and Tan, 2022+]: If $n \geq 9 \ell+24 \sqrt{2 \ell}+o(\sqrt{\ell})$, then all n-vertex trees are ℓ-reconstructible.

Nýdl, 1981: Some distinct 2ℓ-vertex trees have the same ℓ-deck.
Conjecture [Nýdl, 1981]: If $n \geq 2 \ell+1$ then n-vertex trees are weakly ℓ-reconstructible.

Groenland, Johnston, Scott, and Tan: there are distinct 13-vertex trees with the same 7-deck.

Theorem 1 [Groenland, Johnston, Scott, and Tan, 2022+]: If $n \geq 9 \ell+24 \sqrt{2 \ell}+o(\sqrt{\ell})$, then all n-vertex trees are ℓ-reconstructible.

Theorem $2[K-N-W-Z]$: If $n \geq 2 \ell+1$ and $(n, \ell) \neq(5,2)$, then n-vertex acyclic graphs are ℓ-recognizable; in particular, n-vertex trees are ℓ-recognizable.

Our main result

Theorem 3 (K-N-W-Z): When $n \geq 6 \ell+11$, all n-vertex trees are ℓ-reconstructible.

Our main result

Theorem 3 (K-N-W-Z): When $n \geq 6 \ell+11$, all n-vertex trees are ℓ-reconstructible.

The proof is constructive. We consider an $(n-\ell)$-deck \mathcal{D}. By Theorem 2, we can recognize whether \mathcal{D} is the deck of an n-vertex tree.
If yes, we first reconstruct some parameters of such a tree T.

Our main result

Theorem 3 (K-N-W-Z): When $n \geq 6 \ell+11$, all n-vertex trees are ℓ-reconstructible.

The proof is constructive. We consider an $(n-\ell)$-deck \mathcal{D}. By Theorem 2, we can recognize whether \mathcal{D} is the deck of an n-vertex tree.
If yes, we first reconstruct some parameters of such a tree T.
Among important parameters are the diameter of T, the number k which is roughly the minimum radius of a connected card, and the number s_{ℓ} of the centers of spiders $S^{\ell+1}$ with 3 legs of length $\ell+1$ in T.
We also introduce so called Exclusion Argument for determining important subtrees of our T.

A big case is when the diameter of T is at least $n-3 \ell-1$. In this case, our parameter k is at least $\ell+1$, and we see in the cards all connected subgraphs of T with " not too large" diameter. Our strategy will depend on whether T contains the spider $S^{\ell+1}$ or not.

When the diameter of T is at most $n-3 \ell-2$, then we separately consider the cases when after deleting the edges of a longest path there are "large" components or not.

