ACYCLIC COLOURINGS OF PLANAR GRAPHS WITH LARGE GIRTH

O. V. BORODIN, A. V. KOSTOCHKA and D. R. WOODALL

Abstract

A proper vertex-colouring of a graph is acyclic if there are no 2 -coloured cycles. It is known that every planar graph is acyclically 5 -colourable, and that there are planar graphs with acyclic chromatic number $\chi_{\mathrm{a}}=5$ and girth $g=4$. It is proved here that a planar graph satisfies $\chi_{\mathrm{a}} \leqslant 4$ if $g \geqslant 5$ and $\chi_{\mathrm{a}} \leqslant 3$ if $g \geqslant 7$.

1. Introduction

An acyclic colouring of a graph G is a proper vertex-colouring of G such that every union of two colour classes induces an acyclic subgraph of G, and $\chi_{\mathrm{a}}=\chi_{\mathrm{a}}(G)$ denotes the smallest number of colours in an acyclic colouring of G. Clearly $\chi_{\mathrm{a}}(C)=3$ if C is a cycle and $\chi_{\mathrm{a}}(F) \leqslant 2$ if F is a forest, with equality unless F is edgeless.

For a planar graph G, Grünbaum [5] conjectured that $\chi_{\mathrm{a}}(G) \leqslant 5$ and proved that $\chi_{\mathrm{a}}(G) \leqslant 9$. This bound was sharpened by Mitchem [9] to 8 , by Albertson and Berman [1] to 7, by Kostochka [7] to 6 , and by Borodin $[\mathbf{3}, 4]$ to 5 , which is best possible since the double 5 -wheel $C_{5}+\bar{K}_{2}$ is planar and (it is easy to see) has $\chi_{\mathrm{a}}=5$.

The girth $g=g(G)$ of a graph G is the length of its shortest cycle. The purpose of the present paper is to prove the following two results, which were partly inspired by J. Nešetřil telling us of Fact 4 (below).

Theorem 1. If G is planar with girth $g \geqslant 5$ then $\chi_{\mathrm{a}} \leqslant 4$.

Theorem 2. If G is planar with girth $g \geqslant 7$ then $\chi_{\mathrm{a}} \leqslant 3$.

Kostochka and Melnikov [8] have constructed planar 2-degenerate bipartite graphs, necessarily with girth $g=4$, having $\chi_{\mathrm{a}}=5$. (For example, in $C_{5}+\bar{K}_{2}$, replace each edge $u v$ of C_{5} by a copy of $K_{2,4}$ with u, v as the vertices of degree 4.) Thus our condition $g \geqslant 5$ is best possible to imply $\chi_{\mathrm{a}} \leqslant 4$. However, we do not know whether $\chi_{\mathrm{a}} \leqslant 3$ whenever $g \geqslant 6$ (or even $g \geqslant 5$).

Theorems 1 and 2 have several corollaries, in view of the following facts.

[^0]FACT 1 (obvious). If $\chi_{\mathrm{a}}(G) \leqslant k$ then G contains an induced forest on at least $2 / k$ of its vertices.

Fact 2 (S. L. Hakimi, J. Mitchem and E. S. Schmeichel (see [6])). If $\chi_{\mathrm{a}}(G) \leqslant k$ then $E(G)$ can be partitioned into k 'star forests' (forests in which each component is a star).

FACT 3 (Grünbaum [5]). If $\chi_{\mathrm{a}}(G) \leqslant k$ then the star chromatic number $\chi_{\mathrm{s}}(G) \leqslant$ $k \cdot 2^{k-1}$.

FACT 4 (Raspaud and Sopena [10]). If $\chi_{\mathrm{a}}(G) \leqslant k$ then the oriented chromatic number $\chi_{0}(G) \leqslant k \cdot 2^{k-1}$.

By Fact 2, Borodin's 5-colour theorem implies the truth of the conjecture of Algor and Alon [2] that the edges of every planar graph can be partitioned into five star forests. By Facts 3 and 4, it also implies that $\chi_{\mathrm{s}}(G) \leqslant 80$ and $\chi_{0}(G) \leqslant 80$ for every planar graph G; these bounds remain the best known. For girth $g \geqslant 5$, Theorem 1 gives $\chi_{\mathrm{s}}(G) \leqslant 32$ and $\chi_{\mathrm{o}}(G) \leqslant 32$; for $g \geqslant 7$, Theorem 2 gives $\chi_{\mathrm{s}}(G) \leqslant 12$ and $\chi_{\mathrm{o}}(G) \leqslant$ 12.

2. Preliminaries

The proofs of the two theorems have a similar structure. In each case we let G be a smallest counterexample to the theorem, which we assume is already embedded in the plane, and we note that clearly G is 2 -connected. Our proof uses an application of Euler's formula (Lemma 1) and some structural information derived from the minimality of G (Lemmas 2-5); we then use the method of redistribution of charge in order to obtain a contradiction.

Throughout, G has n vertices, m edges and r faces, the sets of which are denoted by V, E and F respectively. The degree of vertex v is denoted by $d(v)$, a d-vertex is a vertex v with $d(v)=d$, and a $d(b)$-vertex is a d-vertex that is adjacent to exactly b vertices of degree 2 . The number of edges incident to face f is denoted by $r(f)$, and an r-face or $>r$-face is a face f with $r(f)=r$ or $r(f)>r$, respectively. An (alternating) i, j-path is a path whose vertices are coloured alternately i and j. A cycle C separates two vertices if one of the vertices is inside C and the other is outside C, and a separating cycle is a cycle that separates some two vertices. The following lemma holds for every connected planar graph.

Lemma 1.
(i) $\sum_{v \in V}(3 d(v)-10)+\sum_{f \in F}(2 r(f)-10)=-20$.
(ii) $\sum_{v \in V}(5 d(v)-14)+\sum_{f \in F}(2 r(f)-14)=-28$.

Proof. Euler's formula $n-m+r=2$ can be rewritten in the form $(6 m-10 n)+(4 m-10 r)=-20$, which implies (i), and in the form $(10 m-14 n)+(4 m-14 r)=-28$, which implies (ii).

3. Proof of Theorem $1(g \geqslant 5)$

Let G be a smallest counterexample to Theorem 1. As noted above, G is 2connected and so has minimum degree at least 2 .

Lemma 2. (i) No 2-vertex is adjacent to a 2-vertex or 3-vertex.
(ii) G contains no $d(d)$-vertices $(2 \leqslant d \leqslant 15)$, no $d(d-1)$-vertices $(2 \leqslant d \leqslant 9)$ and no $d(d-2)$-vertices $(3 \leqslant d \leqslant 4)$.
(iii) If w is a 5(3)-vertex, then the three 2-vertices occur consecutively in cyclic order round w, and both of the two faces between consecutive 2-vertices are >5-faces.
(iv) If a 5(2)-vertex is adjacent to three 3-vertices, then it is incident to at least one >5-face.
(v) A 5(3) or 6(4)-vertex is not adjacent to any 3-vertices.

Proof. (i): (i) follows immediately from (ii). In proving (ii)-(v), we assume throughout that w is a $d(b)$-vertex with neighbours $v_{1}, \ldots, v_{b}, z_{1}, \ldots, z_{d-b}$ where v_{1}, \ldots, v_{b} have degree 2 and are adjacent to u_{1}, \ldots, u_{b} respectively. The neighbours of z_{i} other than w will be referred to as the outer neighbours of $z_{i}(1 \leqslant i \leqslant d-b)$. By the minimality of G, we may suppose that $G-v_{1}$ has an acyclic 4-colouring $c: V\left\{v_{1}\right\} \longrightarrow$ $\{1,2,3,4\}$ in which without loss of generality $c(w)=1$. If we can convert this into an acyclic 4-colouring of G by colouring v_{1} (perhaps after first recolouring some other vertices), then this contradiction will complete the proof. Note that if $c\left(u_{i}\right) \neq c(w)$ then we can give v_{i} either of the other colours since no 2 -coloured cycle can possibly use v_{i}. Thus we may suppose that $c\left(u_{1}\right)=1$, and that for $j=2,3,4$ there is an alternating $1, j$-path connecting u_{1} to w (since otherwise we could set $c\left(v_{1}\right)=j$).
(ii) and (iii): If $b=d<4^{2}$, then choose a colour j that appears on at most three of u_{1}, \ldots, u_{b}. Set $c(w)=j$, give the intervening v_{i} distinct colours not equal to j, and give the remaining v_{i} any proper colours; this colouring is clearly acyclic.

If $b=d-1<3^{2}$, then choose a colour $j \neq c\left(z_{1}\right)$ that appears on at most two of u_{1}, \ldots, u_{b}. Set $c(w)=j$, and proceed as before. If $b=d-2<2^{2}$, then the same trick works provided that $c\left(z_{1}\right) \neq c\left(z_{2}\right)$, but if $c\left(z_{1}\right)=c\left(z_{2}\right)$ then we dare not recolour w for fear of creating a 2 -coloured cycle. However, if at most two of u_{1}, \ldots, u_{b} have colour 1 , which must be the case if $d-2 \leqslant 2$, then we can colour the corresponding v_{i} with distinct colours not in $\left\{1, c\left(z_{1}\right)\right\}$. This proves (ii), and it also shows that in proving (iii) we may assume that $c\left(z_{1}\right)=c\left(z_{2}\right)=2$, say, and that $c\left(u_{i}\right)=1$ for all i. Hence if v_{i}, v_{j} occur consecutively in cyclic order round w, then there is a >5-face between them (otherwise $u_{i} u_{j} \in E$).

If the v_{i} are not consecutive in cyclic order round w, assume that v_{1} is between z_{1} and z_{2}. Because of the 1,4-path connecting u_{1} to w, there can be no 2,3-path from z_{1} to z_{2}. Thus we may give w colour 3 and the v_{i} any proper colours. This proves (iii).
(iv): Suppose that $(d, b)=(5,2), d\left(z_{i}\right)=3(i=1,2,3)$ and w is incident to five 5 faces. If $c\left(u_{2}\right)=1$ then, because of the 5 -faces, v_{1} and v_{2} are not consecutive in cyclic order round w, and at most one of z_{1}, z_{2}, z_{3} has an outer neighbour coloured 1 , but this contradicts the existence of the three $1, j$-paths connecting u_{1} to w, so we may suppose that $c\left(u_{2}\right) \neq 1$. Then without loss of generality $c\left(z_{i}\right)=i+1$ and z_{i} has an outer neighbour coloured 1 (because of the $1,(i+1)$-path, $i=1,2,3)$. Choose a colour $j \notin\left\{1, c\left(u_{2}\right)\right\}$ that occurs on at most one of the outer neighbours of z_{1}, z_{2} and z_{3}, set $c(w)=j$ and give z_{j-1}, v_{1} and v_{2} any proper colours.
(v): Suppose that $(d, b)=(5,3)$ or $(6,4)$ and $d\left(z_{1}\right)=3$. First suppose that $c\left(z_{1}\right)=$ $c\left(z_{2}\right)$. If the two outer neighbours of z_{1} have the same colour j, we may choose $c(w) \notin\left\{j, c\left(z_{1}\right)\right\}$ such that $c(w)$ occurs on at most two of u_{1}, \ldots, u_{b}; the v_{i} are now easily coloured. If the two outer neighbours of z_{1} have distinct colours, we may recolour first z_{1} and then w, and so we may assume from now on that $c\left(z_{1}\right) \neq c\left(z_{2}\right)$, without loss of generality $c\left(z_{i}\right)=i+2(i=1,2)$. If $c\left(u_{i}\right)=1$ for at most one i, put $c(w)=1$ and
$c\left(v_{i}\right)=2$. The same works with 1 and 2 interchanged, and so we may suppose that $(d, b)=(6,4), c\left(u_{1}\right)=c\left(u_{2}\right)=1$ and $c\left(u_{3}\right)=c\left(u_{4}\right)=2$. If z_{1} has no outer neighbour coloured 1 , we may put $c(w)=1, c\left(v_{1}\right)=2, c\left(v_{2}\right)=3$. The same again works with 1 and 2 interchanged, and so we may suppose that z_{1} has outer neighbours coloured 1 and 2 . Now put $c\left(z_{1}\right)=4, c(w)=3$ and give v_{1}, \ldots, v_{4} any proper colours.

By a weak vertex we mean a vertex of degree 2 or 3 or a 4 -vertex that is adjacent to both a 2 -vertex and a 3 -vertex.

Lemma 3. Each 3-vertex is adjacent to at most one weak vertex
Proof. Let w be a 3-vertex adjacent to x, y, z where x, y are weak, with degree 3 or 4 (by Lemma 2(i)). Let the outer neighbours of x (that is, its neighbours other than w) be x_{1}, x_{2} and, if $d(x)=4, x_{3}$, where $d\left(x_{3}\right)=2$ and the other neighbour of x_{3} is x_{3}^{\prime}. To avoid referring to non-existent vertices, if $d(x)=3$ add isolated vertices x_{3}, x_{3}^{\prime} to G. Deal with y analogously. Let c be an acyclic 4-colouring of $G-\left\{w, x_{3}, y_{3}\right\}$. In what follows, whenever we describe how to colour x_{3}, we assume implicitly that $c\left(x_{3}^{\prime}\right)=$ $c(x)$, since if $c\left(x_{3}^{\prime}\right) \neq c(x)$ then we can use either of the other colours for $c\left(x_{3}\right)$ with impunity; similarly with y_{3}. Assume that $c(z)=1$. By interchanging x, y and permuting the other colours if necessary, we have only four cases to consider.

Case 1: $c(x)=2, c(y)=3$. Set $c(w)=4$, choose $c\left(x_{3}\right) \notin\left\{c(x), c\left(x_{1}\right), c\left(x_{2}\right)\right\}$, and colour y_{3} similarly.

Case 2: $c(x)=c(y)=2$. If $c\left(x_{1}\right) \neq c\left(x_{2}\right)$ and $\left\{c\left(x_{1}\right), c\left(x_{2}\right)\right\} \neq\{3,4\}$, then change $c(x)$ to get case 1 . Hence we may assume that $c\left(x_{1}\right)=c\left(x_{2}\right)$ or $\left\{c\left(x_{1}\right), c\left(x_{2}\right)\right\}=\{3,4\}$, and similarly for y_{1}, y_{2}. If there is no 2, 3-path connecting x to y, set $c(w)=3$, if $c\left(x_{1}\right)=$ $c\left(x_{2}\right)$ choose $c\left(x_{3}\right) \notin\left\{c(x), c\left(x_{1}\right), c(w)\right\}$, if $\left\{c\left(x_{1}\right), c\left(x_{2}\right)\right\}=\{3,4\}$ set $c\left(x_{3}\right)=1$, and colour y_{3} similarly. We can do the same if there is no 2,4-path connecting x to y; hence we may suppose that both paths exist and $c\left(x_{1}\right)=c\left(y_{1}\right)=3, c\left(x_{2}\right)=c\left(y_{2}\right)=4$. Now, either the 2,3-path (completed to a cycle through w) separates x_{2} from z or the 2,4path (similarly completed) separates x_{1} from z. Suppose the former, so that there is no 1,4-path connecting x_{2} to z; set $c(w)=4, c(x)=1, c\left(x_{3}\right)=2$ and $c\left(y_{3}\right)=1$.

Case 3: $c(x)=1, c(y)=2$. If $c\left(x_{1}\right) \neq c\left(x_{2}\right)$ we can change $c(x)$ to get case 1 or case 2. Hence assume that $c\left(x_{1}\right)=c\left(x_{2}\right) \neq 3$ and choose $c(w)=3, c\left(x_{3}\right) \notin\{c(w), c(x)$, $\left.c\left(x_{1}\right)\right\}, c\left(y_{3}\right) \notin\left\{c(y), c\left(y_{1}\right), c\left(y_{2}\right)\right\}$.

Case 4: $c(x)=c(y)=1$. As in case 3, we may suppose that $c\left(x_{1}\right)=c\left(x_{2}\right)$, and similarly $c\left(y_{1}\right)=c\left(y_{2}\right)$. Choose $c(w) \notin\left(1, c\left(x_{1}\right), c\left(y_{1}\right)\right\}, c\left(x_{3}\right) \notin\left\{c(w), c(x), c\left(x_{1}\right)\right\}$ and $c\left(y_{3}\right) \notin\left\{c(w), c(y), c\left(y_{1}\right)\right\}$.

We now show that Lemmas 2 and 3 contradict the supposition that $g \geqslant 5$. Assign a 'charge' of $3 d(v)-10$ units to each vertex v of G and of $2 r(f)-10$ units to each face f of G. By Lemma 1(i), the total charge assigned is negative. We now redistribute the charge, without changing its sum, in such a way that the sum is provably nonnegative, and this contradiction will prove the theorem. Note that the charge on each face is non-negative, by the supposition that $r(f) \geqslant g \geqslant 5$, and vertices of degree 2 , $3,4,5, \ldots$ start with charge $-4,-1,2,5, \ldots$.

The rules for redistribution are as follows:
(R1) Each 2-vertex receives 2 from each adjacent vertex.
(R2) Each 3-vertex receives $\frac{1}{2}$ from each adjacent non-weak vertex.
(R3) Each face f with $r(f)>5$ and bounding cycle $v_{1} v_{2} \ldots v_{r(f)} v_{1}$ gives $\frac{1}{2}$ to each vertex v_{i} for which $d\left(v_{i-1}\right) \leqslant 3$ and $d\left(v_{i+1}\right) \leqslant 3$ (subscripts modulo $r(f)$).

It is easy to see that the charge on each face f is still non-negative: by Lemmas 2(i) and 3 , the boundary of f cannot contain three consecutive vertices with degree $\leqslant 3$, and so f cannot contribute $\frac{1}{2}$ to two adjacent vertices in its boundary; thus f gives up at most $\frac{1}{4} r(f)$, whereas its initial charge was $2 r(f)-10>\frac{1}{4} r(f)$ if $r(f)>5$.

It remains to prove that the charge on each vertex v is also non-negative. If $d(v)=2$ then v started with charge -4 and has gained 4 , and so now has charge 0 . If $d(v)=3$ then v started with -1 and has gained at least 1 by Lemma 3, and so it now has non-negative charge. Suppose that $d(v)=4$, so that v started with charge 2 . By Lemma 2(ii) and the definition of a weak vertex, if v is adjacent to a 2-vertex then it gave 2 to only one 2 -vertex and nothing to 3 -vertices; otherwise it gave $\frac{1}{2}$ to at most four 3-vertices. In either case its charge is still non-negative.

Suppose that $d(v)=5$, so that v is a $5(b)$-vertex where $b \leqslant 3$ by Lemma 2(ii). If $b=3$ then, by Lemma 2(iii) and (v), v received $\frac{1}{2}$ from two >5-faces, between pairs of 2 -vertices, and gave nothing to 3 -vertices; thus v started with charge 5 , gave 6 to three 2 -vertices, received 1 from faces, and now has 0 . If $b=2$ then v gave 4 to 2vertices and, by Lemma 2(iv), it either gave at most 1 to 3 -vertices or gave $1 \frac{1}{2}$ to 3 vertices and received $\frac{1}{2}$ from a >5-face. If $b \leqslant 1$ then v gave at most 2 to a 2-vertex plus 2 to four 3-vertices.

If $d(v)=6$ then v started with 8 and, by Lemma 2(ii) and (v), gave at most 8 , either to four 2 -vertices, or to at most three 2 -vertices and three 3 -vertices. If $7 \leqslant d(v) \leqslant 9$ then, by Lemma 2(ii), v gave to at most $d(v)-2$ 2-vertices and two 3-vertices, making a total of at most $2 d(v)-3 \leqslant 3 d(v)-10$. Finally, if $d(v) \geqslant 10$ then v gave at most $2 d(v)$ $\leqslant 3 d(v)-10$. Thus every vertex now has non-negative charge, and this contradiction completes the proof of Theorem 1.

4. Proof of Theorem $2(g \geqslant 7)$

Let G be a smallest counterexample to Theorem 2; G is 2-connected, with minimum degree at least 2 .

Lemma 4. (i) G does not contain two adjacent 2-vertices.
(ii) G contains no $d(d)$-vertices $(2 \leqslant d \leqslant 8)$ or $d(d-1)$-vertices $(2 \leqslant d \leqslant 4)$.
(iii) No 3-vertex is adjacent to three 3(1)-vertices.
(iv) No 3(1)-vertex is adjacent to two 3(1)-vertices.

Proof. (i) and (ii): With the terminology of Lemma 2, if $b=d<3^{2}$ then choose a colour j that occurs on at most two of u_{1}, \ldots, u_{b}. If $b=d-1<2^{2}$ then choose a colour $j \neq c\left(z_{1}\right)$ that occurs on at most one of u_{1}, \ldots, u_{b}. In each case, set $c(w)=j$ and proceed as in Lemma 2(ii). This proves (ii), and (i) immediately follows.
(iii): For $i=1,2,3$, let G contain paths $w x_{i} v_{i} u_{i}$ where $d(w)=3, d\left(v_{i}\right)=2, x_{i}$ has another neighbour y_{i}, and distinct labels denote distinct vertices. Let c be an acyclic 3 -colouring of $G-\left\{w, v_{1}, v_{2}, v_{3}, x_{1}, x_{2}, x_{3}\right\}$.

Suppose that we colour w. If $c(w) \neq c\left(y_{i}\right)$, say $c(w)=1$ and $c\left(y_{i}\right)=2$, we can colour the path $w x_{i} v_{i} u_{i}$ either 1321 or 1312 or 1313 depending on the colour of u_{i}, and only in the last case is there an alternating path through x_{i}; this is a $c(w), c\left(u_{i}\right)$-path and requires w, y_{i} and u_{i} to have three different colours. If $c(w)=c\left(y_{i}\right)$ then, by choosing $c\left(v_{i}\right) \neq c(w)$ if $c\left(x_{i}\right)=c\left(u_{i}\right)$, we can ensure that there is only the inevitable $c(w), c\left(x_{i}\right)$-path through $c\left(x_{i}\right)$; this works for either of the two possible choices for $c\left(x_{i}\right)$.

We now colour w as follows; in each case, by the above remarks, we can colour the x_{i} and v_{i} so as to create no 2 -coloured cycles. If $c\left(y_{i}\right)=1$, say, for each i, let $c(w)$ be whichever of 2,3 occurs on more of the u_{i} (so that the other occurs on at most one u_{i}). If $c\left(y_{1}\right)=c\left(y_{2}\right)=1$ and $c\left(y_{3}\right)=2$, set $c(w)=3$ unless $c\left(u_{1}\right)=c\left(u_{2}\right)=2$, in which case set $c(w)=2$. If $c\left(y_{i}\right)=i$ for each i, set $c(w)=j$ where j is chosen so that $\left\{j, c\left(y_{i}\right), c\left(u_{i}\right)\right\}=\{1,2,3\}$ for at most one i, and choose $c\left(x_{j}\right) \neq c\left(u_{i}\right)$ if there is such an i.
(iv): This is essentially the same as (iii) with u_{3}, v_{3} removed and $c\left(u_{3}\right)$ interpreted as 1 , say, whenever it occurs in the above argument.

Recall that G has girth $g(G)=g \geqslant 7$. An r-cycle, $\leqslant r$-cycle or $<r$-cycle is a cycle with length $l=r, l \leqslant r$ or $l<r$, respectively. A ${ }^{*}$-cycle is a separating r-cycle, where $r=7$ or 8 . If G contains a ${ }^{*}$-cycle, then let S be a ${ }^{*}$-cycle with as few vertices as possible inside it, and describe every vertex inside S as distinguished; otherwise, every vertex of G is distinguished.

Lemma 5. (i) If a^{*}-cycle C passes through a distinguished vertex, then C is an 8cycle.
(ii) If two distinguished 3(1)-vertices b_{1}, b_{2} are adjacent then edge $b_{1} b_{2}$ is incident with $a>7$-face.

Proof. (i): If such a C exists then clearly S exists and $C \cap S \neq \varnothing$. Suppose that C is a 7 -cycle. If only one vertex of C is inside or outside S, then combined with a segment of S it gives a $\leqslant 6$-cycle, contradicting $g \geqslant 7$. Thus either two or three vertices of C are inside $S,|V(S)|=8$, and C splits S into two equal segments, creating two 7 -cycles or 8 -cycles with fewer vertices inside them than S. Clearly these cycles can have no chords, and since no two 2 -vertices of G are adjacent by Lemma 4(i), at least one of the cycles must be separating, contradicting the definition of S.
(ii): For $i=1,2$, let b_{i} be adjacent to h_{i} and k_{i} where $d\left(k_{i}\right)=2$. There are two cases.

Case 1: k_{1}, k_{2} are incident with the same face. Assume that this is labelled as in Figure 1(a). Form G_{i} from $G^{\prime}=G-\left\{k_{1}, b_{1}, b_{2}, k_{2}\right\}$ by adding a new 2-vertex z_{i} adjacent to f_{i} and $h_{3-i}(i=1,2)$.

Claim 1. Either $g\left(G_{1}\right) \geqslant 7$ or $g\left(G_{2}\right) \geqslant 7$.
Proof. Suppose that $g\left(G_{1}\right) \leqslant 6$ and $g\left(G_{2}\right) \leqslant 6$. Then G^{\prime} contains paths $f_{1} u_{1} \ldots h_{2}$ and $f_{2} u_{2} \ldots h_{1}$ of length at most 4 . These paths must cross, at a vertex v, say. The distances from v along these paths satisfy $d\left(v, f_{1}\right)+d\left(v, h_{2}\right) \leqslant 4$ and $d\left(v, f_{2}\right)+d\left(v, h_{1}\right) \leqslant 4$ by assumption, and also $d\left(v, f_{1}\right)+d\left(v, h_{1}\right) \geqslant 4, d\left(v, f_{2}\right)+d\left(v, h_{2}\right) \geqslant 4$ and $d\left(v, h_{1}\right)+d\left(v, h_{2}\right) \geqslant$ 4 because $g(G) \geqslant 7$. It follows that either $d\left(v, f_{1}\right)=d\left(v, f_{2}\right)=1$ and $d\left(v, h_{1}\right)=d\left(v, h_{2}\right)=$ 3 , or else all four distances equal 2 . In the first case, $v=u_{1}=u_{2}$ and we have a 4 -cycle

Figure 1.
unless $v=x$. In the second, $x f_{1} u_{1} v u_{2} f_{2} x$ is a closed walk of length 6 , which contains $\mathrm{a} \leqslant 6$-cycle unless $u_{1}=u_{2}=x$. In either case we may suppose that $u_{1}=x$. Then there is a 7 -cycle $h_{2} b_{2} k_{2} f_{2} x \ldots h_{2}$, which is separating because $d\left(f_{2}\right) \neq d\left(k_{2}\right)=2$ by Lemma 4(i). This contradicts Lemma 5(i), and so completes the proof of the claim.

By Claim 1, we may suppose without loss of generality that $g\left(G_{1}\right) \geqslant 7$, which means that G_{1} has an acyclic 3-colouring c by the minimality of G. We now show that this can be modified into an acyclic 3-colouring of G. As in Lemma 3, whenever we describe how to colour k_{i}, we assume implicitly that $c\left(b_{i}\right)=c\left(f_{i}\right)$, since otherwise $c\left(k_{i}\right)$ is uniquely determined and no 2 -coloured cycle can possibly use k_{i}.

Without loss of generality $c\left(f_{1}\right)=1$. If $c\left(h_{2}\right) \neq 1$, say $c\left(h_{2}\right)=2$, we can colour $b_{1} b_{2} k_{2}$ so that $h_{1} b_{1} b_{2} k_{2}$ is coloured 1231,2313 or 3213 , depending on $c\left(h_{1}\right)$. Thus we may suppose that $c\left(h_{2}\right)=c\left(f_{1}\right)=1$ and, by symmetry, that $c\left(h_{1}\right)=c\left(f_{2}\right)=j$, say. If $j=1$, set $c\left(b_{1}\right)=2, c\left(b_{2}\right)=3$. Suppose $j \neq 1$, say $j=2$. If in $G_{1}, c\left(z_{1}\right)=3$, colour $k_{1} b_{1} b_{2}$ with 313. Otherwise, $c\left(z_{1}\right)=2$, and we colour $k_{1} b_{1} b_{2}$ with 213 or 312 according to whether there is or is not a 1, 2-path connecting h_{1} to h_{2}; note that if there is, then there is no 1,2 -path connecting h_{1} to f_{1}, since there is none in $G_{1}-z_{1}$ connecting f_{1} to h_{2}. Thus in every case we have constructed an acyclic 3 -colouring of G, and this contradiction completes the discussion of case (1).

Case 2: k_{1}, k_{2} are not incident with the same face. Assume that the two faces incident to $b_{1} b_{2}$ are labelled as in Figure 1(b).

Let c be an acyclic 3-colouring of $G^{\prime}=G-\left\{k_{1}, b_{1}, b_{2}, k_{2}\right\}$. If $c\left(f_{1}\right) \neq c\left(h_{2}\right)$, say $c\left(f_{1}\right)=1, c\left(h_{2}\right)=2$, then we can colour $b_{1} b_{2} k_{2}$ so that $h_{1} b_{1} b_{2} k_{2}$ is coloured 1231, 2313 or 3213 , depending on $c\left(h_{1}\right)$ (with the usual convention about colouring 2-vertices). Thus we may suppose that in every colouring of $G^{\prime}, c\left(f_{1}\right)=c\left(h_{2}\right)$. This means that identifying f_{1} with y_{1} in G^{\prime} must create a $\leqslant 6$-cycle, and likewise identifying x_{1} with h_{2}.

Therefore G^{\prime} contains paths P_{1}, P_{2} of length at most 6 connecting f_{1} to y_{1} and x_{1} to h_{2}, and P_{1} and P_{2} must cross, at a vertex v, say. The distances from v along these paths satisfy $d\left(v, f_{1}\right)+d\left(v, y_{1}\right) \leqslant 6$ and $d\left(v, x_{1}\right)+d\left(v, h_{2}\right) \leqslant 6$, and also $d\left(v, f_{1}\right)+d\left(v, x_{1}\right) \geqslant$ $6, d\left(v, x_{1}\right)+d\left(v, y_{1}\right) \geqslant 6, d\left(v, y_{1}\right)+d\left(v, h_{2}\right) \geqslant 6$ and $d\left(v, f_{1}\right)+d\left(v, h_{2}\right) \geqslant 4$ because $g(G) \geqslant$ 7. It follows that either all four distances equal 3, or else $d\left(v, f_{1}\right)=d\left(v, h_{2}\right)=2$ and
$d\left(v, x_{1}\right)=d\left(v, y_{1}\right)=4$. Let C_{1}, C_{2} and C_{3} be the three cycles generated by adding $f_{1} x_{1}, x_{1} y_{1}$ and $y_{1} h_{2}$, respectively, to $P_{1} \cup P_{2}$, and let C_{4} be their mod-2-sum, which is a cycle including v and the path $f_{1} x_{1} y_{1} h_{2}$. The lengths of C_{1}, \ldots, C_{4} are either $7,7,7,9$ or $7,9,7,7$; hence these cycles have no chords. C_{4} is certainly separating. Since no two 2-vertices of G are adjacent by Lemma 4(i), either C_{1} and C_{3} are both separating or C_{2} is separating. Either way, each of x_{1} and y_{1} lies on a separating 7-cycle, and so S exists and, by Lemma 5(i), neither of these vertices is inside S. However, b_{1} and b_{2} are inside S, and so all vertices in Figure 1(b) are inside S or on S. Hence x_{1} and y_{1} are on S.

Similarly, x_{2} and y_{2} are on S. Thus S contains at least two internally disjoint paths between $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$, at least one of which, say P, has at most two internal vertices. Without loss of generality P connects x_{1} to y_{2}. Then we have a $\leqslant 8$-cycle $x_{1} f_{1} k_{1} b_{1} h_{1} y_{2} P x_{1}$ which is strictly enclosed in S, and is separating because $d\left(f_{1}\right) \neq$ $d\left(k_{1}\right)=2$ by Lemma 4(i). This contradicts the definition of S and so completes the proof of Lemma 5.

We now show that Lemmas 4 and 5 give a contradiction. If G contains a *-cycle, form H from G by deleting all vertices outside S; otherwise let $H=G$. Assign a charge of $5 d(v)-14$ units to each vertex v of H and of $2 r(f)-14$ units to each face f of H. By Lemma 1(ii), the total charge assigned is -28 . We now redistribute the charge so that its sum is provably greater than -28 , and this contradiction will prove the theorem. Note that the charge on each face is non-negative, by the supposition that $r(g) \geqslant g \geqslant 7$; and vertices of degree $2,3,4,5, \ldots$ start with charge $-4,1,6,11, \ldots$.

Our rules for redistributing the charge are as follows:
(R1) Each distinguished 2-vertex receives 2 from each adjacent vertex.
(R2) Each distinguished 3(1)-vertex receives $\frac{1}{2}$ from each adjacent vertex that is not a distinguished 2-vertex or a distinguished 3(1)-vertex.
(R3) For each pair b_{1}, b_{2} of adjacent $3(1)$-vertices, b_{1} and b_{2} each receive $\frac{1}{2}$ from each >7-face incident to edge $b_{1} b_{2}$.

It is easy to see that the charge on each face f is still non-negative: by Lemma 4(iv) the boundary of f contains at most $\frac{1}{3} r(f)$ pairs of adjacent $3(1)$-vertices, and so f gives up at most $\left\lfloor\frac{1}{3} r(f\rfloor \leqslant 2 r(f)-14\right.$ if $r(f)>7$.

We now prove that each distinguished vertex v has non-negative charge. If $d(v)=2$, then v started with -4 and gained 4 , so now has 0 . If $d(v)=3$ then v is a $3(b)$-vertex $(b \in\{0,1\})$ by Lemma 4(ii). If $b=0$ then v started with 1 and gave $\frac{1}{2}$ to at most two 3(1)-vertices by Lemma 4(iii). If $b=1$ let v have neighbours v_{1}, v_{2}, v_{3} where $d\left(v_{1}\right)=2$. If v_{2}, say, is a distinguished 3(1)-vertex then, by Lemma 4(iv), v received $\frac{1}{2}$ from v_{3} and $\frac{1}{2}$ from the >7-face incident with edge $v v_{2}$ whose existence was proved in Lemma 5(ii); otherwise, v received $\frac{1}{2}$ from each of v_{2}, v_{3}. In each case v started with 1 , received at least 1 and gave at most 2 to v_{1}.

If $d(v)=4$ then v started with 6 and, by Lemma 4(ii), gave up at most 4 to two 2 -vertices plus 1 to two 3 -vertices. If $d(v) \geqslant 5$, then v gave up at most $2 d(v) \leqslant$ $5 d(v)-15$.

Now we already have a contradiction if $H=G$, when all vertices are distinguished, since in this case the sum of all charges is non-negative. If $H \neq G$ then we must also consider the vertices on S. Each such vertex v has given at most $2(d(v)-2)$ to distinguished vertices and so now has at least $5 d(v)-14-2(d(v)-2)=3 d(v)-10$.

This is -4 if $d(v)=2,-1$ if $d(v)=3$ and otherwise is positive. Since G is 2-connected, $d(v)>2$ for at least two $v \in S$, and since $|S| \leqslant 8$ the sum of all the charges, which should be -28 , is at least $6 \times(-4)+2 \times(-1)=-26$. This contradiction completes the proof of Theorem 2.

References

1. M. O. Albertson and D. Berman, 'Every planar graph has an acyclic 7-coloring', Israel J. Math. 28 (1977) 169-177.
2. I. Algor and N. Alon, 'The star arboricity of graphs', Discrete Math. 75 (1989) 11-22.
3. O. V. Borodin, 'A proof of B. Grünbaum's conjecture on acyclic 5-colourability of planar graphs', Dokl. Akad. Nauk SSSR 231 (1976) 18-20 (Russian).
4. O. V. Borodin, 'On acyclic coloring of planar graphs’, Discrete Math. 25 (1979) 211-236.
5. B. Grünbaum, 'Acyclic colorings of planar graphs', Israel J. Math. 14 (1973) 390-408.
6. T. Jensen and B. Toft, Graph coloring problems (John Wiley, New York, 1995) 38-39.
7. A. V. Kostochka, 'Acyclic 6-coloring of planar graphs', Metody Diskret. Anal. 28 (1976) 40-56 (Russian).
8. A. V. Kostochka and L. S. Melnikov, 'Note to the paper of Grünbaum on acyclic colorings', Discrete Math. 14 (1976) 403-406.
9. J. Mitchem, 'Every planar graph has an acyclic 8-coloring', Duke Math. J. 14 (1974) 177-181.
10. A. Raspaud and E. Sopena, 'Good and semi-strong colorings of oriented planar graphs', Inform. Process. Lett. 51 (1994) 171-174.
O. V. Borodin

Institute of Mathematics
Siberian Branch
Russian Academy of Sciences
Novosibirsk 630090
Russia
D. R. Woodall

Department of Mathematics
University of Nottingham
Nottingham NG7 2RD
A. V. Kostochka

Novosibirsk State University
Novosibirsk 630090
Russia

[^0]: Received 20 December 1995; revised 26 October 1997.
 1991 Mathematics Subject Classification 05C15.
 This work was carried out while the first author was visiting Nottingham, funded by Visiting Fellowship Research Grant GR/K00561 from the Engineering and Physical Sciences Research Council. The work of this author was also partly supported by grant NQ4300 of the International Science Foundation and the Russian Government. The work of the second author was partly supported by grant 93-01-01486 of the Russian Foundation of Fundamental Research and grant RPY300 of the International Science Foundation and the Russian Government.

