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ON LARGE SYSTEMS OF SETS WITH NO LARGE WEAK
∆-SUBSYSTEMS
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A family of sets is called a weak ∆-system if the cardinality of the intersection of any two sets
is the same. We elaborate a construction by Rödl and Thoma [9] and show that for large n, there

exists a family F of subsets of {1, . . . ,n} without weak ∆-systems of size 3 with |F|≥2c(n logn)1/3 .

1. Introduction

The notion of a weak ∆-system was introduced and studied by Erdős, Milner and
Rado [5] in 1974. A weak ∆-system is a family of sets where all pairs of sets have
the same intersection size. Erdős and Szemerédi [7] investigated the behavior of the
function F (n,r)—the largest integer so that there exists a family F of subsets of an
n-element set which does not contain a ∆-system of r sets. Answering a question
of Abbott, they proved that F (n,3) is superpolinomial in n:

(1) F (n, 3) ≥ nlogn/4 log logn.

They also conjectured that for some ε>0,
F (n, 3) ≤ (2− ε)n.

This conjecture was proved by Frankl and Rödl [8] for ε=0.01. Recently, Rödl
and Thoma [9] substantially improved (1) by showing that for sufficiently large n,

(2) F (n, r) ≥ 2
1
3
n1/5 log

4/5
2 (r−1).

In this note, we elaborate the construction of [9] to improve (2) further.
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Theorem 1. For sufficiently large n,

(3) F (n, 3) ≥ 20.01(n lnn)1/3
.

With a more careful counting, the factor 0.01 can be replaced by a larger one.

2. Az inequality

We shall use the following form of Chernoff-Hoeffding type inequality (cf. [3],
Appendix A).

Theorem 2. Let Y be the sum of mutually independent indicator random variables,
µ=E(Y ). For each 0<ε<1,

(4) P{Y < µ(1 − ε)} < exp{−ε2µ/2}.

For each ε>0,

(5) P{Y ≥ µ(1 + ε)} < exp{(ε− (1 + ε) ln(1 + ε))µ}.

Remark. An equivalent form of (5) is: for every a>0,

(6) P{Y ≥ µ+ a} < exp{a− (µ+ a) ln(1 + a/µ)}.

3. A random construction

Let n be sufficiently large, k be a power of 2 such that k≤n1/6/6<2k and q be the
largest power of 2 such that q3≤ lnk. By the definition,

(7) 0.25 ln1/3 n < 0.5 ln1/3 k < q ≤ ln1/3 k.

Let further l = 6qk2 and m = 65k4/q. By the definition, m is an integer and
lm = (6k)6 ≤ n. For i = 1, . . . , l, let Ni = {1 + (i− 1)m,2 + (i− 1)m,. . . , im}. For
each i=1, . . . , l and each (0-1)-vector (α1, . . . ,αi) of length i, we consider a random
subset A(α1, . . . ,αi) of Ni, where elements of Ni are chosen independently with
probability

pi = P{x ∈ A(α1, . . . , αi)} = qk−1−i/2l ∀x ∈ Ni.
For each (0-1)-vector (α1, . . . ,αl) of length l, let

B(α1, . . . , αl) =
l⋃

i=1

A(α1, . . . , αi).
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Note that for any distinct (β1, . . . ,βs) and (γ1, . . . ,γs),

(8) λs = E{|A(β1, . . . , βs)|} = ps|Ns| = 65k3−s/2l,

(9) νs = E{|A(β1, . . . , βs) ∩A(γ1, . . . , γs)|} = p2
s|Ns| = 65qk2−s/l.

Lemma 1. For a vector (α1, . . . ,αs), let L(α1, . . . ,αs) denote the event that

|A(α1, . . . ,αs)|<λs(1−k−0.1), and let L=
⋃l
s=1

⋃
(α1,...,αs)

L(α1, . . . ,αs).

Then P{L}<1/3.

Proof. By (4), P{L(α1, . . . ,αs)} < exp{−0.5k−0.265k3−s/2l} < exp{−64k2.3}.
Hence,

P{L} ≤
l∑

s=1

∑
(α1,...,αs)

exp{−64k2.3} < 2l+1 exp{−64k2.3} < 1/3.

For two vectors a(1) =(α(1)
1 , . . . ,α

(1)
l ) and a(2) =(α(2)

1 , . . . ,α
(2)
l ), let

h(a(1),a(2)) = min{i | α(1)
i 6= α

(2)
i }

and

C(a(1),a(2)) =

∣∣∣∣∣∣
l⋃

s=h(a(1),a(2))

(
A(α(1)

1 , . . . , α
(1)
s ) ∩A(α(2)

1 , . . . , α
(2)
s )
)∣∣∣∣∣∣ .

Lemma 2. Let Q(a(1),a(2)) be the event that |C(a(1),a(2))−
∑l
s=h νs| > 0.4λh,

where h=h(a(1),a(2)). Let Q=
⋃

(a(1),a(2)) Q(a(1),a(2)). Then P{Q}<1/3.

Proof. Fix two distinct vectors a(1) = (α(1)
1 , . . . ,α

(1)
l ) and a(2) = (α(2)

1 , . . . ,α
(2)
l ).

Denote h=h(a(1),a(2)) and µ=
∑l
s=h νs. By (4),

P{C(a(1),a(2)) < µ− 0.4λh} <

< exp


−(0.4λh)2

2
l∑

s=h
νs

 ≤ exp


−0.08 · 610k6−h/l

65q
l∑

s=h
k2−s/l

 ≤ exp


−0.08 · 65k4

q
l∑

s=h
k(h−s)/l

 <

< exp
{
−65k4

15q
(1 − k−1/l)

}
≤ exp

{
−65k4

15q

(
ln k
l
− ln2 k

l2

)}
≤ exp

{
−65

18q
k4 ln k

6qk2

}
≤ exp

{
−63

3
k2 ln k

q2

}
≤ exp {−12l} .
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By (6),

Z = P{C(a(1),a(2)) > µ+ 0.4λh} < exp {0.4λh − (µ+ 0.4λh) ln(1 + 0.4λh/µ)} .

Observe that the derivative in µ of the RHS of (6) is positive since (a− (µ+
a) ln(1+a/µ))′µ=− ln(1+a/µ)+a/µ>0. Hence, if µ≤λh, then

Z < exp {0.4λh − 1.4λh ln 1.4} = exp
{
−0.4λh ln(1.43.5/e)

}
< exp {−6l} .

If µ>λh, then (6) yields

Z < exp

{
2λh
5
− (µ+

2λh
5

)

(
2λh
5µ
−

2λ2
h

25µ2

)}
= exp

{
−

2λ2
h

25µ
+

4λ3
h

125µ2

}
<

< exp

{
−6λ2

h

53µ

}
≤ exp


−6(65k3−h/2l)2

53νh
l∑

s=h
k(h−s)/l

 < exp

{
−611k6−h/l(1− k−1/l)

53 · 65qk2−h/l

}
≤

≤ exp

{
−66k4

53q

(
ln k
l
−
(

ln k
l

)2
)}
≤ exp

{
− 66k4

2 · 53q
· ln k

6qk2

}
≤ exp {−6l} .

It follows that P{Q(a(1),a(2))}<e−12l+e−6l. Hence

P{Q} <
(

2l

2

)
2e−6l < 1/3.

By Lemmas 1 and 2, with probability at least 1/3, neither of the events L and
Q occurs. This means that for each i = 1, . . . , l and each (0-1)-vector (α1, . . . ,αi)
there exist sets A(α1, . . . ,αi) such that for every vector (β1, . . . ,βs),

(10) |A(β1, . . . , βs)| ≥ λs(1− k−0.1),

and for every two vectors a(1) =(α(1)
1 , . . . ,α

(1)
l ) and a(2) =(α(2)

1 , . . . ,α
(2)
l ),

(11)

∣∣∣∣∣∣∣∣
l⋃

s=h

(
A(α(1)

1 , . . . , α
(1)
s ) ∩A(α(2)

1 , . . . , α
(2)
s )
) ∣∣∣− l∑

s=h

νs

∣∣∣∣∣ ≤ 0.4λh,

where h=h(a(1),a(2)).

The members of our family F will be the 2l setsB(α1, . . . ,αl)=
l⋃
i=1

A(α1, . . . ,αi).
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4. Properties of the family F

Consider three arbitrary vectors a(1) = (α(1)
1 , . . . ,α

(1)
l ), a(2) = (α(2)

1 , . . . ,α
(2)
l ), and

a(3) = (α(3)
1 , . . . ,α

(3)
l ). Let i= h(a(1),a(3)), j = h(a(1),a(2)). We can reorder a(1),

a(2) and a(3) so that i<j. We shall prove that

|B(a(1)) ∩B(a(2))| > |B(a(1)) ∩B(a(3))|.

Let Ct =B(a(t))\
⋃i−1
s=1Ns, t= 1,2,3. Since the sets B(a(1)),B(a(2)) and B(a(3))

coincide on Ns for s<i,

|B(a(1)) ∩B(a(2))| − |B(a(1)) ∩B(a(3))| = |C1 ∩ C2| − |C1 ∩ C3|.

By (10) and (11),

|C1 ∩ C2| − |C1 ∩ C3| ≥
j−1∑
s=i

(1− k−0.1)λs +
l∑

s=j

νs − 0.4λj −
l∑
s=i

νs − 0.4λi =

=
j−1∑
s=i

((1 − k−0.1)λs − νs)− 0.4(λi + λj) > 0.1λi.

This proves Theorem 1. Moreover, F is “far” from containing weak ∆-systems
in the sense that any three its members F1,F2 and F3 can be ordered so that

(12) |F1 ∩ F2| − |F1 ∩ F3| > 0.1λl = 0.1 · 65k2.5 > n5/12.

It is not hard to prove that the size of any family with property (12) is at most

2O(n7/12 logn).
Remark. Observe that for any r sets B(a(1)), . . . ,B(a(r)) in F , the vectors

a(1), . . . ,a(r) can be reordered in such a way that

h(a(1),a(2))− h(a(1),a(3)) ≥ log2 r − 1.

This implies that the same construction with l and m replaced by l′= bqk2 log2 rc
and m′=bn/l′c yields

F (n, r) ≥ rc(n lnn)1/3
.
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