ON LARGE SYSTEMS OF SETS WITH NO LARGE WEAK Δ-SUBSYSTEMS

A. V. KOSTOCHKA* and V. RÖDL \ddagger

Received October 1, 1997

A family of sets is called a weak Δ-system if the cardinality of the intersection of any two sets is the same. We elaborate a construction by Rödl and Thoma [9] and show that for large n, there exists a family \mathcal{F} of subsets of $\{1, \ldots, n\}$ without weak Δ-systems of size 3 with $|\mathcal{F}| \geq 2^{c(n \log n)^{1 / 3}}$.

1. Introduction

The notion of a weak Δ-system was introduced and studied by Erdős, Milner and Rado [5] in 1974. A weak Δ-system is a family of sets where all pairs of sets have the same intersection size. Erdős and Szemerédi [7] investigated the behavior of the function $F(n, r)$-the largest integer so that there exists a family \mathcal{F} of subsets of an n-element set which does not contain a Δ-system of r sets. Answering a question of Abbott, they proved that $F(n, 3)$ is superpolinomial in n :

$$
\begin{equation*}
F(n, 3) \geq n^{\log n / 4 \log \log n} . \tag{1}
\end{equation*}
$$

They also conjectured that for some $\varepsilon>0$,

$$
F(n, 3) \leq(2-\varepsilon)^{n} .
$$

This conjecture was proved by Frankl and Rödl [8] for $\varepsilon=0.01$. Recently, Rödl and Thoma [9] substantially improved (1) by showing that for sufficiently large n,

$$
\begin{equation*}
F(n, r) \geq 2^{\frac{1}{3} n^{1 / 5} \log _{2}^{4 / 5}(r-1)} \tag{2}
\end{equation*}
$$

In this note, we elaborate the construction of [9] to improve (2) further.

[^0]Theorem 1. For sufficiently large n,

$$
\begin{equation*}
F(n, 3) \geq 2^{0.01(n \ln n)^{1 / 3}} \tag{3}
\end{equation*}
$$

With a more careful counting, the factor 0.01 can be replaced by a larger one.

2. Az inequality

We shall use the following form of Chernoff-Hoeffding type inequality (cf. [3], Appendix A).

Theorem 2. Let Y be the sum of mutually independent indicator random variables, $\mu=\mathbf{E}(Y)$. For each $0<\varepsilon<1$,

$$
\begin{equation*}
\mathbf{P}\{Y<\mu(1-\varepsilon)\}<\exp \left\{-\varepsilon^{2} \mu / 2\right\} \tag{4}
\end{equation*}
$$

For each $\varepsilon>0$,

$$
\begin{equation*}
\mathbf{P}\{Y \geq \mu(1+\varepsilon)\}<\exp \{(\varepsilon-(1+\varepsilon) \ln (1+\varepsilon)) \mu\} \tag{5}
\end{equation*}
$$

Remark. An equivalent form of (5) is: for every $a>0$,

$$
\begin{equation*}
\mathbf{P}\{Y \geq \mu+a\}<\exp \{a-(\mu+a) \ln (1+a / \mu)\} \tag{6}
\end{equation*}
$$

3. A random construction

Let n be sufficiently large, k be a power of 2 such that $k \leq n^{1 / 6} / 6<2 k$ and q be the largest power of 2 such that $q^{3} \leq \ln k$. By the definition,

$$
\begin{equation*}
0.25 \ln ^{1 / 3} n<0.5 \ln ^{1 / 3} k<q \leq \ln ^{1 / 3} k \tag{7}
\end{equation*}
$$

Let further $l=6 q k^{2}$ and $m=6^{5} k^{4} / q$. By the definition, m is an integer and $l m=(6 k)^{6} \leq n$. For $i=1, \ldots, l$, let $N_{i}=\{1+(i-1) m, 2+(i-1) m, \ldots, i m\}$. For each $i=1, \ldots, l$ and each ($0-1$)-vector ($\alpha_{1}, \ldots, \alpha_{i}$) of length i, we consider a random subset $\mathbf{A}\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ of N_{i}, where elements of N_{i} are chosen independently with probability

$$
p_{i}=\mathbf{P}\left\{x \in \mathbf{A}\left(\alpha_{1}, \ldots, \alpha_{i}\right)\right\}=q k^{-1-i / 2 l} \quad \forall x \in N_{i} .
$$

For each (0-1)-vector $\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ of length l, let

$$
\mathbf{B}\left(\alpha_{1}, \ldots, \alpha_{l}\right)=\bigcup_{i=1}^{l} \mathbf{A}\left(\alpha_{1}, \ldots, \alpha_{i}\right)
$$

Note that for any distinct $\left(\beta_{1}, \ldots, \beta_{s}\right)$ and $\left(\gamma_{1}, \ldots, \gamma_{s}\right)$,

$$
\begin{equation*}
\lambda_{s}=\mathbf{E}\left\{\left|\mathbf{A}\left(\beta_{1}, \ldots, \beta_{s}\right)\right|\right\}=p_{s}\left|N_{s}\right|=6^{5} k^{3-s / 2 l} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\nu_{s}=\mathbf{E}\left\{\left|\mathbf{A}\left(\beta_{1}, \ldots, \beta_{s}\right) \cap \mathbf{A}\left(\gamma_{1}, \ldots, \gamma_{s}\right)\right|\right\}=p_{s}^{2}\left|N_{s}\right|=6^{5} q k^{2-s / l} \tag{9}
\end{equation*}
$$

Lemma 1. For a vector $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, let $\mathbf{L}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ denote the event that $\left|\mathbf{A}\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right|<\lambda_{s}\left(1-k^{-0.1}\right)$, and let $\mathbf{L}=\bigcup_{s=1}^{l} \bigcup_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)} \mathbf{L}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$.
Then $\mathbf{P}\{\mathbf{L}\}<1 / 3$.
Proof. By (4), $\mathbf{P}\left\{\mathbf{L}\left(\alpha_{1}, \ldots, \alpha_{s}\right)\right\}<\exp \left\{-0.5 k^{-0.2} 6^{5} k^{3-s / 2 l}\right\}<\exp \left\{-6^{4} k^{2.3}\right\}$. Hence,

$$
\mathbf{P}\{\mathbf{L}\} \leq \sum_{s=1}^{l} \sum_{\left(\alpha_{1}, \ldots, \alpha_{s}\right)} \exp \left\{-6^{4} k^{2.3}\right\}<2^{l+1} \exp \left\{-6^{4} k^{2.3}\right\}<1 / 3
$$

For two vectors $\mathbf{a}^{(1)}=\left(\alpha_{1}^{(1)}, \ldots, \alpha_{l}^{(1)}\right)$ and $\mathbf{a}^{(2)}=\left(\alpha_{1}^{(2)}, \ldots, \alpha_{l}^{(2)}\right)$, let

$$
h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)=\min \left\{i \mid \alpha_{i}^{(1)} \neq \alpha_{i}^{(2)}\right\}
$$

and

$$
\mathbf{C}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)=\left|\bigcup_{s=h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)}^{l}\left(\mathbf{A}\left(\alpha_{1}^{(1)}, \ldots, \alpha_{s}^{(1)}\right) \cap \mathbf{A}\left(\alpha_{1}^{(2)}, \ldots, \alpha_{s}^{(2)}\right)\right)\right|
$$

Lemma 2. Let $\mathbf{Q}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)$ be the event that $\left|\mathbf{C}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)-\sum_{s=h}^{l} \nu_{s}\right|>0.4 \lambda_{h}$, where $h=h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)$. Let $\mathbf{Q}=\bigcup_{\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)} \mathbf{Q}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)$. Then $\mathbf{P}\{\mathbf{Q}\}<1 / 3$.

Proof. Fix two distinct vectors $\mathbf{a}^{(1)}=\left(\alpha_{1}^{(1)}, \ldots, \alpha_{l}^{(1)}\right)$ and $\mathbf{a}^{(2)}=\left(\alpha_{1}^{(2)}, \ldots, \alpha_{l}^{(2)}\right)$. Denote $h=h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)$ and $\mu=\sum_{s=h}^{l} \nu_{s}$. By (4),

$$
\begin{gathered}
\mathbf{P}\left\{\mathbf{C}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)<\mu-0.4 \lambda_{h}\right\}< \\
<\exp \left\{\frac{-\left(0.4 \lambda_{h}\right)^{2}}{2 \sum_{s=h}^{l} \nu_{s}}\right\} \leq \exp \left\{\frac{-0.08 \cdot 6^{10} k^{6-h / l}}{6^{5} q \sum_{s=h}^{l} k^{2-s / l}}\right\} \leq \exp \left\{\frac{-0.08 \cdot 6^{5} k^{4}}{q \sum_{s=h}^{l} k^{(h-s) / l}}\right\}< \\
<\exp \left\{\frac{-6^{5} k^{4}}{15 q}\left(1-k^{-1 / l}\right)\right\} \leq \exp \left\{\frac{-6^{5} k^{4}}{15 q}\left(\frac{\ln k}{l}-\frac{\ln ^{2} k}{l^{2}}\right)\right\} \\
\leq \exp \left\{\frac{-6^{5}}{18 q} k^{4} \frac{\ln k}{6 q k^{2}}\right\} \leq \exp \left\{-\frac{6^{3}}{3} k^{2} \frac{\ln k}{q^{2}}\right\} \leq \exp \{-12 l\}
\end{gathered}
$$

By (6),

$$
Z=\mathbf{P}\left\{\mathbf{C}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)>\mu+0.4 \lambda_{h}\right\}<\exp \left\{0.4 \lambda_{h}-\left(\mu+0.4 \lambda_{h}\right) \ln \left(1+0.4 \lambda_{h} / \mu\right)\right\}
$$

Observe that the derivative in μ of the RHS of (6) is positive since $(a-(\mu+$ a) $\ln (1+a / \mu))_{\mu}^{\prime}=-\ln (1+a / \mu)+a / \mu>0$. Hence, if $\mu \leq \lambda_{h}$, then

$$
Z<\exp \left\{0.4 \lambda_{h}-1.4 \lambda_{h} \ln 1.4\right\}=\exp \left\{-0.4 \lambda_{h} \ln \left(1.4^{3.5} / e\right)\right\}<\exp \{-6 l\} .
$$

If $\mu>\lambda_{h}$, then (6) yields

$$
\begin{aligned}
& Z<\exp \left\{\frac{2 \lambda_{h}}{5}-\left(\mu+\frac{2 \lambda_{h}}{5}\right)\left(\frac{2 \lambda_{h}}{5 \mu}-\frac{2 \lambda_{h}^{2}}{25 \mu^{2}}\right)\right\}=\exp \left\{-\frac{2 \lambda_{h}^{2}}{25 \mu}+\frac{4 \lambda_{h}^{3}}{125 \mu^{2}}\right\}< \\
& <\exp \left\{\frac{-6 \lambda_{h}^{2}}{5^{3} \mu}\right\} \leq \exp \left\{\frac{-6\left(6^{5} k^{3-h / 2 l}\right)^{2}}{5^{3} \nu_{h} \sum_{s=h}^{l} k^{(h-s) / l}}\right\}<\exp \left\{-\frac{6^{11} k^{6-h / l}\left(1-k^{-1 / l}\right)}{5^{3} \cdot 6^{5} q k^{2-h / l}}\right\} \leq \\
& \leq \exp \left\{-\frac{6^{6} k^{4}}{5^{3} q}\left(\frac{\ln k}{l}-\left(\frac{\ln k}{l}\right)^{2}\right)\right\} \leq \exp \left\{-\frac{6^{6} k^{4}}{2 \cdot 5^{3} q} \cdot \frac{\ln k}{6 q k^{2}}\right\} \leq \exp \{-6 l\} .
\end{aligned}
$$

It follows that $\mathbf{P}\left\{\mathbf{Q}\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)\right\}<e^{-12 l}+e^{-6 l}$. Hence

$$
\mathbf{P}\{\mathbf{Q}\}<\binom{2^{l}}{2} 2 e^{-6 l}<1 / 3
$$

By Lemmas 1 and 2, with probability at least $1 / 3$, neither of the events \mathbf{L} and \mathbf{Q} occurs. This means that for each $i=1, \ldots, l$ and each ($0-1$)-vector $\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ there exist sets $A\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ such that for every vector $\left(\beta_{1}, \ldots, \beta_{s}\right)$,

$$
\begin{equation*}
\left|A\left(\beta_{1}, \ldots, \beta_{s}\right)\right| \geq \lambda_{s}\left(1-k^{-0.1}\right) \tag{10}
\end{equation*}
$$

and for every two vectors $\mathbf{a}^{(1)}=\left(\alpha_{1}^{(1)}, \ldots, \alpha_{l}^{(1)}\right)$ and $\mathbf{a}^{(2)}=\left(\alpha_{1}^{(2)}, \ldots, \alpha_{l}^{(2)}\right)$,

$$
\begin{equation*}
\left|\left|\bigcup_{s=h}^{l}\left(A\left(\alpha_{1}^{(1)}, \ldots, \alpha_{s}^{(1)}\right) \cap A\left(\alpha_{1}^{(2)}, \ldots, \alpha_{s}^{(2)}\right)\right)\right|-\sum_{s=h}^{l} \nu_{s}\right| \leq 0.4 \lambda_{h} \tag{11}
\end{equation*}
$$

where $h=h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)$.
The members of our family \mathcal{F} will be the 2^{l} sets $B\left(\alpha_{1}, \ldots, \alpha_{l}\right)=\bigcup_{i=1}^{l} A\left(\alpha_{1}, \ldots, \alpha_{i}\right)$.

4. Properties of the family \mathcal{F}

Consider three arbitrary vectors $\mathbf{a}^{(1)}=\left(\alpha_{1}^{(1)}, \ldots, \alpha_{l}^{(1)}\right), \mathbf{a}^{(2)}=\left(\alpha_{1}^{(2)}, \ldots, \alpha_{l}^{(2)}\right)$, and $\mathbf{a}^{(3)}=\left(\alpha_{1}^{(3)}, \ldots, \alpha_{l}^{(3)}\right)$. Let $i=h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(3)}\right), j=h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)$. We can reorder $\mathbf{a}^{(1)}$, $\mathbf{a}^{(2)}$ and $\mathbf{a}^{(3)}$ so that $i<j$. We shall prove that

$$
\left|B\left(\mathbf{a}^{(1)}\right) \cap B\left(\mathbf{a}^{(2)}\right)\right|>\left|B\left(\mathbf{a}^{(1)}\right) \cap B\left(\mathbf{a}^{(3)}\right)\right| .
$$

Let $C_{t}=B\left(\mathbf{a}^{(t)}\right) \backslash \bigcup_{s=1}^{i-1} N_{s}, t=1,2,3$. Since the sets $B\left(\mathbf{a}^{(1)}\right), B\left(\mathbf{a}^{(2)}\right)$ and $B\left(\mathbf{a}^{(3)}\right)$ coincide on N_{s} for $s<i$,

$$
\left|B\left(\mathbf{a}^{(1)}\right) \cap B\left(\mathbf{a}^{(2)}\right)\right|-\left|B\left(\mathbf{a}^{(1)}\right) \cap B\left(\mathbf{a}^{(3)}\right)\right|=\left|C_{1} \cap C_{2}\right|-\left|C_{1} \cap C_{3}\right|
$$

By (10) and (11),

$$
\begin{gathered}
\left|C_{1} \cap C_{2}\right|-\left|C_{1} \cap C_{3}\right| \geq \sum_{s=i}^{j-1}\left(1-k^{-0.1}\right) \lambda_{s}+\sum_{s=j}^{l} \nu_{s}-0.4 \lambda_{j}-\sum_{s=i}^{l} \nu_{s}-0.4 \lambda_{i}= \\
=\sum_{s=i}^{j-1}\left(\left(1-k^{-0.1}\right) \lambda_{s}-\nu_{s}\right)-0.4\left(\lambda_{i}+\lambda_{j}\right)>0.1 \lambda_{i}
\end{gathered}
$$

This proves Theorem 1. Moreover, \mathcal{F} is "far" from containing weak Δ-systems in the sense that any three its members F_{1}, F_{2} and F_{3} can be ordered so that

$$
\begin{equation*}
\left|F_{1} \cap F_{2}\right|-\left|F_{1} \cap F_{3}\right|>0.1 \lambda_{l}=0.1 \cdot 6^{5} k^{2.5}>n^{5 / 12} \tag{12}
\end{equation*}
$$

It is not hard to prove that the size of any family with property (12) is at most $2^{O\left(n^{7 / 12} \log n\right)}$.

Remark. Observe that for any r sets $B\left(\mathbf{a}^{(1)}\right), \ldots, B\left(\mathbf{a}^{(r)}\right)$ in \mathcal{F}, the vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(r)}$ can be reordered in such a way that

$$
h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right)-h\left(\mathbf{a}^{(1)}, \mathbf{a}^{(3)}\right) \geq \log _{2} r-1 .
$$

This implies that the same construction with l and m replaced by $l^{\prime}=\left\lfloor q k^{2} \log _{2} r\right\rfloor$ and $m^{\prime}=\left\lfloor n / l^{\prime}\right\rfloor$ yields

$$
F(n, r) \geq r^{c(n \ln n)^{1 / 3}}
$$

References

[1] H. L. Abbott, D. Hanson, and N. Sauer: Intersection theorems for systems of sets, J. Comb. Th. Ser. A 12 (1972), 381-389.
[2] H. L. Abbott and D. Hanson: On finite Δ-systems, Discrete Math. 8 (1974), 1-12.
[3] N. Alon and J. H. Spencer: The Probabilistic Method, Wiley, 1992.
[4] P. Erdős: Problems and results on finite and infinite combinatorial analysis, in: Infinite and finite sets (Colloq. Keszthely 1973), Vol. I, Colloq. Math. Soc. J. Bolyai, 10, North Holland, Amsterdam, 1975, 403-424.
[5] P. Erdős, E. C. Milner, and R. Rado: Intersection theorems for systems of sets (III), J. Austral. Math. Soc. 18 (1974), 22-40.
[6] P. Erdős and R. Rado: Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[7] P. Erdős and E. Szemerédi: Combinatorial properties of systems of sets, J. Comb. Th. A 24 (1978), 308-313.
[8] P. Frankl and V. Rödl: Forbidden intersections, Trans. Amer. Math. Soc. 300 (1987), 259-286.
[9] V. RödL and L. Thoma: On the size of set systems on [n] not containing weak (r, Δ)-systems, J. Comb. Th. Ser. A, 80 (1997), 166-173.

A. V. Kostochka
V. Rödl
Institute of Mathematics
Siberian Branch of the RAS
Dept of Mathematics and Computer Science
Emory University, Atlanta
GA 30322, USA
rodl@mathcs.emory.edu

[^0]: Mathematics Subject Classification (1991): 05D05

 * This work was partially supported by the grant MR1-181 of the Cooperative Grant Program of the Civilian Research and Development Foundation and by the grants 96-01-01614 and 97-0101075 of the Russian Foundation for Fundamental Research.
 \ddagger This work partially supported by grant MR1-181 of the Civilian Research and Development Foundation and by NFS grant DMS 9704114.

