ON LARGE SYSTEMS OF SETS WITH NO LARGE WEAK $\Delta\text{-}\mathrm{SUBSYSTEMS}$

A. V. KOSTOCHKA* and V. RÖDL[‡]

Received October 1, 1997

A family of sets is called a *weak* Δ -system if the cardinality of the intersection of any two sets is the same. We elaborate a construction by Rödl and Thoma [9] and show that for large n, there exists a family \mathcal{F} of subsets of $\{1, \ldots, n\}$ without weak Δ -systems of size 3 with $|\mathcal{F}| \geq 2^{c(n \log n)^{1/3}}$.

1. Introduction

The notion of a weak Δ -system was introduced and studied by Erdős, Milner and Rado [5] in 1974. A weak Δ -system is a family of sets where all pairs of sets have the same intersection size. Erdős and Szemerédi [7] investigated the behavior of the function F(n,r)—the largest integer so that there exists a family \mathcal{F} of subsets of an *n*-element set which does not contain a Δ -system of *r* sets. Answering a question of Abbott, they proved that F(n,3) is superpolinomial in *n*:

(1) $F(n,3) > n^{\log n/4 \log \log n}.$

They also conjectured that for some $\varepsilon > 0$,

$$F(n,3) \le (2-\varepsilon)^n.$$

This conjecture was proved by Frankl and Rödl [8] for $\varepsilon = 0.01$. Recently, Rödl and Thoma [9] substantially improved (1) by showing that for sufficiently large n,

(2)
$$F(n,r) \ge 2^{\frac{1}{3}n^{1/5}\log_2^{4/5}(r-1)}$$

In this note, we elaborate the construction of [9] to improve (2) further.

 \ddagger This work partially supported by grant MR1-181 of the Civilian Research and Development Foundation and by NFS grant DMS 9704114.

Mathematics Subject Classification (1991): 05D05

^{*} This work was partially supported by the grant MR1-181 of the Cooperative Grant Program of the Civilian Research and Development Foundation and by the grants 96-01-01614 and 97-01-01075 of the Russian Foundation for Fundamental Research.

Theorem 1. For sufficiently large n,

(3)
$$F(n,3) \ge 2^{0.01(n \ln n)^{1/3}}.$$

With a more careful counting, the factor 0.01 can be replaced by a larger one.

2. Az inequality

We shall use the following form of Chernoff-Hoeffding type inequality (cf. [3], Appendix A).

Theorem 2. Let Y be the sum of mutually independent indicator random variables, $\mu = \mathbf{E}(Y)$. For each $0 < \varepsilon < 1$,

(4)
$$\mathbf{P}\{Y < \mu(1-\varepsilon)\} < \exp\{-\varepsilon^2 \mu/2\}.$$

For each $\varepsilon > 0$,

(5)
$$\mathbf{P}\{Y \ge \mu(1+\varepsilon)\} < \exp\{(\varepsilon - (1+\varepsilon)\ln(1+\varepsilon))\mu\}.$$

Remark. An equivalent form of (5) is: for every a > 0,

(6)
$$\mathbf{P}\{Y \ge \mu + a\} < \exp\{a - (\mu + a)\ln(1 + a/\mu)\}$$

3. A random construction

Let n be sufficiently large, k be a power of 2 such that $k \le n^{1/6}/6 < 2k$ and q be the largest power of 2 such that $q^3 \le \ln k$. By the definition,

(7)
$$0.25 \ln^{1/3} n < 0.5 \ln^{1/3} k < q \le \ln^{1/3} k.$$

Let further $l = 6qk^2$ and $m = 6^5k^4/q$. By the definition, m is an integer and $lm = (6k)^6 \leq n$. For i = 1, ..., l, let $N_i = \{1 + (i-1)m, 2 + (i-1)m, ..., im\}$. For each i = 1, ..., l and each (0-1)-vector $(\alpha_1, ..., \alpha_i)$ of length i, we consider a random subset $\mathbf{A}(\alpha_1, ..., \alpha_i)$ of N_i , where elements of N_i are chosen independently with probability

$$p_i = \mathbf{P}\{x \in \mathbf{A}(\alpha_1, \dots, \alpha_i)\} = qk^{-1-i/2l} \quad \forall x \in N_i.$$

For each (0-1)-vector $(\alpha_1, \ldots, \alpha_l)$ of length l, let

$$\mathbf{B}(\alpha_1,\ldots,\alpha_l)=\bigcup_{i=1}^l \mathbf{A}(\alpha_1,\ldots,\alpha_i).$$

236

Note that for any distinct $(\beta_1, \ldots, \beta_s)$ and $(\gamma_1, \ldots, \gamma_s)$,

(8)
$$\lambda_s = \mathbf{E}\{|\mathbf{A}(\beta_1, \dots, \beta_s)|\} = p_s |N_s| = 6^5 k^{3-s/2l},$$

(9)
$$\nu_s = \mathbf{E}\{|\mathbf{A}(\beta_1, \dots, \beta_s) \cap \mathbf{A}(\gamma_1, \dots, \gamma_s)|\} = p_s^2 |N_s| = 6^5 q k^{2-s/l}.$$

Lemma 1. For a vector $(\alpha_1, \ldots, \alpha_s)$, let $\mathbf{L}(\alpha_1, \ldots, \alpha_s)$ denote the event that $|\mathbf{A}(\alpha_1, \ldots, \alpha_s)| < \lambda_s (1 - k^{-0.1})$, and let $\mathbf{L} = \bigcup_{s=1}^l \bigcup_{(\alpha_1, \ldots, \alpha_s)} \mathbf{L}(\alpha_1, \ldots, \alpha_s)$. Then $\mathbf{P}\{\mathbf{L}\} < 1/3$.

Proof. By (4), $\mathbf{P}\{\mathbf{L}(\alpha_1,...,\alpha_s)\} < \exp\{-0.5k^{-0.2}6^5k^{3-s/2l}\} < \exp\{-6^4k^{2.3}\}$. Hence,

$$\mathbf{P}\{\mathbf{L}\} \le \sum_{s=1}^{l} \sum_{(\alpha_1, \dots, \alpha_s)} \exp\{-6^4 k^{2.3}\} < 2^{l+1} \exp\{-6^4 k^{2.3}\} < 1/3.$$

For two vectors $\mathbf{a}^{(1)} = (\alpha_1^{(1)}, \dots, \alpha_l^{(1)})$ and $\mathbf{a}^{(2)} = (\alpha_1^{(2)}, \dots, \alpha_l^{(2)})$, let $h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}) = \min\{i \mid \alpha_i^{(1)} \neq \alpha_i^{(2)}\}$

and

$$\mathbf{C}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}) = \left| \bigcup_{s=h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})}^{l} \left(\mathbf{A}(\alpha_{1}^{(1)}, \dots, \alpha_{s}^{(1)}) \cap \mathbf{A}(\alpha_{1}^{(2)}, \dots, \alpha_{s}^{(2)}) \right) \right|.$$

Lemma 2. Let $\mathbf{Q}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})$ be the event that $|\mathbf{C}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}) - \sum_{s=h}^{l} \nu_{s}| > 0.4\lambda_{h}$, where $h = h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})$. Let $\mathbf{Q} = \bigcup_{(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})} \mathbf{Q}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})$. Then $\mathbf{P}{\mathbf{Q}} < 1/3$.

Proof. Fix two distinct vectors $\mathbf{a}^{(1)} = (\alpha_1^{(1)}, \dots, \alpha_l^{(1)})$ and $\mathbf{a}^{(2)} = (\alpha_1^{(2)}, \dots, \alpha_l^{(2)})$. Denote $h = h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})$ and $\mu = \sum_{s=h}^{l} \nu_s$. By (4),

$$\begin{aligned} \mathbf{P}\{\mathbf{C}(\mathbf{a}^{(1)},\mathbf{a}^{(2)}) < \mu - 0.4\lambda_h\} < \\ < \exp\left\{\frac{-(0.4\lambda_h)^2}{2\sum\limits_{s=h}^l \nu_s}\right\} &\leq \exp\left\{\frac{-0.08 \cdot 6^{10}k^{6-h/l}}{6^5q\sum\limits_{s=h}^l k^{2-s/l}}\right\} \leq \exp\left\{\frac{-0.08 \cdot 6^5k^4}{q\sum\limits_{s=h}^l k^{(h-s)/l}}\right\} < \\ &< \exp\left\{\frac{-6^5k^4}{15q}(1-k^{-1/l})\right\} \leq \exp\left\{\frac{-6^5k^4}{15q}\left(\frac{\ln k}{l} - \frac{\ln^2 k}{l^2}\right)\right\} \\ &\leq \exp\left\{\frac{-6^5}{18q}k^4\frac{\ln k}{6qk^2}\right\} \leq \exp\left\{-\frac{6^3}{3}k^2\frac{\ln k}{q^2}\right\} \leq \exp\left\{-12l\right\}.\end{aligned}$$

By (6),

$$Z = \mathbf{P}\{\mathbf{C}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}) > \mu + 0.4\lambda_h\} < \exp\{0.4\lambda_h - (\mu + 0.4\lambda_h)\ln(1 + 0.4\lambda_h/\mu)\}.$$

Observe that the derivative in μ of the RHS of (6) is positive since $(a - (\mu + a)\ln(1+a/\mu))'_{\mu} = -\ln(1+a/\mu) + a/\mu > 0$. Hence, if $\mu \leq \lambda_h$, then

$$Z < \exp\left\{0.4\lambda_h - 1.4\lambda_h \ln 1.4\right\} = \exp\left\{-0.4\lambda_h \ln(1.4^{3.5}/e)\right\} < \exp\left\{-6l\right\}$$

If $\mu > \lambda_h$, then (6) yields

$$Z < \exp\left\{\frac{2\lambda_h}{5} - (\mu + \frac{2\lambda_h}{5})\left(\frac{2\lambda_h}{5\mu} - \frac{2\lambda_h^2}{25\mu^2}\right)\right\} = \exp\left\{-\frac{2\lambda_h^2}{25\mu} + \frac{4\lambda_h^3}{125\mu^2}\right\} < \exp\left\{\frac{-6\lambda_h^2}{5^3\mu}\right\} \le \exp\left\{\frac{-6(6^5k^{3-h/2l})^2}{5^3\nu_h\sum_{s=h}^l k^{(h-s)/l}}\right\} < \exp\left\{-\frac{6^{11}k^{6-h/l}(1-k^{-1/l})}{5^3\cdot 6^5qk^{2-h/l}}\right\} \le \exp\left\{-\frac{6^6k^4}{5^3q}\left(\frac{\ln k}{l} - \left(\frac{\ln k}{l}\right)^2\right)\right\} \le \exp\left\{-\frac{6^6k^4}{2\cdot 5^3q} \cdot \frac{\ln k}{6qk^2}\right\} \le \exp\left\{-6l\right\}.$$

It follows that $\mathbf{P}{\mathbf{Q}(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})} < e^{-12l} + e^{-6l}$. Hence

$$\mathbf{P}\{\mathbf{Q}\} < \binom{2^l}{2} 2e^{-6l} < 1/3.$$

By Lemmas 1 and 2, with probability at least 1/3, neither of the events **L** and **Q** occurs. This means that for each i = 1, ..., l and each (0-1)-vector $(\alpha_1, ..., \alpha_i)$ there exist sets $A(\alpha_1, ..., \alpha_i)$ such that for every vector $(\beta_1, ..., \beta_s)$,

(10)
$$|A(\beta_1, \dots, \beta_s)| \ge \lambda_s (1 - k^{-0.1}),$$

and for every two vectors $\mathbf{a}^{(1)} = (\alpha_1^{(1)}, \dots, \alpha_l^{(1)})$ and $\mathbf{a}^{(2)} = (\alpha_1^{(2)}, \dots, \alpha_l^{(2)})$,

(11)
$$\left| \left| \bigcup_{s=h}^{l} \left(A(\alpha_{1}^{(1)}, \dots, \alpha_{s}^{(1)}) \cap A(\alpha_{1}^{(2)}, \dots, \alpha_{s}^{(2)}) \right) \right| - \sum_{s=h}^{l} \nu_{s} \right| \le 0.4\lambda_{h},$$

where $h = h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)})$.

The members of our family \mathcal{F} will be the 2^l sets $B(\alpha_1, \ldots, \alpha_l) = \bigcup_{i=1}^l A(\alpha_1, \ldots, \alpha_i)$.

4. Properties of the family \mathcal{F}

Consider three arbitrary vectors $\mathbf{a}^{(1)} = (\alpha_1^{(1)}, \dots, \alpha_l^{(1)}), \ \mathbf{a}^{(2)} = (\alpha_1^{(2)}, \dots, \alpha_l^{(2)}), \text{ and } \mathbf{a}^{(3)} = (\alpha_1^{(3)}, \dots, \alpha_l^{(3)}).$ Let $i = h(\mathbf{a}^{(1)}, \mathbf{a}^{(3)}), \ j = h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}).$ We can reorder $\mathbf{a}^{(1)}, \mathbf{a}^{(2)}$ and $\mathbf{a}^{(3)}$ so that i < j. We shall prove that

$$|B(\mathbf{a}^{(1)}) \cap B(\mathbf{a}^{(2)})| > |B(\mathbf{a}^{(1)}) \cap B(\mathbf{a}^{(3)})|.$$

Let $C_t = B(\mathbf{a}^{(t)}) \setminus \bigcup_{s=1}^{i-1} N_s$, t = 1, 2, 3. Since the sets $B(\mathbf{a}^{(1)}), B(\mathbf{a}^{(2)})$ and $B(\mathbf{a}^{(3)})$ coincide on N_s for s < i,

$$|B(\mathbf{a}^{(1)}) \cap B(\mathbf{a}^{(2)})| - |B(\mathbf{a}^{(1)}) \cap B(\mathbf{a}^{(3)})| = |C_1 \cap C_2| - |C_1 \cap C_3|.$$

By (10) and (11),

$$|C_1 \cap C_2| - |C_1 \cap C_3| \ge \sum_{s=i}^{j-1} (1 - k^{-0.1})\lambda_s + \sum_{s=j}^l \nu_s - 0.4\lambda_j - \sum_{s=i}^l \nu_s - 0.4\lambda_i =$$
$$= \sum_{s=i}^{j-1} ((1 - k^{-0.1})\lambda_s - \nu_s) - 0.4(\lambda_i + \lambda_j) > 0.1\lambda_i.$$

This proves Theorem 1. Moreover, \mathcal{F} is "far" from containing weak Δ -systems in the sense that any three its members F_1, F_2 and F_3 can be ordered so that

(12)
$$|F_1 \cap F_2| - |F_1 \cap F_3| > 0.1\lambda_l = 0.1 \cdot 6^5 k^{2.5} > n^{5/12}.$$

It is not hard to prove that the size of any family with property (12) is at most $2^{O(n^{7/12}\log n)}$.

Remark. Observe that for any r sets $B(\mathbf{a}^{(1)}), \ldots, B(\mathbf{a}^{(r)})$ in \mathcal{F} , the vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(r)}$ can be reordered in such a way that

$$h(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}) - h(\mathbf{a}^{(1)}, \mathbf{a}^{(3)}) \ge \log_2 r - 1.$$

This implies that the same construction with l and m replaced by $l' = \lfloor qk^2 \log_2 r \rfloor$ and $m' = \lfloor n/l' \rfloor$ yields

$$F(n,r) \ge r^{c(n\ln n)^{1/3}}$$

References

- H. L. ABBOTT, D. HANSON, and N. SAUER: Intersection theorems for systems of sets, J. Comb. Th. Ser. A 12 (1972), 381–389.
- [2] H. L. ABBOTT and D. HANSON: On finite Δ -systems, Discrete Math. 8 (1974), 1–12.
- [3] N. ALON and J. H. SPENCER: The Probabilistic Method, Wiley, 1992.
- [4] P. ERDŐS: Problems and results on finite and infinite combinatorial analysis, in: Infinite and finite sets (Colloq. Keszthely 1973), Vol. I, Colloq. Math. Soc. J. Bolyai, 10, North Holland, Amsterdam, 1975, 403–424.
- [5] P. ERDŐS, E. C. MILNER, and R. RADO: Intersection theorems for systems of sets (III), J. Austral. Math. Soc. 18 (1974), 22–40.
- [6] P. ERDŐS and R. RADO: Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.
- [7] P. ERDŐS and E. SZEMERÉDI: Combinatorial properties of systems of sets, J. Comb. Th. A 24 (1978), 308–313.
- [8] P. FRANKL and V. RÖDL: Forbidden intersections, Trans. Amer. Math. Soc. 300 (1987), 259–286.
- [9] V. RÖDL and L. THOMA: On the size of set systems on [n] not containing weak (r, Δ)-systems, J. Comb. Th. Ser. A, 80 (1997), 166–173.

A. V. Kostochka

V. Rödl

Institute of Mathematics Siberian Branch of the RAS Novosibirsk-90, 630090, Russia sasha@math.nsc.ru Dept of Mathematics and Computer Science Emory University, Atlanta GA 30322, USA rodl@mathcs.emory.edu