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Abstract 

The oriented chromatic number o(H) of an oriented graph H is defined to be the minimum 
order of  an oriented graph H '  such that H has a homomorphism to H' .  If  each graph in a 
class ~ has a homomorphism to the same H' ,  then H '  is ~-universal. Let ~k denote the class 
of  orientations of  planar graphs with girth at least k. Clearly, ~3 ~ ~4 ~ ~5...  We discuss the 
existence of  ~k-universal graphs with special properties. It is known (see Raspaud and Sopena, 
1994) that there exists a ~3-universal graph on 80 vertices. We prove here that 

(1) there exist no planar ~4-universal graphs; 
(2) there exists a planar ~16-universal graph on 6 vertices; 
(3) for any k, there exist no planar ~k-universal graphs of  girth at least 6; 
(4) for any k, there exists a ~40k-universal graph of  girth at least k + 1. (~ 1998 Elsevier 

Science B.V. All rights reserved 

1. Introduction 

Graphs in this paper can be directed, oriented or unoriented. The difference between 
directed and oriented graphs is that in directed graphs opposite arcs are allowed, while 
in oriented graphs they are not allowed. (Two exceptions: by directed cycle we mean 
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an oriented cycle without sources and by directed path an oriented path with exactly 
one source and exactly one sink.) In other words, an oriented graph is an orientation 
of an undirected graph obtained by assigning to every edge one of the two possible 
orientations. For every graph G = ( V , E ) ,  V is its set of vertices and E is its set of 
arcs or edges. Given graphs G = (V, E) and Gr=  (V', E'),  a homomorphism from G to 
G ~ is any mapping f : V ~ V' satisfying 

x y  E E ~ f ( x ) f ( y )  E E'. 

Here the elements or E and U either both are edges or both are arcs. The existence 
of a homomorphism from G to G ~ will be denoted by G ~ G t. 

Homomorphisms are clearly related to the chromatic number of undirected graphs 
by the observation that z(G)~< k if and only if G ~ Kk. In other words, an undirected 
graph G has chromatic number k if and only if G has a homomorphism to Kk but 
no homomorphism to Kk-1. Therefore, the chromatic number z(G)  of an undirected 
graph G can equivalently be defined as the minimum number of vertices in an undi- 
rected graph H such that G has a homomorphism to H. Homomorphisms of undirected 
graphs have been extensively studied (see, e.g., [3-7,10]) as a generalization of graph 
colouring. We can similarly define the oriented chromatic number o(H) of an oriented 
graph H as the minimum number of vertices in an oriented graph H '  such that H 
has a(n oriented) homomorphism to H ~. Oriented homomorphisms have been stud- 
ied in [2,8,9, 11, 12]. We will often say that a graph G is H-colourable if G has a 
homomorphism to H and the vertices of H will be called colours. 

A difference between undirected and directed homomorphisms is that every undi- 
rected graph G with x(G)<<,k is Kk-colourable, while the minimum number of vertices 
in an oriented graph H such that every oriented graph G with o(G)<~k is H-colourable 
is exponential in k. This difference justifies studying ~-universal  oriented graphs, i.e. 

the oriented graphs H such that every graph in ~ is H-colourable. In this paper we 
study universal graphs for oriented planar graphs of given girth. By the girth (respec- 
tively, length o f  a path or length o f  a cycle) of an oriented graph we mean the girth 
(respectively, length of a path or length of a cycle) of the underlying undirected graph. 

Denote by ~k the class of planar oriented graphs with girth at least k. In particu- 
lar, ~3 is the class of all planar oriented graphs. Evidently, ~i~ 3 D "~4 D '~5 . . . .  which 
yields that any ~k-universal graph is also ~m-universal for every m > k. The following 
theorem is a summary of results in [2,9,11,12] related to planar graphs. 

Theorem 0. 1. There is a ~3-universal graph on 80 vertices [11]; 
2. there is a ~5-universal graph on 19 vertices [2]; 
3. there is a ~6-universal graph on 11 vertices [2]; 
4. there is a ~8-universal graph on 7 vertices [2]; 
5. there is a ~14-universal graph on 5 vertices [2]; 
6. for  every k, there exists a graph G E ~k with o(G)/> 5 [9]; 
7. there exists a graph G E ~ 7  with o(G)~>6 [9]; 
8. there exists a planar oriented graph G with o(G)>>, 15 [12]. 
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In fact, some results in [2] cited above have a stronger form in terms of maximum 
average degree. The maximum average degree mad(G) of a graph G is defined to 
be the maximum of the average degrees ad(H)=2IE(H)I / IV(H)  I taken over all the 
subgraphs H of G. Euler formula implies that for each surface, any graph with suf- 
ficiently large girth embedded in this surface has small maximum average degree. In 
particular, for every planar or projective planar graph G with girth at least g, we have 
(see, e.g. [2]) 

mad(G) < 2g/(g - 2). ( 1 ) 

That is, if J / l d ~  is the class of all graphs with the maximum average degree strictly 
less than ~, then Jl~C~2g/(0-2)D ~g for each g>~3. This explains how statements 2,3 
and 5 of Theorem 0 are implied by the following facts proved in [2]. 

2'. there is a Jld~lo/3-universal graph on 19 vertices; 
3'. there is a JC~3-un iver sa l  graph on 11 vertices; 

5 I. there is a J l~7 /3 -un i ve r sa l  graph on 5 vertices. 
In the present paper we are looking for ~k-universal graphs which themselves are planar 
and/or of a given girth. Several existence results are obtained for Jg~c~-universal  
graphs. In contrast with the statement 1 of Theorem 0, we have 

Theorem 1. There are no planar ~3- or ~4-universal graphs. 

On the other hand, the following is true. 

Theorem 2. There exists a planar graph on 6 vertices which is universal for the set 

of  graphs in ,~/'~/~16/7 with girth at least 11. 

Note that, by (1), Theorem 2 yields the following. 

Corollary 3. There exists a planar ~16-universal graph on 6 vertices. 

It can be also proved that an orientation of the planar graph K5 - e is ,~31-universal. 
Clearly, each directed cycle is JC~2- tmiversa l ,  i.e. universal for oriented forests. The 
situation is similar for graphs G with mad(G)= 2: 

Proposition 4. For each k >i 3 and for any e > 0, there exists an outerplanar graph 

F E ~/~g~2+~ of  girth k which is universal for all graphs with mad at most 2 of  
girth k. 

But as soon as mad is greater than 2, the picture changes. Planar graphs with large 
girth have, by (1), mad close to 2, and still the following is true. 

Theorem 5. For each k, any ~k-universal graph has maximum average degree at 
least 3. 
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This together with (1) yields the following. 

Corollary 6. For each k, there exists no planar ~k-universal graph of  girth at least 6. 

Note that when mad approaches 4, another jump takes place: we have proved in 
[2] that for every e>0 ,  there exists a Jg~c~4_,:-universal graph, while the oriented 

chromatic number of graphs in .//gdc~4 can be arbitrarily large. 
Finally, we show that there are (non-planar) ~k-universal graphs of large girth if k 

is sufficiently larger. 

Theorem 7. For every 9 >~ 2, there exists a graph H o f  girth g + 1 which is .~40," 

universal and Jl~c~2+U(12o_z)-universal. 

2. Nonexistence of some planar universal graphs 

In this section, we prove Theorem 1 by contradiction. If  the result is not true, then 

there exists a minimal by inclusion ;~4-universal planar graph H. Below we derive a 
sequence of properties which are possessed by H. The first two of them are immediately 
implied by the minimality of H. 

(i) There B no homomorph&m of  H to any o f  its proper subgraphs. 

(ii) For every arc e in H, there exists a graph Ge E d~4 such that every homomorphism 

f : Ge ~ H maps some arc o f  G~ to the arc e. 

(iii) For every arc e in H, for every planar graph G with girth at least 4 and ever), 

arc e ~ in G, there exists a homomorphism from G to H which maps e ~ to e. 

Proof. We construct an auxiliary graph G ~ as follows: take a copy of the graph Ge 

from (ii). To every arc e" in Ge we 'glue' a copy of G by identifying the arcs e / 
and e ' .  The graph G ~ thus obtained is clearly planar and has girth at least 4. Thus, 
there exists a homomorphism f :G~--*H.  Since every homomorphism of Ge to H 
uses e, there is an arc e" in Ge which is mapped to e. Let G" be the corresponding 
copy of G which is glued to e ' .  The restricted homomorphism f i e "  is obviously a 
homomorphism from G to H which maps e' to e. D 

(iv) No vertex in H has in-degree or out-degree less than 3. 

Proofl Let x E V(H). Consider the graph Go obtained from the directed 6-cycle 
(123456) by adding a vertex 7 and three arcs 17, 37 and 57. Clearly, Go is pla- 
nar and has girth 4. By (iii), there exists a homomorphism of Go to H which maps 
vertex 7 to x. Since the vertices 1,3 and 5 must get distinct colors, the in-degree of x 
is at least 3. Similarly, the out-degree of x also is at least 3. [] 

Since, by (iv), every vertex in H has degree at least 6, H cannot be planar. This 
contradiction proves Theorem 1. 
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3. Existence of a planar ~¢/d~16t7-universal graph 

The aim of this section is to prove Theorem 2 which immediately yields Corollary 3. 

Let T denote the circulant graph T(6; 1,2), i.e. the graph with the vertex-set 
{1,2,3,4,5,6} and such that ab is an arc in T if and only if b -  a - - - l ( m o d 6 )  or 

b - a - 2 (mod 6). Note that T is planar. 

Call a subset I of { 1,2, 3, 4, 5, 6} the (i,j)-interval if I --- { j , j  + 1 . . . . .  j + i - 1 } (the 

sums are taken modulo 6). Any (i,j)-interval will be sometimes called an i-interval 
or simply an interval. For an oriented path P and v E V(T), let N~(v) denote the set 

of vertices w E V(T) such that T contains a path isomorphic to P connecting v with 

w. By induction on the number of  arcs in P, it is easy to observe the following fact. 

Lemma 1. For any vE V(T) and any oriented path P with k arcs (1 ~<k~<5), the set 
NP(v) is a (k + 1)-interval. Moreover, i f  Ne(v)  is a (k + 1,j)-interval, then NP(v + i) 
is a (k + 1,j + i)-interval. 

Let G be a minimum (with respect to the number of  vertices) oriented graph with 

maximum average degree less than 16/7 which has no homomorphism to T. Clearly, 

G has no vertices of  degree 1. Vertices of  degree k will be often referred to as k- 
vertices; vertices of  degree at least three will be also called senior vertices. We say that 

a vertex w E V(G) is a quasi-neighbour of v E V(G) if it is a neighbour of  v or there 
is a path connecting w and v whose all internal vertices have degree 2. A 3-vertex 

having exactly i quasi-neighbours of  degree 2 will be sometimes called a (3,/)-vertex. 
Similarly, an i-quasi-neighbour (respectively, a (3,i)-quasi-neiohbour) of v E V(G) is 
a quasi-neighbour of  v which is an i-vertex (respectively, a (3,i)-vertex). Graph G 

possesses the following properties. 

(G1) G contains no path of  length 5 whose internal vertices have degree 2. 

Proof. Assume that G contains such a 

exists a homomorphism f : G \ { ( V l  . . . .  
from f (vo)  to f ( v s )  whose orientation 
extend f to a homomorphism of G to 

path (v0,.. . ,  vs). By the minimality of G, there 
,v a} ~ T. By Lemma 1, T contains a 5-path 

is the same as in G[{v0 . . . . .  vs}]. Thus, we can 

T. [] 

Remark. As in the proof of  (G1), the main problem with embedding a subgraph of G 
which is a path with internal 2-vertices into T is to map the internal vertices so that 
there is a path of given orientation in T connecting the images of  the ends of  this path. 

In particular, if (v0 . . . . .  vi) is a path in G whose internal vertices have degree 2 and 

we know the image of v0, then for the image of vi, by Lemma 1, the path (v0 . . . . .  vi) 
forbids exactly 5 - i colours. Sometimes, we shall say in this situation that vo forbids 
5 - i colours (or, equivalently, allows i + 1 colours) for vi. 

(G2) G contains no (3, i)-vertices for any i>~7. 
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Proof. Assume that G contains a (3,/)-vertex v, and the senior quasi-neighbours of v 

are ul,u2 and u3. Let the shortest path from v to uj ( j =  1,2,3) contain ij 2-vertices. 

By the minimality of G, there exists a homomorphism f to T of the graph G t obtained 

from G by deleting v and all its 2-quasi-neighbours. We claim that f can be extended 

to a homomorphism of G to T. By the remark above, each uj forbids for v exactly 

4 - ij colours. Thus, altogether they forbid for v at most 12 - i l  - i 2  - i 3  = 12 - i 

colours, and if i > 6, we have an admissible colour for v. [] 

(G3) G contains no (3 ,6) -ver tex  which is adjacent to a (3,6)-, (3,5)- or 

(3, 4)-vertex.  

Proof. Assume that G contains a (3,6)-vertex v which is adjacent to a (3,j)-vertex u 

(j>~4). Then, by (G1), v is connected with other senior quasi-neighbours by 4-paths. 

Let vl and v2 be these distinct from u senior quasi-neighbours of v, and Ul and u2 

be the distinct from v senior quasi-neighbours of u. Let G' be obtained from G by 

deleting u, v, and their 2-quasi-neighbours. By the minimality of G, there exists a 

homomorphism f of G' to T. By the remark, vl and v2 forbid for v at most two 

colours, and Ul and uz forbid for u at most four colours. Let ~ and/~ be two colours 

allowed for u. By the second part of Lemma 1, the quadruple of colours forbidden for 

v by u if we colour u with/~ differs from that if we colour u with c~. Thus, in at least 

one case, there is a colour in T allowed for v. [] 

(G4) I f  some (3 ,4) -ver tex  in G has a (3, 6)-quasi-neiyhbour on distance two, then 

G does not contain another (3, i)-quasi-neighbour f o r  i>~5 on distance two. 

Proof. Assume that G contains a (3,4)-vertex v which has a (3,6)-quasi-neighbour u 

and a (3,5)-quasi-neighbour w, both on distance two from v. Then the third senior 

quasi-neighbour x is on distance 3 from v. Let ul and u2 (respectively, wl and w2) be 

the distinct from v senior quasi-neighbours of u (respectively, of w). Since the girth 

of G is at least 11, none of ul ,uz ,  wl and w2 coincides with u ,w or x. 

Let G' be obtained from G by deleting v, u, w, and their 2-quasi-neighbours. By the 

minimality of G, there exists a homomorphism f of G' to T. By the remark, wl and 

wz forbid for w at most four colours, Ul and u2 forbid for u at most three colours and 

x forbids for v exactly two colours. Let ~ and /~ be two colours allowed for w. The 

size of the union of the set of colours allowed for v by w if we colour w with/3 and 

the set of colours allowed for v by w if we colour w with ~ is at least four. Thus, we 

can choose a colour for w so that w and x together forbid for v at most four colours. 

Recall that we have a choice of three colours for u, each of which allows for v a 

3-interval of colours. But the union of three distinct 3-intervals has the size at least 

five. Consequently, we can extend f on whole G. 

If  w is a (3, 6)-vertex, then the proof is only easier. [] 

The proofs of the following four facts are very similar to that of (G3) and (G4), 
and we omit them. 
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(GS) No (3,6)-vertex in G has a (3,6)-  or (3,5)-quasi-neighbour on distance two. 

(G6) No  (3,6)-vertex in G has a (3,6)-quasi-neighbour on distance at most  three. 

(GT) I f  a (3,4)-vertex v in G is adjacent to a (3,5)-vertex,  then it has no other 

(3, 5 )-quasi-neighbour on distance at most  two, and no ( 3, 6 )-quasi-neighbour on dis- 

tance at most  three. 

(G8) I f  a (3,5)-vertex v in G has a (3,6)-quasi-neighbour on distance three, then 

v has neither another (3,6)-quasi-neighbour on distance three, nor a (3,5)-quasi- 

neighbour on distance at most  two. 

Now, let each vertex of  G have the charge equal to its degree. We define a dis- 

charging procedure as follows: 
(a) each senior vertex gives the amount 1/7 to each 2-quasi-neighbour; 
(b) each senior vertex which is not a (3,6)-vertex gives the amount (4 - k)/21 to 

each (3, 6)-quasi-neighbour on distance k ~< 3; 

(c) each senior vertex which is neither a (3,6)-vertex nor a (3, 5)-vertex gives the 

amount (3 - k ) / 2 1  to each (3, 5)-quasi-neighbour on distance k~<2. 

For each v C V(G),  let d*(v)  denote the charge of  vertex v after this procedure. 
Since the sum of  charges did not change, it is enough to verify that d * ( v ) ~  16/7 for 

each v E V(G),  to prove the theorem. 
Case 1: dc(v)=k>>,4. Note that along any path with internal 2-vertices starting at 

v, v sends at most 3/7. Indeed, i f  it sends something to the senior quasi-neighbour 
at the end of  this path, then this path has less than three 2-vertices. Thus, d*(v)>~ 

k - 3k/7 = 4k/7 ~> 16/7. 

Case 2: d e ( v ) =  2. Then v receives 1/7 from each of  its senior quasi-neighbours. 
Thus, d*(v)~>2 + 2/7 = 16/7. 

Case 3: v is a (3, i)-vertex and i<~3. By the rules, along a path of  length j +  1 with 
internal 2-vertices starting at v, v sends at most j / 7  + (3 - j ) / 2 1  = 1/7 + 2j/21. Hence 

d*(v) >~3 - 3/7 - 2i/21 ~>3 - 3/7 - 2/7 = 16/7. 
Case 4: v is a (3,4)-vertex. I f  v has no (3,6)-quasi-neighbour on distance at most 

three, then, in view of  (G7), it sends to its (3,5)-quasi-neighbours at most 3/21, and 

d* (v)/> 3 - 4/7 - 3/21 = 16/7. So, let Ul be a (3, 6)-quasi-neighbour of  v on minimum 
distance. By (G3), the distance between v and Ul is at least two. I f  this distance is 
exactly two, then, by (G4) and (G7), at most one (3, 5)- or (3,6)-quasi-neighbour of  v 
distinct from u~ is on distance at most three, and v gives to that vertex at most 1/21. 
Thus, in this case d* (v) ~> 3 - 4/7 - 2/21 - 1/21 = 16/7. Finally, let the distance between 

v and ul be three. By (G7), v is not adjacent to a (3,5)-vertex, and hence gives to 
each of  its senior quasi-neighbours at most 1/21. Again, d* (v) >~ 3 - 4/7 - 3/21 = 16/7. 

Case 5: v is a (3,5)-vertex. I f  v has no (3,6)-quasi-neighbour on distance at most 
three, then it gives nothing to senior vertices, and d*(v)/> 3 - 5 / 7  = 16/7. So, let Ul be a 
(3, 6)-quasi-neighbour of  v. By (G3) and (G5), the distance between v and ul is exactly 
three. Moreover, by (G8), none of  the remaining senior quasi-neighbours u2 and u3 is 
a (3,6)-vertex on distance at most three from v. Since the sum of  the distances from v 
to u2 and to u3 is equal to five, one of  them, say u2, is on distance at most two from 
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v, and the other is on distance at least three from v. By (G8), u2 is not a (3,5)-vertex, 

and u3 is not a (3,6)-vertex on distance at most three from v. Thus, v gives nothing 

to u3 and receives exactly 1/21 from u2. In total, d*(v)~>3 - 5/7 - 1/21 + 1/21 = 16/7. 

Case 6: v is a (3, 6)-vertex. I f  v has no senior quasi-neighbour on distance at least 

four, then, by (G6) and (b), it receives from each senior quasi-neighbour at least 1/21, 

and d*(v)~>3- 6/7 + 3/21 = 16/7. So, let the distance between v and one o f  its senior 

quasi-neighbour ul be at least four. I f  at least one of  the remaining senior quasi- 

neighbours u2 and u3 is adjacent to v, then v receives 1/7 from this vertex and has 

d*(v) at least 16/7. I f  this is not the case, then one of  u2 and u3 is on distance at most 

two and the other at most three from v. Again, v receives at least 2/21 + 1/21 = 1/7 

f rom U 2 and u3. 

Therefore, each vertex v in G has d*(v)>~16/7 which contradicts the fact that 
m a d ( G ) <  16/7. This proves Theorem 2. 

In fact, the proof  o f  Theorem 2 can be rewritten as an algorithm which for each 

graph G E d'/~%¢~16/7 with girth at least 11, constructs a homomorphism of  G into 
T(6; 1,2) in polynomial time (actually, in time O(1V(G)]2). 

4. On the girth of planar universal graphs 

In this section, we prove Proposition 4 and Theorem 5. 

Let ~ ' ( k )  denote the set o f  oriented graphs with girth at least k and maximum 

average degree at most two which have no homomorphism to other graphs with girth 

at least k and maximum average degree at most two. Since any ~(k) -universa l  graph 

admits a homomorphism from each oriented graph with maximum average degree at 
most two, we first describe J/t(k). 

Let G E ~ ( k ) .  I f  two arcs wv and uv enter the same vertex in G then the graph G ~ 

obtained from G by identifying w with u must be not in ~ ( k ) .  The only reason for 

it can be that the path (wvu) is a part of  a cycle of  length k or k + 1 in G. Similar 

observation holds if  two arcs leave the same vertex in G. These observations imply 
the following lemma. 

Lemma 2. Let J///(k)l denote the set of  all directed cycles of  length at least k, 
and Jg(k)2 denote the set of  unicyclic oriented graphs whose cycle has length k 
or k + 1 and such that each source in this cycle is entered by exactly one di- 
rected path, and from each sink in the cycle starts exactly one directed path. Then 
~ ( k )  = ~'{(k)l U ~t(k)2.  

Let m = max{k, [1/t] }. We construct the universal graph F in question as the disjoint 

union of  graphs F1 and F2. Each component of  F1 consists of  two directed cycles with 
exactly one common vertex. One of  these cycles has length 2m and another has one 

of  the lengths k, k + 1 . . . . .  k + 2m. Each component o f  F2 consists o f  some oriented 
cycle C of  length k or k + 1 with exactly one directed cycle of  length 2m attached to 
every source or sink in C. 
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Observe that every component of  F is outerplanar of  girth at least k and has max- 
imum average degree less than 2 + 2/(2m)~<2 + e. It follows that F also possesses 
these properties. On the other hand, each graph in J//(k)l has a homomorphism to some 

component of  F1, and each graph in J/g(k)2 has a homomorphism to some component 
of F2. This proves the proposition. 

To prove Theorem 5, consider an arbitrary minimal by inclusion ~k-universal 

graph H. I f  mad(H)>~3, we are done. Suppose that m a d ( H ) < 3 .  Repeating the ar- 
gument of Section 2, we obtain that the properties ( i ) - ( i i i )  in Section 2 hold also for 

our H (with replacing 4 by k in (iii)). Instead of (iv) we can prove only the following 

weaker statement. 
(iv ~) No vertex in H has in-degree or out-degree equal to O. 

Proof. Let x C V(H) .  Consider the directed cycle Ck as the graph Go. Since, by (iii), 
we can map any of its vertices to x, x has positive in- and out-degrees. [] 

Call an arc e incident with a vertex v exceptional f o r  v, if e is the only arc which 

leaves v or the only arc which enters v. Denote by EA the set of  all exceptional arcs 

in H,  and by nm the number of  vertices of  degree m in H. The following observation 
is obvious in view of (iv'). 

(v) I f  d ( v ) = 2 ,  then both arcs incident with v are exceptional  f o r  v. I f  d ( v ) =  3, 
then exact ly  one arc incident with v is exceptional  f o r  v. 

(vi) An arc uv cannot be exceptional  f o r  both u and v. 

Proof. Assume it is. Let G be the cycle (Xl . . . . .  X2k+l) whose arcs are X 2 i _ l X 2 i  and 
x2i+lX2i ( i  = 1 . . . . .  k )  and XlX2k+l. By (iii), there exists a homomorphism of G into H 

mapping XlX2 to uv. Since uv is exceptional for v, x3x2 also must be mapped to uv. 

Similarly, x3x 4 must be mapped to uv and so on. Finally, x2k+l must be mapped to u 
which is a contradiction. [] 

From (v) and (vi) we conclude that 

(vii) IEAI >~2n2 4- n3. 

(viii) A vertex v o f  degree m cannot be adjacent to m - 1  arcs which are exceptional 

f o r  other vertices. 

Proof. Assume it is. Because of symmetry, we may assume that all arcs entering v 

are exceptional and these arcs are y l v  . . . . .  ytv. Denote Y = {Yl . . . . .  Yt}. 
Let G be as in the proof of  (vi). By (iii), there exists a homomorphism of G to H 

mapping xlx2 to ylv .  By the definition of Y, the arc x3x2 must be mapped to an arc 
of  the kind yiv. Since yiv is exceptional for Yi, x3x4 also must be mapped to yiv, and 
so on. Finally, x2k+l must be mapped to yj  for some j which yields existence of the 
arc YlYj .  Similarly, we obtain that the out-degree of every Yi in H[Y] is at least 1; 
in particular, IYI>~3. But then the average degree of H [ Y U { v } ]  is at least 3, which 
contradicts the assumption m a d ( H ) <  3. [] 
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By (viii), we have IEAI ~ E m ° ° = 2  nm(m -- 2). Comparing this with (vii), we get 

2n2 + n3 ~< ~ nm(m - 2), 
m=2 

which is equivalent to 

o~ 

n2 <~ ~ nm(m - 2)/2. 
m=4 

Since ( m -  2 ) / 2 ~ < m -  3 for m ~>4, this implies that 

oo 

n2 ~ ~ nm(m -- 3), 
m=4 

that is, 

O~3 OO 

dH(V)= ~--~ nmm>/ ~ nm3 = 3 1 v ( n ) l .  
vE V(H) m=2 m=2 

This contradicts the fact that m a d ( H ) < 3 .  

5. On the girth of ~k-universal graphs 

In this section, we prove Theorem 7. To do it, we need the following lemma (see 
[1, pp. 238-239]): 

Lemma 3. Let  Y be the sum o f  n mutually independent indicator variables, # = E(Y) .  

For all e>0 ,  

P[Y  <(1 - e)p] <e -~?'~/z. 

Let g be fixed and ~ = 1/3g. We choose any n such that 

n ~ >200 In n (2) 

and construct a random directed graph ff (with loops) as follows. Let U = {ul . . . . .  u~}, 
W = { w ~  . . . . .  w,}. For each wi and uj, the arc wiuj exists with probability p = n  ~-l 

independently of  any other arcs. The graph ff is obtained from this bipartite ori- 

ented graph by identifying wi with ui into the vertex vi for each i E { 1 . . . . .  n}. Denote 
V =  {vl , . . . , v ,} .  

So defined ~¢ with high probability has short cycles and even loops, but not many. 
Let S1 be the event that there exists k, 2 ~<k ~<2g- l ,  and M C V with [M] = k such that 
IE((~(M))l ~>k + I. Note that S1 includes the event that a vertex with a loop belongs 
to some cycle of  length at most 2g - 1. 

Lemma 4. P[S1] < 1/3. 
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Proof. 

2.a-, ( k ) (  k2 ) 2g-, 1 ne k(  kZ e .]k+, 
k=2 k=2 

~< 

By (2), the last 

2g--I 
Z L e 2k+l n~(k+l )  - 1 ~< eZ(2.q - l)n20Ct- t = e2(29 - 1) n -  1/3 

2~ 
k=2 

expression is less than (e4/200) g < 1/3. [] 

n(~- 1 )(k+l ) 

For each AC V, let N+(A)={vE VI~xEA:xvEE(f¢)}  and N - ( A ) = { v E  VI~xE 
A'vx  E E(f¢)}. Let Sz be the event that for some A C V with IA[ < I/p, the inequality 
min{[U+(A[, [U-(A[} < pniA[/4 holds. 

Lemma 5. P[S2] ~< 1/10. 

Proof. Let A C V with IA] = a <  1/p and vE V. Clearly, P[vEN+(A)] = 1 - (1 - p)a. 
Since a <  1/p, we have 

1 -  ( 1 -  p )a >~ l - l + pa - p 2 = pa 1 - ~ p ( a - l )  >-~--. 

It follows that E[IN+(A)I] >npa/2. By Lemma 3, we have 

npa] [ pan'[. 
P [ IN+(A)I< 4 J < e x p t - - i f f J  

Similarly, P[IN-(A)I <npa/4] < exp{-pan/16}.  Thus, 

P[S2] < ~ 2 e x p t  16 J 
a=l  

~< 
oo rl/pl (ne)  a 

~-~ \ a / exp{--an~/16} < Z (nel-n'/'6) a 
a=l  a= l  

By (2), n~/16>lOlnn, and so, 

P[S2] < Z n-3a < -~" 
ct=l 

[] 

Let $3 be the event that for some A C V with [AI= [1/p], the inequality 
min{ [N+(A], [U- (A I} < [4(e - 1 )/5e]n holds. 

Lemma 6. P[S3] ~< 1/n. 

Proof. Let A C V with IA I = a =  [1/p] and vE V. Since pa>,l, 

P[vEN+(A)]= 1 - (1 - p ) a > l  - e-Pa>~l - e -1. 
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It follows that E[IN+(A)[] > n ( e -  1)/e. By Lemma 3, we have 

P[IN+(A)I < 0.8n(e - 1 )/el < exp{-0 .02n(e  - 1 )/e}. 

Similarly, P[IN-(A)I <0.8n(e - 1)/e] < exp{-0 .02n(e  - 1)/e}. Thus, 

( n ) e x p { - 0 . 0 2 n ( e - 1 ) / e }  P [ S 3 ]  < 2 Fl/p ] 

<~ n '/p exp{--0.01n} < exp{n 1-~ In n - 0.01n}. 

By (2), nl -~ lnn<n/200 ,  and so, 

P[S3] < e x p { -  In n} = 1/n. [] 

By Lemmas 4 - 6 ,  with probality at least ½, ~# possesses the following properties: 
(i) No two cycles of  length at most g have a common vertex (in particular, no vertex 

with a loop belongs to a cycle of  length at most g); 
(ii) For each A C V with IAI < 1/p, the inequality min{[N+(A)[, IN-(A)I} >~pnlA[/4 

holds; 

(iii) For each A C V with [A[ = [1/p~, the inequality rain { IN + (A)[, IN-  (A)[ } ~> [4(e - 1 )/ 
5e]n holds. 

It follows that there exists a digraph G = ( V, E)  possessing all properties ( i ) - ( i i i ) .  
Denote by H = (V, E p) the oriented graph obtained from G by deleting one arc from 
each cycle of  length at most g in G (in particular, every loop and an arc in every 
2-cycle must be deleted). By (i), it can be done and the resulting H has girth at least 
g + 1. By (ii), for each A C V with [A[ < 1/p, we have 

min{[N+(A)[, [N~(A)[}/> pnlA[/4 - [A[ > pn[A[/5 = n~[A[/5. (3) 

Similarly, under conditions (2), for each A C V with [A[ = F1/p~, we have 

min{IN+(A) I , [N~(A) I }>4(e -1 )  [ 1 ]  n - - n  - > 0.505n - n ~ >  - .  (4) 
5e 2 

For an oriented path P and v E V, let NP(v) denote the set of  vertices w E V such that 
H contains a path isomorphic to P connecting v with w. Now, we prove that for each 
v E V and for each oriented path P of  length 4g, 

n 
INP(v)I > ~. (5) 

Indeed, if  INPh(v)[~l/p for at least one initial subpath Pk with k edges of  P, 
(1 <<,k<~4g - 1), then this follows from (4). Otherwise, by (3) and (2), 

iNe(v)l ~ (n~/5)40 = n4/3/54g > n, 

which is impossible. 
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Inequality (5) implies that for each v ,x  C V and for each orientation of  a 8g-path, 
x can be reached from v by a path of  this orientation. Now we are ready to prove 
Theorem 7. 

A smallest counterexample to any of  the statements of  the theorem must have no 
1-vertices. By above, it has no subpath on 8g - 1 vertices of  degree 2. Then the first 
statement follows from the fact that any planar graph without 1- and 2-vertices has 
girth at most five, and the second follows from the discharging procedure when each 
vertex v of  degree at least three gives 1 / ( 2 4 g -  2) to each of  its 2-quasi-neighbours. 
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