On kernel-perfect orientations of line graphs

O.V. Borodin ${ }^{\text {a, }, ~ A . V . ~ K o s t o c h k a ~}{ }^{\text {a.2,* }}$, D.R. Woodall ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, Siberian Branch of the Russian Academy of Science, Universitetskii pr. 4. 630090 Novosibirsk, Russia
${ }^{\mathrm{b}}$ Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD, UK

Received 5 May 1996; revised 2 December 1996; accepted 23 December 1997

Abstract

We exploit the technique of Galvin (1995) to prove that an orientation D of a line-graph G (of a multigraph) is kernel-perfect if and only if every oriented odd cycle in D has a chord (or pseudochord) and every clique has a kernel. (c) 1998 Elsevier Science B.V. All rights reserved

Keywords: Line graphs; Orientations; Kernel-perfect digraphs

1. Introduction

A kernel in a digraph $D=(V, A)$ is an independent set S of vertices such that S absorbs V, i.e. for each $v \in V \backslash S$, there exists an $s \in S$ with $(v, s) \in A$. Kernels originated in the analysis of games on graphs, a kernel representing a set of winning positions. Many digraphs fail to have kernels, the simplest being the directed odd cycles.

A digraph $D=(V, A)$ is called kernel-perfect if every induced subgraph of it has a kernel. By the paragraph above, each kernel-perfect digraph D satisfies the property
every directed odd cycle in D has a chord (or pseudochord).
(By a pseudochord of a directed cycle v_{1}, \ldots, v_{k} we mean an arc (v_{i}, v_{i-1}) for some i.) Another necessary condition for a kernel-perfect digraph D is that D is normal, i.e. every clique in D has a kernel (which necessarily has cardinality 1 , i.e. is a vertex) (By a clique we mean any subgraph where any two vertices are joined by at least one arc.) A normal digraph D satisfying (1) will be called odd-chorded.

[^0]Remark. If D has no opposite arcs then satisfying (1) implies that D is normal (and hence odd-chorded).

For a digraph in general, being odd-chorded is not sufficient for being kernel-perfect. Galeana-Sánchez [2] constructed for each k a triangle-free digraph D_{k} with no kernel such that every directed odd cycle in D_{k} has at least k chords. Still, under some restrictions on the structure of the underlying unoriented graph of a digraph D, being odd-chorded is enough for being kernel-perfect.

Berge and Duchet [1] conjectured that every normal orientation of a perfect graph is kernel-perfect. This conjecture is proved only for some special classes of perfect graphs (see [4] for references). In particular, Maffray [4] proved it for perfect graphs which are line-graphs. Since every odd cycle of length at least five in a perfect graph has a chord, Maffray's theorem [4] is equivalent to the statement that an orientation of a perfect line-graph is kernel-perfect if and only if it is odd-chorded.

In his remarkable paper [3] on list edge-colourings of bipartite multigraphs, Galvin presented, among other ideas, a beautiful proof of the fact that normal orientations of line-graphs of bipartite multigraphs are kernel-perfect. (In fact, Galvin considered line-multigraphs: if edges f and g have two common ends in a multigraph H, then the corresponding vertices in $L(H)$ are joined by two edges. We shall do the same.) In this note, we elaborate Galvin's argument to prove the following extension of Maffray's theorem.

Theorem 1. Let a multigraph G be the line-graph $L(H)$ of a multigraph H. Then an orientation D of G is kernel-perfect if and only if it is odd-chorded.

Observe that an orientation D of the line-graph $L(H)$ of a multigraph H is oddchorded if and only if it is normal and for each odd cycle C in H, the cycle $L(C)$ in D is not a directed cycle.

2. Proof of the theorem

We prove the theorem by induction on the number of edges in H. For H with $|E(H)|=1$, the theorem holds.

Let H be a smallest (wrt. the number of edges) counter-example to the theorem, and D be an odd-chorded orientation of $L(H)$. By the minimality of H, we may assume that D has no kernel.

Since D is normal, for each $v \in V(H)$, each edge e incident with v can be labelled by a number $l_{v}(e)$ so that different edges get different labels and

$$
l_{v}\left(e^{\prime}\right)<l_{v}\left(e^{\prime \prime}\right) \text { implies that }\left(e^{\prime}, e^{\prime \prime}\right) \text { is an arc in } D .
$$

For every vertex $v \in V(H)$, let $e(v)$ denote the edge incident to v with the maximum label $l_{v}(e)$.

If for some distinct v and $w, e(v)=e(w)$, then by the choice of H, the restriction of D on $L(H-\{v, w\})$ has a kernel Q. It follows that $Q \cup\{e(v)\}$ is a kernel in D. Thus,
all $e(v)$ are distinct.
Let $M=\{e(v) \mid v \in V(H)\}$. Due to (2), the ends of any $e \in M$ can be marked as $x(e)$ and $y(e)$, where e is $e(x(e))$ and is not $e(y(e))$.

Case 1. For some $e_{1} \in M$, there exists $e_{2} \in E(H)$ incident with $y\left(e_{1}\right)$ such that $l_{y\left(e_{1}\right)}\left(e_{2}\right)<l_{y\left(e_{1}\right)}\left(e_{1}\right)$.

Choose e_{2} incident with $y\left(e_{1}\right)$ having minimum $l_{y\left(e_{1}\right)}\left(e_{2}\right)$.
As in Galvin's proof [3], delete e_{2} and by induction get a kernel Q in $D-e_{2}$, which turns out to be a kernel in D, too. Indeed, no vertex in D corresponding to an edge in H non-incident with $y\left(e_{1}\right)$ absorbs e_{1}. Hence, any vertex e_{3} in Q absorbing e_{1} corresponds to an edge in H incident with $y\left(e_{1}\right)$ (possibly, $e_{3}=e_{1}$). But then by the choice of $l_{y\left(e_{1}\right)}\left(e_{2}\right), e_{3}$ absorbs e_{2}, as well.

Case 2. For each $e_{1} \in M$ and every $e_{2} \in E(H)$ incident with $y\left(e_{1}\right)$ and distinct from $e_{1}, l_{y\left(e_{1}\right)}\left(e_{1}\right)<l_{y\left(e_{1}\right)}\left(e_{2}\right)$.

In particular, all $y(e)$ should be distinct. Since $|M|=|V(H)|$, each vertex of H is the $y(e)$ for some $e \in M$. Thus, M forms a 2 -factor in H. If at least one of the cycles formed by M is odd, we are done. Let all the cycles formed by M be even. For each $v \in V(H)$, denote by $a(v)$ the label $l_{v}(e)$ of the edge $e \in M$ with $v=y(e)$, and by $z(v)$ the label $l_{t}\left(e^{\prime}\right)$ of the edge $e^{\prime} \in M$ with $v=x\left(e^{\prime}\right)$. In these terms, the conditions of the case can be rewritten as follows: for each edge $e=(v, w)$ in $H-M$,

$$
\begin{equation*}
a(v)<l_{l}(e)<z(v), \quad a(w)<l_{w}(e)<z(w) . \tag{3}
\end{equation*}
$$

Now we shall run a procedure for finding special subsets of $V(H)$, and according to its results either show a kernel in D or find there an odd directed cycle without chords. In both cases, it will contradict the definition of H.

Step 0 . Among cycles formed by the edges in M, choose an arbitrary cycle C_{1} $=\left(v(1,1), \ldots, v\left(1,2 r_{1}\right)\right)$. Put $W_{1}=\left\{v(1,2 j) \mid 1 \leqslant j \leqslant r_{1}\right\}, B_{1}=V\left(C_{1}\right) \backslash W_{1}$. Go to Step 1 .

Step $k(k \geqslant 1)$. The procedure terminates if either
(i) W_{k} is not independent in H; or
(ii) no vertex in $V(H) \backslash\left(B_{k} \cup W_{k}\right)$ is adjacent to W_{k} (in particular, if $V(H)=B_{k} \cup W_{k}$).

Otherwise, choose a vertex $v \in V(H) \backslash\left(B_{k} \cup W_{k}\right)$ adjacent to W_{k}. Let $C_{k+1}=$ $\left(v(k+1,1), \ldots, v\left(k+1,2 r_{k+1}\right)\right)$ be the cycle formed by the edges in M containing v. Renumber the vertices in C_{k+1} so that $v=v(k+1,1)$. Put $W_{k+1}=W_{k} \cup\{v(k+1,2 j) \mid$ $\left.1 \leqslant j \leqslant r_{k+1}\right\}, B_{k+1}=B_{k} \cup V\left(C_{k+1}\right) \backslash W_{k+1}$. Go to Step $k+1$.

By the definition, the number of steps is at most the number of the cycles formed by the edges in M. Let the procedure terminate on Step m. Assume first that W_{m} is independent in H. Then each edge in H incident with W_{m} is also incident with B_{m}. By the minimality of H, the subgraph of D induced by the edges of $H^{\prime}=H-W_{m}-B_{m}$ has a kernel Q. By the construction, the set $M^{\prime}=\left\{e(v) \mid v \in B_{m}\right\}$ is a matching in H and
absorbs all the vertices in D corresponding to edges incident with B_{m}. Thus, $Q \cup M^{\prime}$ is a kernel in D, a contradiction.

Now assume that W_{m} is not independent in H. Let $e=(a, b)$ be such that $a, b \in W_{m}$. We may assume that $a \in V\left(C_{q}\right)$ and $b \in V\left(C_{p}\right)$ for some $1 \leqslant p, q \leqslant m$ (in fact, at least one of q and p is m). If $p=q$, then our odd cycle is formed by (a, b) and the part of C_{p} connecting b with a and such that for the first edge e of this path, $x(e)=b$. Let $p \neq q$. Note that all vertices in B_{m} have odd indices in cycles C_{1}, \ldots, C_{m} and all vertices in W_{m} have even indices in these cycles. Moreover, for each $k, 2 \leqslant k \leqslant m$, there is a number $f(k), 1 \leqslant f(k) \leqslant k-1$ such that $v(k, 1)$ is adjacent to a vertex $w(k) \in V\left(C_{f(k)}\right) \cap W_{f(k)}$. Thus, there exist sequences $1=j_{1,1}<j_{1,2}<\cdots<j_{1, s_{1}}=q$ and $1=j_{2,1}<j_{2,2}<\cdots<j_{2, s_{2}}=p$ such that $j_{1, i}=f\left(j_{1, i+1}\right)$ for each $1 \leqslant i \leqslant s_{1}-1$ and $j_{2, i}=$ $f\left(j_{2, i+1}\right)$ for each $1 \leqslant i \leqslant s_{2}-1$. Let $h=j_{1, t(1)}=j_{2, t(2)}$ be the largest common number in sequences $j_{1,1}, j_{1,2}, \ldots, j_{1, s_{1}}$ and $j_{2,1}, j_{2,2}, \ldots, j_{2, s_{2}}$. Vertices $w\left(j_{1, t(1)+1}\right)$ and $w\left(j_{2, t(2)+1}\right)$ lying on C_{h} may coincide. In this case we may assume that in D the arc connecting vertices corresponding to the edges $\left(v\left(j_{1, t(1)+1}, 1\right), w\left(j_{1, t(1)+1}\right)\right)$ and $\left(v\left(j_{2, t(2)+1}, 1\right)\right.$, $\left.w\left(j_{2, t(2)+1}\right)\right)$ leads towards $\left(v\left(j_{1, t(1)+1}, 1\right), w\left(j_{1, t(1)+1}\right)\right)$. Now we define some pieces of a future odd directed cycle. For each $i, t(1)+1 \leqslant i \leqslant s_{1}-1$, let P_{i} be the part of $C_{j_{1, i}}$ connecting $v\left(j_{1, i}, 1\right)$ with $w\left(j_{1, i+1}\right)$ and such that for the first edge e of this path, $x(e)=v\left(j_{1, i}, 1\right)$. By $P_{s_{1}}$ denote the part of C_{q} connecting $v\left(j_{1, s_{1}}, 1\right)=v(q, 1)$ with a and such that for the first edge e of this path, $x(e)=v(q, 1)$. Furthermore, let $P_{s_{2}}^{\prime}$ denote the part of C_{p} connecting b with $v\left(j_{2, s_{2}}, 1\right)=v(p, 1)$ and such that for the first edge e of this path, $x(e)=b$. Then for each $i, t(2)+1 \leqslant i \leqslant s_{2}-1$, let P_{i}^{\prime} be the part of $C_{j_{2, i}}$ connecting $w\left(j_{2, i+1}\right)$ with $v\left(j_{2, i}, 1\right)$ and such that for the first edge e of this path, $x(e)=w\left(j_{2, i+1}\right)$. If $w\left(j_{1, t(1)+1}\right)=w\left(j_{2, t(2)+1}\right)$ then we define $P_{0}=\emptyset$, otherwise let P_{0} be the part of C_{h} connecting $w\left(j_{2, t(2)+1}\right)$ with $w\left(j_{1, t(1)+1}\right)$ and such that for the first edge e of this path, $x(e)=w\left(j_{2, t(2)+1}\right)$. Our odd cycle C is as follows:

$$
\begin{aligned}
C= & w\left(j_{1, t(1)+1}\right), v\left(j_{1, t(1)+1}, 1\right) P_{t(1)+1} w\left(j_{1, t(1)+2}\right), \ldots, \\
& v\left(j_{1, s_{1}}, 1\right) P_{s_{1}} a, b P_{s_{2}}^{\prime} v\left(j_{2, s_{2}}, 1\right), w\left(j_{2, s_{2}}\right) P_{s_{2}-1}^{\prime} \cdots \\
& v\left(j_{2, t(2)+1}^{\prime}, 1\right), w\left(j_{2, t(2)+1}\right) P_{0} .
\end{aligned}
$$

By (3), the cycle in D whose vertices correspond to the edges of C is a directed odd cycle (without chords).

3. Concluding remarks

A number of results on line-graphs can be extended to graphs without induced $K_{1,3}$ or without induced $K_{1,3}$ and $K_{5}-e$. It looks as though this is not the case here. Indeed, consider the digraph $D_{7}=(V, E)$ with $V=\{1, \ldots, 7\}$ and $E=\{(i, i+1)$, $(i, i+2) \mid i=1, \ldots, 7\}$ (indices are taken $\bmod 7$). Since D_{7} is an orientation of the complement of the 7 -cycle C_{7}, it contains neither K_{4} nor $K_{1,3}$. It is clear that any chordless directed cycle C in D_{7} makes exactly one round around $\{1, \ldots, 7\}$. To make this round, any such C needs at least four arcs. If it has at least five arcs then among
them there are two consecutive arcs of length one, and C has a chord. Thus, D_{7} is odd-chorded. Assume that M is a kernel in D_{7}. Since any vertex in D_{7} absorbs 3 vertices (counting itself), $|M| \geqslant 3$. But C_{7} has no 3-cliques, a contradiction.

In fact, the proof contains a polynomial algorithm to find a kernel in an arbitrary odd-chorded orientation of a line-graph. It could be noted that Galvin's proof gives a polynomial algorithm for finding list-colourings of edges if their lists are as big as the maximum degree.

Acknowledgements

We are very grateful to the referees and Fred Calvin for valuable remarks.

References

[1] C. Berge, P. Duchet, Seminaire MSH, Paris, January 1983.
[2] H. Galeana-Sánchez, A counterexample to a conjecture of Meyniel on kernel-perfect graphs, Discrete Math. 41 (1982) 105-107.
[3] F. Galvin, The list chromatic number of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158.
[4] F. Maffray, Kernels in perfect line-graphs, J. Combin. Theory Ser. B 55 (1992) 1-8.

[^0]: * Corresponding author. E-mail: sasha@math.nsc.ru.
 'This work was partially supported by the grant $96-01-01614$ of the Russian Foundation for Fundamental Research.
 ${ }^{2}$ This work was partially supported by the grant 96-01-01614 of the Russian Foundation for Fundamental Research and by the Network DIMANET of the European Union.

