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Abstract 

We exploit the technique of  Galvin (1995) to prove that an orientation D of  a line-graph G 
(of  a multigraph) is kernel-perfect if  and only if  every oriented odd cycle in D has a chord (or 
pseudochord) and every clique has a kernel. @ 1998 Elsevier Science B.V. All rights reserved 
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I. Introduction 

A kernel in a digraph D =  (V,A) is an independent set S of vertices such that S 
absorbs V, i.e. for each vE V\S, there exists an sES with (v,s)~A. Kernels originated 

in the analysis of  games on graphs, a kernel representing a set of  winning positions. 
Many digraphs fail to have kernels, the simplest being the directed odd cycles. 

A digraph D = (V,A) is called kernel-perfect if every induced subgraph of it has a 
kernel. By the paragraph above, each kernel-perfect digraph D satisfies the property 

every directed odd cycle in D has a chord (or pseudochord). (1) 

(By a pseudochord of a directed cycle vt . . . . .  vk we mean an a r c  (1)i, lJi_ 1 ) for some 
i.) Another necessary condition for a kernel-perfect digraph D is that D is normal, i.e 
every clique in D has a kemel (which necessarily has cardinality 1, i.e. is a vertex) 
(By a clique we mean any subgraph where any two vertices are joined by at least one 
arc.) A normal digraph D satisfying (1) will be called odd-chorded. 
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Remark. If  D has no opposite arcs then satisfying (1) implies that D is normal (and 
hence odd-chorded). 

For a digraph in general, being odd-chorded is not sufficient for being kernel-perfect. 
Galeana-Sfinchez [2] constructed for each k a triangle-free digraph Dk with no kernel 
such that every directed odd cycle in Dk has at least k chords. Still, under some 
restrictions on the structure of  the underlying unoriented graph of a digraph D, being 
odd-chorded is enough for being kernel-perfect. 

Berge and Duchet [1] conjectured that every normal orientation of a perfect graph 
is kernel-perfect. This conjecture is proved only for some special classes of perfect 
graphs (see [4] for references). In particular, Maffray [4] proved it for perfect graphs 
which are line-graphs. Since every odd cycle of  length at least five in a perfect graph 
has a chord, Maffray's theorem [4] is equivalent to the statement that an orientation of 
a perfect line-graph is kernel-perfect if and only if it is odd-chorded. 

In his remarkable paper [3] on list edge-colourings of bipartite multigraphs, Galvin 
presented, among other ideas, a beautiful proof of the fact that normal orientations 
of line-graphs of bipartite multigraphs are kernel-perfect. (In fact, Galvin considered 
line-multigraphs: if edges f and g have two common ends in a multigraph H, then the 
corresponding vertices in L(H) are joined by two edges. We shall do the same.) In this 
note, we elaborate Galvin's argument to prove the following extension of Maffray's 
theorem. 

Theorem 1. Let a multigraph G be the line-graph L(H) of  a multigraph H. Then an 
orientation D of  G is kernel-perfect i f  and only i f  it is odd-chorded. 

Observe that an orientation D of  the line-graph L(H) of a multigraph H is odd- 
chorded if and only if it is normal and for each odd cycle C in H, the cycle L(C) in 
D is not a directed cycle. 

2. Proof  of  the theorem 

We prove the theorem by induction on the number of edges in H. For H with 
IE(H)[-- 1, the theorem holds. 

Let H be a smallest (wrt. the number of edges) counter-example to the theorem, and 
D be an odd-chorded orientation of L(H). By the minimality of H, we may assume 
that D has no kemel. 

Since D is normal, for each v C V(H), each edge e incident with v can be labelled 
by a number l~,(e) so that different edges get different labels and 

l~(e')<l~,(e') implies that ( e ' , e ' )  is an arc in D. 

For every vertex vE V(H), let e(v) denote the edge incident to v with the maximum 
label l~,(e). 



O.V. Borodin et al./Discrete Mathematics 19l (1998) 45~9 47 

If  for some distinct v and w, e(v) = e(w), then by the choice of  H ,  the restriction of  
D on L(H - {v,w}) has a kernel Q. It follows that Q u  {e(v)} is a kernel in D. Thus, 

all e(v) are distinct. (2) 

Let M = {e(v) IvE V(H)}.  Due to (2), the ends of  any eEM can be marked as x(e) 
and y(e), where e is e(x(e)) and is not eO,(e)).  

Case 1. For some el EM, there exists ezEE(H) incident with y(el) such that 

lm', }(e21 < lvlel )(el ). 
Choose e2 incident with y(el) having minimum (~,~¢,)(ez). 
As in Galvin 's  proof  [3], delete e2 and by induction get a kernel Q in D - e2, 

which turns out to be a kernel in D, too. Indeed, no vertex in D corresponding to an 

edge in H non-incident with y(el ) absorbs el. Hence, any vertex e3 in Q absorbing 

el corresponds to an edge in H incident with y(el ) (possibly, e3 = el ). But then by 
the choice of  !~'l~,~)(e2), e3 absorbs e2, as well. 

Case 2. For each el E M  and every e2 EE(H) incident with y(el) and distinct from 

el, (v(e,)(el) < [,'(e, )(e2 ). 
In particular, all y(e) should be distinct. Since ]M] = ]V(H)}, each vertex of  H is 

the y(e) for some eEM. Thus, M forms a 2-factor in H. I f  at least one of  the cycles 

formed by M is odd, we are done. Let all the cycles formed by M be even. For each 
vE V(H), denote by a(v) the label /~,(e) o f  the edge eEM with v =  y(e), and by z(v) 
the label l,(e ~) of  the edge e:EM with v=x(e/). In these terms, the conditions of  the 
case can be rewritten as follows: for each edge e = (v, w) in H - M, 

a(v) < / d e )  <z(v) ,  a(w) < lw(e) <z(w) .  (3) 

Now we shall run a procedure for finding special subsets of  V(H), and according 
to its results either show a kernel in D or find there an odd directed cycle without 
chords. In both cases, it will contradict the definition of  H.  

Step O. Among cycles formed by the edges in M,  choose an arbitrary cycle Cj 

= (v(1, 1 ) . . . . .  v(l ,  2rl )). Put W1 = {v(1,2j)  I 1 ~<j ~ rt }, Bi = V(CI )\ Wi. Go to Step 1. 
Step k (k >~ 1 ). The procedure terminates if  either 

(i) Wk is not independent in H;  or 

(ii) no vertex in V(H)\(Bk U Wk) is adjacent to W~ (in particular, i f  V(H)=Bk U Wk). 
Otherwise, choose a vertex v~V(H)\(Bk©Wk) adjacent to W~. Let C~+1 = 

(v(k + 1, 1) . . . . .  v(k + 1,2rk+l)) be the cycle formed by the edges in M containing v. 

Renumber the vertices in Ck+l SO that v = v(k + 1, 1). Put Wk+l = Wk O {v(k + 1,2j) I 
1 ~j~rk+l},  Bk+l =Bk U V(Ck+l)\Wk+l. Go to Step k + 1. 

By the definition, the number of  steps is at most the number of  the cycles formed 
by the edges in M. Let the procedure terminate on Step m. Assume first that W,, is 
independent in H.  Then each edge in H incident with /4:,, is also incident with Bin. By 
the minimality of  H,  the subgraph of  D induced by the edges of  H ~ = H -Wm - B m  has 
a kernel Q. By the construction, the set M:= {e(v) lv6Bm } is a matching in H and 
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absorbs all the vertices in D corresponding to edges incident with Bm. Thus, Q u M '  
is a kernel in D, a contradiction. 

Now assume that Wm is not independent in H.  Let e = (a, b) be such that a, b E Win. 
We may assume that aE V(Cq) and bE V(Cp) for some 1 <~p,q<~m (in fact, at least 
one o f q  and p is m). I f  p = q ,  then our odd cycle is formed by (a,b) and the part 

o f  Cp connecting b with a and such that for the first edge e of  this path, x(e)= b. 
Let p ~ q. Note that all vertices in B m have odd indices in cycles C1 . . . . .  Cm and 
all vertices in Wm have even indices in these cycles. Moreover, for each k, 2 ~< k ~< m, 
there is a number f ( k ) ,  1 <~ f (k )~k  - 1 such that v(k, 1) is adjacent to a vertex 

w(k)E v(Cf(k))A Wf(k). Thus, there exist sequences 1 =j l ,1  <j l ,2  < ' ' "  <jl ,s,  = q  and 

1 =j2,1 <j2,2 < " "  <j2,s2 = P  such that j~ , i=f ( j l . i+l )  for each 1 <~i<~s1-1 and j2,i = 
f ( j 2 , i + l  ) for each 1 <~i<~s2-1. Let h =jl,t(~) = j z ,  t(2) be the largest common number in 

sequences jl ,  l,jl,2 . . . . .  jx,s~ and jZ, l,j2,2 . . . . .  j2,s2. Vertices w(jl , t( l)+l)  and w(j2,t(2)+l ) 
lying on Ch may coincide. In this case we may assume that in D the arc connect- 

ing vertices corresponding to the edges (v(jl,t(1)+l, 1),W(jl,t(1)+l)) and (v(jz, t(2)+l, 1), 
w(j2,t(2)+l)) leads towards (v(jl,t(l)+l, 1),w(jl,t(i)+l)). Now we define some pieces o f  
a future odd directed cycle. For each i, t ( 1 ) +  1 <~i<~sl - 1, let P,. be the part o f  Cj,., 
connecting v(jl,i, 1) with w ( j l , i + l )  and such that for the first edge e of  this path, 
x(e) = v(jl,i, 1 ). By P~L denote the part o f  Cq connecting v(jl,s,, 1 ) = v(q, 1 ) with a and 
such that for the first edge e o f  this path, x(e)= v(q, 1). Furthermore, let P/, denote 

the part o f  Cp connecting b with v(j2,~2, 1 ) = v(p, 1 ) and such that for the first edge e 
of  this path, x(e)=b.  Then for each i, t ( 2 ) +  l<<,i<~s2 - 1, let P/ be the part o f  Cj2., 
connecting w(j2,i+~) with v(jz, i, 1) and such that for the first edge e o f  this path, 

x(e) = w(j2 , i+l  ). I f  w(jt,tO)+l) = w(j2,t(2)+l ) then we define P0 = {~, otherwise let P0 
be the part o f  Ch connecting w(j2,t~2)+l) with w(j t , t~)+t)  and such that for the first 

edge e of  this path, x(e) = w( j z ,  t(2)+l). Our odd cycle C is as follows: 

C = w(jl,tO)+l ), v( j l , t ( l )+l ,  l )Pt(1)+lW(j l , t ( l )+2) . . . . .  
v(jl,s,, 1)~.,a, bP/2v(j2,se, 1), w(j2,s2 )PJ2-1... 
v(j2,t(2)+l, 1 ), w(j2,t(2)+l )P0. 

By (3), the cycle in D whose vertices correspond to the edges o f  C is a directed odd 
cycle (without chords). 

3. Concluding remarks 

A number of  results on line-graphs can be extended to graphs without induced 

K1,3 or without induced K1,3 and /£5 - e. It looks as though this is not the case 
here. Indeed, consider the digraph D7 --- (V, E )  with V = { 1 . . . . .  7} and E = {(i, i + 1 ), 
(i,i + 2 ) [ i =  1 , . . . , 7}  (indices are taken mod 7). Since D7 is an orientation of  the 
complement  of  the 7-cycle C7, it contains neither K4 nor K1,3. It is clear that any 
chordless directed cycle C in D7 makes exactly one round around { 1 . . . . .  7}. To make 
this round, any such C needs at least four arcs. I f  it has at least five arcs then among 
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them there are two consecutive arcs of length one, and C has a chord. Thus, D7 is 
odd-chorded. Assume that M is a kernel in DT. Since any vertex in D7 absorbs 3 
vertices (counting itself), JM I ~>3. But C7 has no 3-cliques, a contradiction. 

In fact, the proof contains a polynomial algorithm to find a kernel in an arbitrary 
odd-chorded orientation of a line-graph. It could be noted that Galvin's proof gives a 
polynomial algorithm for finding list-colourings of edges if their lists are as big as the 
maximum degree. 
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