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Abstract 

We prove a new upper bound on the independent domination number of graphs in terms of the 
number of vertices and the minimum degree. This bound is slightly better than that of Haviland 
(1991) and settles the case 6 = 2 of the corresponding conjecture by Favaron (1988). @ 1998 
Elsevier Science B.V. All rights reserved 

I. Introduction 

The independent domination number i (G) of  a graph G is defined to be the minimum 

cardinali ty among all maximal  (by inclusion) independent sets o f  G. Let i(n, 3) denote 

the maximum of  the independent domination numbers over all graphs with n vertices 

and minimum degree 6. 

By a theorem of  Bollobfis and Cockayne [1], i(n, 1)<~n + 2 -  2v/n. Favaron [2] 

proved the bound i(n,f)<~n + 36 - 2x/3(n  + 23) and conjectured that 

i(n, 3)<~n + 23 - 2v/~n. (1) 

This last bound ( i f  true), for every fixed positive integer 3, is attained on infinitely many 

graphs. Haviland [3] improved the bound o f  Favaron as follows: i f  0 ~< 3 ~< ( n - 2 ) / 7 ,  then 

i(n,f)<..n + 33 - min{1 + 2x/3(n  + 23 - 2 ) ,2X/ f (n  + 93/4)},  

and i f  (n - 2 )/7 <~ 6 <~ n/4, then i(n, 3) <..2(n - 3)/3. 
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The aim of  this note is to prove the following: 

Theorem 1. For each integer 6 >12, 

i(n,6)<...n + 36 - 2V/6(n + 23 - 4) - 2. (2) 

The bound in Theorem 1 is better than that of  Haviland for n > 7 3 + 2  and for 

6 = 2 is equivalent to (1). This means that for 6 --  2 the bound is sharp for infinitely 

many n. 

2. Proof  of  Theorem I 

Let n and 6 be positive integers with 2 ~< 6 < n. Choose a graph G on n vertices 

with the minimum degree at least 6 and i (G) = i(n,6). In the sequel, I is an inde- 

pendent dominating set in G with i = [I[ = i(n, 6), K = V ( G ) \ I ,  k = [K] = n - i. 

For  X, Y C_ V(G)  and v E V(G),  we denote [X,Y] = {(v,w) E E ( G )  [ v E X, w E Y}, 

N ( v )  = {w E V(G)  I ( v ,w)  E E(G)} ,  Nl(v)  = N ( v )  fq I, d , (v )  = INl(v)l, N ( X )  = 

U v e x N ( v )  • 
In these terms, we need to prove that 

k>...2x/6(n + 23 - 4) - 33 + 2. 

Assume that the opposite holds, i.e., that 

k < 2V/6(n + 23 - 4) - 33 + 2. (3) 

We shall show that this assumption leads to a contradiction. First, we observe that (3)  

yields that for each positive x, 

k ( x -  1 + 3 )  < x 2 -  l + 6 ( n - x - 1 ) .  (4) 

Indeed, for each positive x, 

6(n + 26 - 4) 
2V/ f (n  + 26 - 4) - 36 + 2~<(x - 1 + 6 ) +  

x - l + 6  

x 2 - 1 + 6 ( n - x -  1) 

x - l + 6  

and so, (3) implies (4). 

Inequality (4)  can be rewritten also in the form 

3 6 + 2  

( k - x -  1 ) ( x -  1) < 6 ( n - k - x -  1). (5) 

Since E ( G )  ¢ 9, K ¢ ~. For each v E K, we define S(v)  = {w E K [ Nl(W) C Nt(v)} 

and S(v)  = S ( v ) \ N ( v ) .  By definition, v E S(v). 
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Proposition 1. Let  v C K and M be an arbitrary independent subset o f  S(v),  con- 
taining v and dominating S(v). Then 

IMI ) d 1 ( v ) .  

Proof .  Observe that (I \ N l ( v ) ) U M  is an independent dominating set in G. This yields 
the proposition. [3 

It follows from Proposition 1 that 

IS(v)l ~>dz(v). (6) 

Choose v1 C K with [Nl(vl )1 = m a x { [ N / ( v ) l : v  E K} ,  and denote x = [N/(vl)I. 

Proposition 2. x/> 6 + 1. 

Proof .  I f  x ~< 8, then 

6k >~xk>~ I [K, I ] I  ~>81I [ = 8(n - k), 

which gives k>>.n/2. But n / 2 > ~ 2 v / 8 ( n + 2 8 - 4 ) -  38 + 2, since ( v / n + 2 8 - 4  - 
2v/-6) 2 ~>0. This contradicts (3). [] 

Proposition 3. I f  v E K and dl(V) = x then Nz(v) n Nt(vl  ) ¢ 9. 

Proof.  Let m be the maximum integer for which there exist vertices v~ . . . . .  v,~ 

in K such that dz(vj)  = x for each l<~j<<.m and N i ( v j ) n  Nj(vh) = ~ for each 
l<~j < h<~m. Assume that m > 1. Denote N = ujm__l Nl(Vj) and S = Uj~l S(vi).  

Then [(I \ N )  N N(v)[ ~<x - 1 for each v ~ K \ S, and by (6) we get 

(k - mx)(x  - 1 )/> I[X \ S,z \ N]I >>.8(n - k - mx). 

Rewriting this and applying Proposition 2, we obtain 

k(x - 1 + 8)>>.mx(x - 1) + 8(n - mr)  

= r e x ( x - 8 -  1) + Sn 

>>- 2x(x - 8 - 1 )  + Sn 

= x  2 -  l + 8 ( n - x -  1 ) + ( x -  1 ) ( x - 8 - 1 )  

>~x 2 - 1 + 8 ( n - x -  1), 

which contradicts (4). [] 

Proposition 4. For each v E K, S(v)  n S(vl ) ¢ 9. In particular, N:(v)  N N1(vl ) ¢ 9. 
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Proof. Assume that for some v E K, S(v)A S(Vl) = 0. Denote y = dr(v). Then, by 
Proposition 3 ,  ( k  - x - y ) ( x  - 1 ) >i 8(n - k - x - y ) ,  and hence 

k ( x -  1 + 8 ) ~ x  2 - 1 + 8 ( n -  x -  1 ) +  ( y -  1 ) ( x -  1 - 6 )  

>>, x 2 - 1 + 8 ( n - x -  1), 

which again contradicts (4). [] 

Proposition 5. There exists v2 E K such that d t ( v z ) =  x and INl(V2)NNI(Vl )[ = 1. 

Proof. Otherwise, 

(k - x ) (x  - 2)/> I[K \ S(vl ), I \ Nt(vl  )]l ~> 8(n - k - x).  

It follows that 

k(x  - 2 + 8)>jx(x  - 2) + 8(n - x )  = (x - 28)(x - 2 + 8) + 8(n + 28 - 4), 

i.e° 

k>~(x -  2 + 8) + 6 ( n + 2 6 - 4 )  36 + 2>~2V/8(n + 26 _ 4) _ 36 + 2, 
x - 2 + 8  

which contradicts (3). [] 

In view of Proposition 5, we can consider a vertex z E I and Z C K such that 

{z} = N l ( v ~ ) n N l ( V 2 )  and Z = {v E K I Nl(V) = {z}} = S ( v l ) n S ( v 2 ) .  

Proposition 6. For each v E K, z E N(v) .  In particular, Z C_ S(v). 

Proof. Case 1: v E S(vl ) .  By definition, Nl(v)C_Nt(vl  ). By Proposition 4, N l ( v ) A  

Nl(v2) ¢ 0. Since N t ( v l ) n N l ( v 2 ) =  {z}, we get N 1 ( v ) A N t ( v 2 ) =  {z}. 
Case 2: v E K \ S(vt ). By Proposition 4, there exists w E S(v)  n S(vl) .  According 

to Case 1, z E N ( w ) .  Since w E S(v),  N l (w)  C Nz(v). [] 

Proposition 7. [Z I = x - 8 .  

Proof. If IzI >~x - 8 + 1, then 

( k - x + 8 -  1 ) ( x -  1 ) ~ > I [ K \ Z , I \ { z } ]  1 > ~ 8 ( n - k -  1). 

Consequently, ( k -  x -  1 ) ( x -  1)>~8(n-  k -  x), which contradicts (5). 

I f  IZl ~<x - 8 - 1, t h e n  

(k - x  - 8 - 1)(x - 1)~> I[g \ (S(v l )  U S ( v z ) ) , I  \ (Nl (v l )  UNt(v2))]l  

> ~ 6 ( n - k - 2 x +  1). 

Consequently, ( k - x -  1 ) ( x -  1)>~6(n-  k - x ) ,  which again contradicts (5). [] 
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Proposition 8. For each v E K, IS(v) \ Z[ ~<6. 

Proof. Assume that IS(v) \ Z I ~>6 + 1. Then, due to Propositions 6,7 and 4, IS(v)[ ~> 
IZl + 6 +  1 ~>x+ 1, and 

(k - x - 1 )(x - 1 ) ~>I[K \ s(v), I \ Nl(v)]l t> 6(n - k - INl(V)l).  

Thus, ( k - x -  1 ) ( x -  1 ) J>6(n-  k - x )  which contradicts (5). [] 

Proposition 9. For each v E Z, IN(v) N (K \ Z)I >~6 - 1. 

Proof. If the statement is not fulfilled, then Z is not independent and S(vl ) is bigger 
than any of its independent subsets. In this case, by Proposition 1, IS(v1 )l >~x + 1. On 
the other hand, by Propositions 7 and 8, 

I S ( v , ) l < l Z l + l S ( v , ) \ Z l < ( x - 6 ) + 6 = x .  D 

Proposition 10. For each v c K, I(Z U I)  n N(v)l ~<x. 

Proof. By (6) and Propositions 7 and 8, we have 

I(Z U I)  n N@)I---- Ix n N(v)l + INz(v)l ~< I z n N@) I + IS(v)l 

=lZnN(v) l+lZnS(v) l+lS(v)\Zl<(x-6)+6=x. d 

Now, we come to the final part of the proof of Theorem 1. By Propositions 10, 7 
and 6, 

I [ Z U ( I \ { z } ) , g \ z ] l < < . l K \ Z l ( x - l ) = ( k - x + 6 ) ( x - 1 ) .  

On the other hand, by Propositions 7 and 9, 

][Z U (I \ {z}),K \ Z]I= I[Z,K \ Z]I + I[I \ { z } , K  \ Z]t 

t > ( 6  - 1 ) l z [  + 611 \ { z } l  --- (6  - 1 ) (x  - 6 )  

+ 6 ( n - k - i ) .  

Taking into account that 6/> 2 and x ~> 6 + 1, we obtain 

k ( x -  l + 6 ) J > ( x - 6 ) ( x -  1 ) + ( 6 -  1 ) ( x - 6 ) + 6 ( n -  1) 

= x  z -  l + ( 6 - 2 ) ( x - 6 ) +  6 ( n - x - 1 ) +  l > x  2 - 1  

+6(n - x - 1 ), 

which contradicts (4). [] 
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