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A b s t r a c t  

A graph G is called k-critical if G is k-chromatic but every proper subgraph of G has chromatic 
number at most k - 1. In this paper the following result is proved. If G is a k-critical graph 
(k>~4) on n vertices, then 21E(G)I>(k - 1)n ÷ ((k - 3)/(k 2 - 3))n + k - 4 where n>~k + 2 
and n ~ 2 k -  1. This improves earlier bounds established by Dirac (1957) and Gallai (1963). 
(~) 1998 Elsevier Science B.V. All rights reserved 
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1.  I n t r o d u c t i o n  

About 1950, G.A. Dirac introduced the concept of colour criticality. This concept 

- -  invented for simplifying graph colouring theory - -  has given rise to numerous 

investigations and beautiful theorems. 

In this paper a new lower bound for the number of edges possible in a k-critical 

graph on n vertices is established. 

1.1. Terminology 

Concepts and notation not defined in this paper will be used as in standard textbooks. 

The graphs considered are finite, undirected and without loops and multiple edges. 

The set of vertices and the set of  edges of a graph G are denoted by V(G) and E(G),  

respectively. An edge of G joining the distinct vertices x, y E V(G)  is denoted by xy  

or yx,  and the vertices x and y are said to be adjacent in G. For x C V(G),  let Nc;(x) 

denote the set of  all vertices in G that are adjacent to x in G. The degree of x with 

respect to G is dG(x)= ]Nc(x)]. 
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Let X c_ V(G). The subgraph of G induced by X is denoted by G(X), i.e., 

V(G(X)) = Y  and E ( G ( X ) ) = { e  C E ( G ) [ e = x y  and x, y E Y } ;  further, G - Y : =  
G(V(G) - X ) .  The set X will be called a clique (respectively, an independent set) 
in G if G(X) is a complete graph (respectively, a graph without edges). As usual, 

Kn denotes the complete graph on n vertices 
A (proper) k-colouring of a graph G is a mapping ~o of V(G) into the (colour-)set 

{1 , . . . , k} ,k>~l ,  such that ~p(x)#~o(y) for any two adjacent vertices x, yE V(G). 
A graph G which admits a k-colouring is called k-colourable. The chromatic number 
z(G) of G is the smallest integer k for which G is k-colourable. If  x ( G ) =  k, then G 
is called k-chromatic. 

1.2. Critical graphs 

A graph G is called critical if  z ( G ' ) < z ( G )  for every proper subgraph G ~ of G; 
it is called k-critical if  it is critical and k-chromatic. Kk is an example of  a k- 
critical graph and for k = 1, 2 it is the only one. The 3-critical graphs are the odd 
circuits. For k/> 4 there are k-critical graphs on n vertices for all n ~>k except for n = 
k + l .  

Let G be a k-critical graph. I f X  is a clique in G, then G - X  is empty or connected. 
In particular, G is connected and has no separating vertex. Moreover, dG(x)~>k- 1 for 

all x E V(G). The vertices of  G whose degrees are equal to k - 1 are called the low 
vertices and the others are called the high vertices. The subgraph of G induced by the 
set of  low vertices is called the low-vertex subgraph of G. By Brooks' theorem [1], a 
k-critical graph G has no high vertices if  and only if G is a Kk or k = 3 and G is an 
odd circuit. 

Let fk(n) denote the minimum number of  edges possible in a k-critical graph on n 
vertices where k >_,4 and n >~k + 2. Brooks' theorem implies 

2fk(n)>~(k-- 1)n+  1, 

and Dirac [2] proved 

2 fk (n )> . ( k -  1 ) n + k -  3. 

A graph G is called a Haj6s graph of order 2k - 1 if  the vertex set of  G consists of  
three non-empty pairwise disjoint sets A,B1,B2 with [BI[ + [B2[ = [A[ + 1 = k  - 1 and 
two additional vertices a,b such that A and Bl UB2 are two cliques in G not joined 

by any edge, NG(a)=AUB1 and NG(b)=AUB2. Dirac [3] proved that 2[E(G)I = 
(k - 1)n + k - 3 for a k-critical graph G on n>>,k + 2 vertices if and only if G is a 
Haj6s graph of order 2 k -  1. Another generalization of Brooks' theorem due to Gallai 
[4], is 

k - 3  
2fk(n)>(k  - 1)n + k~-~_ 3 n. 
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Moreover,  Gallai [5] determined the exact value of  fk (n)  for n < ~ 2 k -  1. Recently, 
Gallai 's  result has been improved by Krivelevich [8] to 

k - 3  
2 f k ( n ) > ~ ( k -  1)n ÷ k2 _ 2 k -  1 n" 

Krivelevich [9] also presents improved bounds on the number of  edges in k-critical 

graphs with given clique number or odd girth. In Section 2 we shall prove 

k - 3  
2 f k ( n ) > ( k  -- 1)n + ~ - ~ n  + k  - 4 

provided that n ~ 2k - 1. The exceptional graphs are again the Haj6s graphs of  order 
2 k -  1. 

More information concerning the number of  edges of  critical graphs can be found 
in [6, Ch. 5]. 

1.3. The basic theorems o f  GaIlai 

A maximal connected subgraph B of  G such that any two edges of  B are contained 

in a circuit o f  G is called a block of  G. Obviously, a vertex of  G is a separating vertex 
of  G iff it is contained in more than one block of  G. An endblock of  G is a block 
which contains at most one separating vertex of  G. 

A connected graph G all of  whose blocks are complete graphs and/or odd circuits 
is called a Gallai tree; a Gallai forest is a graph all o f  whose components are Gallai 
trees. 

The next result due to Gallai [4] is fundamental in the theory of  critical graphs. For 
a short proof  of  this result the reader is referred to [7]. 

Theorem 1.1. I f  G is a k-critical graph (k>~4), then the low-vertex subgraph of  G 

is a Gallai forest (possibly empty). 

An ek-graph is a graph defined recursively as follows: 
(i) a Kk-I  is an e~-graph; 

(ii) if  Gi and G2 are two disjoint ek-graphs and, for i = 1,2, xi is a vertex of  degree 

k - 2 in Gi, then the graph obtained from GI and G2 by adding the edge x~x2 is 
an ek-graph. 

Clearly, every ek-graph is a Gallai tree. Gallai [4] proved the following. 

Theorem 1.2. I f  G is a k-critical graph (k~>5) with exactly one high vertex x, then 

G -  x is an ek-graph and NG(X) is the set o f  vertices o f  degree k -  2 in G -  x. 

1.4. Extension of  colourings 

Let G be a graph and H C  V(G). For x E V ( G ) ,  let N ( x : H ) = N o ( x ) N H .  For a 

subgraph C of  G, let N ( C : H ) = ( . J x ~ v ( c ) N ( x : H  ). H is said to be a k-set of  G if 
do(x) = k -  1 for all x E V ( G ) - H .  Clearly, if  the graph G is k-critical and H contains 
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all high vertices of  G, then H is a k-set of  G. The next theorem is crucial for the 
proof of  our main result. 

Theorem 1.3. Let G be a 9raph, H C_ V(G) a k-set of  G (k~>4), and C a component 
of  G -  H. Assume that there is a ( k -  1 )-colourin9 ~p of  G(H) satisfyin 9 one of  the 
followin 9 three conditions. 
(a) Icp(N(x :H)[ < ]N(x :H)I for some x E V(C), or 
(b) ~p(N(x : H ) )  ~ ~p(N(y : H))  for two non-separatin9 vertices x, y contained in the 

same endblock B of  C, or 
(c) C is an ek-graph and Iq~(N(C :H))[  ~>2. 

Then ~p can be extended to a (k - 1)-colourin9 of G(H U V(C)). 

Proof. (By induction on [C[). First, assume that (a) holds. For [C[ = 1, the statement 
is evident. I f  1C1~>2, then there is a non-separating vertex y ¢ x  in C. Since y has 
at most k -  2 neighbours in H,  ¢p can be extended to a ( k -  1)-colouring ~p/ of  
G(HU{y} ) .  Obviously, H ' = H U { y }  is a k-set of  G, C = C - y  is a component 

of  G -  H ' ,  and ]~o'(N(x:H'))[ < [N(x:H')I. Therefore, by the induction hypothesis, 
q~' can be extended to a (k - 1 )-colouring of G(H' U V(C')) = G(H U V(C)). 

Next, assume that (b) holds. Since B is an endblock, (b) implies that there are 
two adjacent non-separating vertices u, v of  C contained in B such that q~(N(u :H) )  
~p(N(v:H)). Let i C c p ( N ( u : H ) ) -  qg(N(v:H)). Clearly, ¢p can be extended to a 

( k -  l)-colouring ~p' of  G(HU{v} )  where ~p'(v)=i. Then H ' = H U { v }  is a k-set 
of  G, C = C -  v is a component of  G -  H ' ,  and [~o'(N(u:H'))[<[N(u:HI)[. 
Therefore, because of (a), ~p' can be extended to a ( k -  1 )-colouring of G(H ~ U V ( C ) )  = 
G(H U V(C)). 

Eventually, assume that (c) holds. Let B be an endblock of C. Since C is an ek- 
graph, B is a Kk-l .  I f  C = B, then every vertex of C has exactly one neighbour 
in H.  From [~p(N(C : H))[ i> 2 it then follows that ~p(N(x : H ) )  ~ q~(N(y : H ) )  for two 

vertices x , y  of C=B.  Then, because of (b), ¢p can be extended to a (k - 1)-colouring 
of  G(HU V(C)). I f  C ~ B ,  then exactly one separating vertex y of  C is contained 
in B. For x E V(B - y), let h(x) denote the only neighbour of  x in G belonging to H. 
I f  qg(h(x)) ~ qg(h(x')) for some vertices x,x' E V(B - y), then, because of (b), ~p can 
be extended to a (k - l)-colouring of G(HU V(C)). Otherwise, ~p(h(x))= l for all 
xE  V ( B - y )  and, since B is a Kk-l  and y has no neighbour in H,  ~p can be extended 
to a (k - 1)-colouring q¢ of G(HU V(B)) where ~p'(y)= 1. Then H '  = H U  V(B) is 
a k-set and C / =  C -  B is an ~k-graph. Since y has exactly one neighbour in C ,  
[~o'(N(C:H'))I>>,2. Therefore, by the induction hypothesis, ~p~ can be extended to a 
(k - 1)-colouring of  G( H' U V ( C ) ) = G( H U V ( C ) ). 

This proves Theorem 1.3. [] 

2. On the number of edges in critical graphs 

In this section the following result is proved. 
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Theorem 2.1. Let G be a k-critical graph where k >~4. I f  G is neither a complete 
graph of order k nor a Haj6s graph of order 2k - 1, then 

( k - 3 )  
21E(O)I > I V ( G ) I  k -  1 + ~  + k  4. 

In what follows, G denotes a k-critical graph (k>~4) satisfying the assumption of  

Theorem 2.1. Let V =  V(G), E=E(G) ,  H = { x C  VIdG(X)>~k} and L = { x C  V I d6(x)  
= k - 1 }. Clearly, IV] = IH] + ILl and H # 0. Theorem 2.1 is obviously true if L = (3. 
We may therefore assume that L # 0. The excess A of  G is defined as 

( k - 3 )  
A = R I E ] - I V [  N - I + ~ u Z ~ _ 3  • 

We have to show that A > k - 4 .  We start with some preliminaries. Let 

(a) fl = [E(G(H))], y = ~,,cH(dG(V) -- k), and 
(b) 6 = ILl rk - 2]E(G(L))] where rk = k  - 2 + 2/(k - 1). 

For the number of  edges of  G, on the one hand, we have 

2 1 E l = 2 f l + 2 ( k -  1)IL [ - 2 t E ( G ( L ) ) I = 2 f l + 6 + I L I  k k -  1 

and, on the other, we have 

2 l g l = ( k -  1)]VI + IUl + ? .  

Adding the last equation multiplied by ( k -  2/(k - 1 )) to the previous one, by an easy 
calculation we obtain 

k 2 - k - 2  k -  l k -  1 
A = ? + (2fl + 6 ) T T ~  > ~ ( l q  + Zfl + 6). (1) k 2 - 3  K ~ - - 3  K ~ 

2.1. Lower bounds for 6 

Next, we shall prove some auxiliary propositions. For an arbitrary graph F,  let 

6 ( F ) =  IV(F)Jrt -21E(F)I.  Let cg denote the set of  all components of  G(L). Then 

6= ~ 6(C). (2~ 
CC'4 

Let ~ denote the set o f  all Gallai trees distinct from Ka and with maximum degree 
at most k - 1. By Thoerem 1.1, cg C_ j%. For C E , ~  and some endblock B of  C, let 
Ce = C - (B - x)  where x is the only separating vertex of  C contained in B (if  there 
is no such vertex, then C = B  and an arbitrary vertex of  B may be taken). The proof 
of  the next result is left to the reader. 

Lemma 1. (1.1) 

6(B) = b(rk 

I f  B is a complete graph of order b <~k- 1, then 

rk ~ 1 ~b<~k - 2, 
- b + l ) ~ >  2 / f b = k -  1. 



130 .4. v. Kostochka, M. Stiebitz/Discrete Mathematics 191 (1998) 125 137 

(1.2) I f  B is an odd circuit o f  order b>~5, then 6(B)=b(rk  -2)~>rk. 

(1.3) I f  B is a complete graph o f  order b with 2 <<. b <~ k - 3 or an odd circuit o f  order 
b>>.5 and k >>.5, then cS(B)~>2(rk -- 1). 

(1.4) I f  B is an endblock o f  C E J-k, then 6 ( C ) = 6 ( C s )  + 6(B) - rk. 

Lemma 2. For C e ~--k, the following statements hold: 

(2.1) 6(C) >~2. 

(2.2) I f  C is not an ak-graph, then 6(C)>>.r~. 

(2.3) I f  no endblock o f  C is a Kk-a and C is neither a Kl nor a Kk-2 and k>~5, 

then 6(C)>>.2(rk- 1). 

ProoL We prove Lemma 2 by induction on the number m of  blocks o f  C. For m = 1, 

Lemma 2 is an immediate consequence o f  Lemma 1. Note that rk > ~ k -  2t>2. Now, 

assume m > 1. 

I f  C is an ek-graph, then CB is not an ek-graph for any end-block B of  C and, by 

the induction hypothesis and Lemma 1, 6(C) >>. 6(CB) + 6(B) - rk >i 6(B) >1 2. 

I f  C is not an ek-graph, then we argue as follows. First, consider the case that some 

endblock B of  C is a Kk_t. Since the maximum degree o f  C is at most k - 1, there 

is exactly one block B'  =K2  having a vertex in common with B. Then C '  =(C~)a ,  is 

not an ek-graph and, by the induction hypothesis and Lemma 1, we obtain 

6(C) = 6 ( C )  + 6(B) + ~(B') - 2rk ~>rk + 2 + 2(rk - 1) - 2rk = rk. 

Now, consider the case that no endblock of  C is a Kk-1. Let B be an endblock of  C. 
Then Ca is not an ek-graph and, by the induction hypothesis and Lemma 1, 6(C)>~rk. 

I f  C satisfies the assumption of  (2.3), then we choose an endblock B of  C where 

]V(B)I is maximum. Let C ~ = Ca. Clearly, C '  is not a KI. I f  some endblock of  C ~ is 
a Kk- l ,  then B is a K2 and C ~ is not an ~k-graph. Hence, by Lemma 1 and (2.2), 

6(C)>~6(C') + 6(B) - rk>>.6(B)>>.2(rk -- 1). I f  C '  is a Kk-2, then, since the max- 

imum degree o f  C is at most k -  1 and ki>5, B is a Kk-2 and k = 5 ,  implying 

6(C)=5rk  - 12~>2(r~ - 1). I f  C '  is not a Kk-2 and no endblock o f  C is a Kk-1, 

then, by the induction hypothesis and Lemma 1, 6 ( C ) > ~ g ( C ) +  6 ( B ) -  r~>~6(C')~ 

2(rk - 1). 

This proves Lemma 2. 

As a consequence o f  Lemma 2 and (2), we obtain 6/>2. Clearly, both fl and ? are 
non-negative. Hence, by (1), A >0 .  In particular, Theorem 2.1 is true for k = 4. In 

what follows, we may therefore assume that k >/5. 

The fact that 6/>2 and, therefore, A > 0 was first proved by Gallai [4] in 1963. 
Next, we shall prove Theorem 2.1 for the case that IHI = 1, say H =  {x}. Then 

Theorem 1.2 implies that G -  x = G(L) is an e~-graph. Let 9 denote the number o f  
blocks o f  G - x  isomorphic to Kk-1. Since G is neither a Kk nor a Haj6s graph of  

order 2 k -  1, we have 9/>3. Moreover, G - x  has g ( k -  2) vertices o f  degree k -  2. 
Hence, d a ( x ) = g ( k -  2 ) ~ > 3 ( k -  2) and, therefore, 7 = d e ( x ) -  k > . 2 ( k -  3). From (1) 
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we then conclude that 

> ~ - - ~ ( 2 ( k  - 3 ) ) > k  - A 4. 

This proves Theorem 2.1 in case of  [H] = 1. In what follows, we may therefore assume 

that [H]/>2. 

2.2. Good colourings 

Next, we partition cg into three classes. For x E C E (g, let N(x : H )  = N o ( x ) N H  and 
N(C : H )  = Uv~v(c)N(y "H). Let (gl denote the set of  all ek-graphs of C. Since IHI >~2 
and G has no separating vertex, ]N(C:H)I>>,2 for every CEcgl. Denote by G* the 
graph obtained from the high-vertex subgraph G(H) by adding an edge uv for each 

C E ~l where u, v are two distinct vertices of N(C :H) .  
Now, consider a component C E c( _ <g~. Let x, y be a pair of  non-separating vertices 

of  C contained in the same endblock of C. Since x and y have the same degree in G 

as well as in C, 

]N(x : H)I = [N(y :H)[. 

We call (x, y)  a light pair of C if 

N(x : H )  ¢ N ( y  :H) .  

Let cd2 denote the set of  all components C E c~_ ~l for which there exists a light pair. 

Moreover, let ct73 = c ~ _  ~ 1 -  % and, for 1 ~<i~<3, let ci= [~i[. 
For each C E cg2, choose a light pair (x, y)  of C and denote by M the set of all 

pairs chosen. A t-colouring q> of G* is said to be good if, for any pair (x, y ) E  M, 
Iq)(N(zzH)l<lN(zzH)l for z = x  or z = y ,  or q)(N(x:H))¢~o(N(y:H)) .  If  q~ is a 
good t-colouring of G*, then ~0 is a t-colouring of G(H) and [(p(N(C : H ) )  I >~2 for all 
components C E cg~. In case of  t ~ < k -  1, it follows from Theorem 1.3 that q) can be 

extended to a ( k -  1)-colouring of G(HU V(C)) for all components C E ~1 U~2. 
In what follows, let t* denote the smallest integer for which there exists a good 

t*-colouring of G*. As we shall see later, if t* is large then A must be large, too. 

First, we prove that 

2(fl + cl +c2)>~t*(t* - 1). (3) 

C l e a r l y , / ~ - c 1  = [E(G(H))[ + [(~911 ~ [E(G*)[ and c2 = IMI. Hence, (3) is a consequence 

of the following result. 

Lemma 3. Let F be an arbitrary graph, and let M be a set of  pairs (X,Y)  
of  subsets of  V(F) such that X ¢ Y and [X[=IY I. Then, for some t satisfying 
[E(F)[ + [M] >~ (~), there is a t-colouring ~o of F which is good for every pair 
(X, Y ) E M ; that is I(p(X)] <[X[, or [~o(Y)[<]Y I, or ~p(X ) ¢ q~( Y ). 
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Proof (By  induction on [MI). For [ M [ = 0 ,  Lemma 3 is evidently true. Assume 

IMI I> 1. Consider an arbitrary vertex v of  F.  Let M* = {(X, Y) E M [ v E X  A Y or v 
X U Y }  and M ' = { ( X -  v , Y -  v)[ ( X , Y ) E M * } .  

By induction, there is a t '-colouring ~o' o f F -  v with [ E ( F -  v)[ + IM'I/> ('~) such 
that q¢ is good for every pair o f  M ~. Now, for a colour i E { 1 . . . . .  t ~, t t + 1 }, define a 
mapping (p(i) by ~p(i)(x) = ~p~(x) for x c V ( F  - v) and q)(i)(v) = i. Clearly, ~p(il is good 

for every pair of  M* and ~p(t'+l) is a ( d +  1)-colouring of  F which is good for every 
pair o f  M. If, for some i E  {1 . . . . .  F}, q)(i) is a / - c o l o u r i n g  o f F  that is good for every 

pair o f  M,  then there is nothing to prove. Otherwise, for every i E {1 . . . . .  t~}, there is 
an edge e =  vx such that ~p~(x)= i or there is a pair in M - M * ,  for which ~p(i) is 

not good (in this case we say that i is forbidden for this pair). Since v c (X - Y)U 
( Y - X )  for every pair ( X , Y ) E M -  M * ,  we easily conclude that for each pair o f  
M - M *  at most one colour is forbidden. Consequently, IE(F)[ - IE(F - v)[ + [M[ - 

IM*I ~>t'. Since IM'I = IM*I, we then conclude that IE(F)I + IMI/> ("~-'). This proves 
Lemma 3. [] 

2.3. P r o o f  o f  Theorem 2.1 - -  the main part  

To prove Theorem 2.1, let us now suppose that 
(1) A< <,k -4 ,  and 
(2) IV[ is a minimum subject to (i). 

To arrive at a contradiction, we shall show that these assumptions lead to a ( k -  1)- 
colouring of  G. Note that k>~5 and IH[ ~>2. First, we prove that 

(P1) G is 3-connected. 

Suppose that this is not true. Since G is connected and has no separating vertex, 
we infer that G contains a separating set {x, y}. By a result o f  Dirac (for a proof  the 

reader is referred to [4, Theorem (2.7)]) it then follows that x and y are not joined by 
an edge in G and G - {x, y} has precisely two components Gtl and G~. Moreover, the 
notation may be chosen so that the graph GI obtained from G -  V(G~) by adding the 
edge x y  to it is k-critical, and the graph G2 obtained from G - V(G~I ) by identifying 
x and y to a single new vertex z is k-critical. Then [V(G)[ = [V(GI)[ + I V ( G 2 ) [ -  1 

and IE(G)[ >~ ]E(G, )l + [E(G2)[ - 1. For i =  1,2, let 

( A i = 2 I E ( G i ) [ -  IV(Gi)[ k -  1 + 

be the excess of  Gi. Then 

A > ~ A I + A 2 - 2 +  k - l + k - T ~ _ 3  = A l  
k-3) 

+ A 2 +  k - 3 + k ~ - ~ _  3 . 

I f  Gi is a Kk, then Ai >/ - 1. I f  Gi is a Haj6s graph of  order 2k - 1, then 2]E(Gi)I = 

( k -  1)l V(Gi)[ + ( k -  3 ) =  ( k -  1 ) ( 2 k -  1 ) +  ( k -  3) implying A i = ( k -  3 ) - ( 2 k -  1) 
((k - 3) / (k  2 - 3))~>0. I f  Gi is neither a complete graph of  order k nor a Haj6s graph 
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of  order 2 k -  1, then, by (ii), A i > k  - 4 ~ >  1. Therefore, if  G1 or G2 is not a K~., then 
A > k - 4 ,  contradicting (i). I f  both G~ and G2 are complete graphs of  order k, then G 
is a Haj6s graph of  order 2k - 1, contradicting the assumption of  Theorem 2.1. This 

proves (P1). 
Now, let us consider a good t*-colouring ~p* of  G*. I f  t* >~k - 1, then (3) implies 

2( f l+Cl  + c 2 ) > ~ ( k -  1 ) ( k - 2 ) .  Because of  (2) and Lemma 2, `5~>2(cl +c2) .  From (1) 

we conclude that 

k - 1  k - A > ~ 2  1 (2fl + ` 5 ) > ~ - - ~ - (  1)(k 2 ) > k -  4, 

a contradiction to (i). Therefore, 

(P2) t * ~ < k - 2  

and (0" is a good (k - 2)-colouring of  G*. Obviously, q~* is a (k - 2)-colouring of  
G(H) and, using Theorem 1.3, we conclude that ~o* can be extended to a (k - l )-  
colouring of  G(H U V(C))  for all components C E c~1 U ~2. I f  this is also the case for 

all components C E oK3, then G has a ( k -  1)-colouring, contradicting z ( G ) = k .  
Therefore, for the rest o f  the proof, we assume that, for some component D E <6;, 

~p* cannot be extended to a (k - 1)-colouring of  G(HU V(D)). Then, by (2) and 

Lemma 2, 

,5 ~> `5(D) + 2 q  + (k - 2)(c2 + c3 - 1 ) 

= `5(D) + 2(cl + c2) + (k - 4)(c2 + c3 - 1), 

and therefore, by (1) and (3), 

k 2 - k - 2  k -  1 
A_> k 2 - 3  7 + - ~ 5 - - S ~ ( ` 5 ( D ) + t * ( t * - l ) + ( k - 4 ) ( c 2 + c 3 - 1 ) )  (4) 

implying, in particular, 

k - 1  
A > ~ T - ( k 7  + `5(D) + t*(t* - 1)). (5) 

Since D contains no light pair, for every endblock B of  C, there is a subset P(B) c_ H 

such that N ( x : H ) =  P(B) for each non-separating vertex x of  D contained in B. Since 
(o* cannot be extended to a ( k -  1 )-colouring of  G(H U V(D)), we conclude from 
Theorem 1.3 that ](p*(P(B))] = ]P(B)[. This implies that 

(P3) t* _> ]P(B)I for every endblock B of  D. 

I f  some endblock B of  D is a Kk- i ,  then P(B) = {y}. Moreover, since D is not an 
e.k-graph, B ¢ D and, therefore, B contains a separating vertex x of  D. This implies that 
{x, y} is a separating set o f  G, contradicting (P1). I f  D is a Kk-2, then IP(D)I = 2 and, 
since G is not a Kk, P(D) is a separating set o f  G, contradicting (P1), too. Therefore, 

(P4) D is not a Kk-2 and no endblock of  D is a Kk- j .  
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A triple (x,y,z) of  vertices o f  D is called soft i f  xy, xzEE(D), yz~E(D),  and 

D - { y , z }  is connected. Assume that D contains a soft triple (x,y,z). Then the ( k - 2 ) -  

colouring q~* o f  G(H) can be extended to a ( k - 1  )-colouring ~0 o f  G(H U { y . z } )  where 

q~(y)= q o ( z ) = k -  1. Since D -  {x,y} is connected, it then follows from Theorem 1.3 

that q~ can be extended to a ( k -  1 )-colouring o f  G(H U V(D)). This is a contradiction 

to the choice o f  D. Therefore, 

(P5) D contains no soft triple. 

To establish the existence of  a (k - 1)-colouring o f  G, let us now consider an 

arbitrary endblock B o f  D with b = IV(B)[. Because o f  (P4), neither B nor DB is 

an e~-graph. From Lemmas 1 and 2 we conclude that 5(D)>>,f(CB)+ 6 ( B ) -  rk>~ 
6(B). 

I f  B is not a complete graph, then B is an odd circuit with b ~> 5 and, by Lemma l ,  

5(D) > 5 ( B ) = b ( r k -  2 ) ~ > 5 ( k -  4). Since I P ( B ) I = k -  3, this yields, by (5)  and 

(P3), 

A > ~ - ( 5 ( n )  -4- t*(t* - 1 ) ) > / ~ @ ) -  (5(k - 4) -4- (k - 3)(k - 4 ) ) >  k - 4, 

a contradiction to (i). 

Therefore, B is a Kb where b<<,k- 2 and, by Lemma l ,  5(D)>~g(B)>~b(k- b -  1). 

Let P=P(B).  Then [P[ = k -  b and, because o f  ( e2 )  and (e3) ,  t* >~k- b and b~>2. 

Consequently, 5(D) + t * ( t *  - 1)>~k(k - b - 1). 

I f  b = 2, then (5)  implies A > ((k - 1 )/k 2 ) (k(k - 3))  > k - 4, contradicting (i). Hence, 

b~>3. 

Let m = 1 i f  c2 -4- c3 - 1 > 0 and m = 0 i f  c2 -4- c3 - 1 = 0. I f  ? -4- m ~> b - 2, then, using 

(4), we obtain by an easy calculation that 

k 2 - k  - k -  1 
A >>. ~ 2 ( b - Z - m ) + ~ - _ - - ~ ( k ( k - b - 1 ) ÷ ( k - 4 ) m )  

_- k 3 - 4 k  2 + ( 3 - 4 m ) k - 2 b + ( 4 + 6 m ) > k _ 4 ,  
k 2 - 3 

contradicting (i). Hence, 

;~ + m ~ b  - 3. (6) 

This, in particular, implies that de(v) ~<k -4- b - 3 for each v E H.  Now, let x denote the 

only separating vertex o f  D contained in B in case o f  D ~ B or, an arbitrary vertex o f  

B in case of  B = D. Then, since P and B - x are completely jo ined in G, 

dc_(8_x)(v)<~k-2 for each vEP. (7)  

Let  us first consider the case that m = 0 and there are two non-adjacent vertices in G(P). 
Then cg = cg 1 U {D} and we argue as follows. First, in the good (k - 2)-colouring q~* 

o f  G* we recolour two independent vertices o f  G(P) by the new colour k - 1. Since 
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Iq>*(N(C :H)I  7> 2 for all C c cgl and, by (P1), IN(C :H) ! />  3 for all C C c~1, this results 

in a ( k -  1)-colouring ~o of  G(H) where I~o(N(C : H ) )  1/>2 for all C E <gl. Moreover, 

I~o(N(y :H)I  < IN(y :H)I  for all y E V(B - x ) .  From Theorem 1.3 we conclude that ~p 
can be extended to some ( k -  1)-eolouring of  G, contradicting x ( G ) =  k -  1. 

Therefore, in what follows, we assume that m =  1, or that m = 0  and G(P) is a 

complete graph. We distinguish two cases. 

Case 1: B=D.  Then N ( x : H ) = P  and, since G contains no Kk, G(P) is not a 

complete graph implying m---- 1. Let Z be a maximal independent set of  G(P), z = IZI 
and G ' = G -  B -  P. Clearly, z~>2. Since G is k-critical, there is a ( k -  1)-colouring 
~p of  G'. I f  there are two distinct vertices a, b C Z such that ~p' can be extended to a 

( k -  1 )-colouring of  G(V(G ~) U {a, b}) such that a and b receive the same colour, then, 

by (7), this colouring can be first extended to a ( k -  1 )-colouring of  G(V(G')U P) and 

then, by Theorem 1.3, to a (k - 1 )-colouring of  G, contradicting z (G)= k. Otherwise, 

for each colour i E { 1 . . . . .  k - 1 }, the number o f  edges of  G joining a vertex o f  colour 
i with a vertex of  Z is at least z -  1. For y E Z ,  let d ' ( y ) :  INc(y)N V(G')[ and 

d"(y)  = dc{p)(y). Then 

Z d ' ( y ) ~ > ( k -  1 ) ( z -  1), 
yCZ 

and, since Z is a maximal independent set in G(P), 

E d " ( y )  >/IP - z l  : k - b - z. 
yC/  

Because o f  Z c_ H and d c ( y ) = d ' ( y ) + d " ( y ) + b  for all y 6Z,  the last two inequalities 

imply 

?>~ S ( d c ( y ) - k ) ~ > ( k - l ) ( z - 1 ) + ( k - b - z ) + ( b - k ) z  
v6Z 

= z ( b -  2 ) -  b + 1. 

Since b >/3 and z ~> 2, this yields, on the one hand, ? >~ b -  3. On the other hand, because 

of  (6) and m = 1, we have 7 ~ < b -  4, a contradiction. 

Case 2: B # D. Let A = N(x : H)  N P. Clearly, A # P. Let Z be a maximal indepen- 

dent set in G ( P -  A), Z' = Z U  {x}, and z ' =  [Z' t. Then Z'  is a maximal independent 

set in G " =  G(PU {x}) and z'~>2. Let G' = G - B - P. Since G is k-critical, there 

is a ( k -  1)-colouring ~o of  G'. As in case 1, we conclude that, for each colour 

i 6 {1 . . . . .  k - 1}, the number o f  edges o f  G joining a vertex o f  colour i with a vertex 

o f  Z '  is at least z'  - 1 = z. For y E Z' ,  let d'(y) = INc(y) n V(G')I and d"(y)  = dc,, (y). 
Then 

d ' (y)>~(k-  1 ) ( z ' -  1 ) = ( k  - 1)z, 
vCZ' 

and, since Z ~ is a maximal independent set in G", 

E d"(y)>~l(PU{x})- Z'] =k- b-z. 
yCZ' 
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Since Z _C H and dG(y) = d ' ( y )  + d " ( y )  + b - 1 for all y E Z tO {x} and de(x)  = k - 1, 
it then follows that 

> ~ (at(y)-  k)>(k-  1 ) z + ( ~ - b - z ) + ( b - k -  1 ) z - ( k - b )  
y6Z 

= z ( b  - 3). 

By (6), 7 ~< b - 3 - m. Since b/> 3 and z >i 1, this is possible only i f  m = 0 and 7 = b - 3. 

Now, let B '  be an endblock o f  D distinct from B. Clearly, B'  is also a complete 

graph o f  order b' with 3 ~< b'  ~< k - 2. Let D '  = (DB)8,. Since k ~> 5, we conclude from 

(P4) and (P5) that no endblock o f  D '  is a Kk- i  and D '  is neither a KI nor a Kk-2. 

Consequently, by  Lemmas 1 and 2, 6 (D ' ) />2( rk  -- 1) and, therefore, 

6 ( D ) / >  6 (D ' )  + 6(B) + 6(B ' )  - 2rk 

>~ b(rk - b +  1) + b'(rk - b' + 1 ) -  2. 

Because o f  (P3), t*/> IPI = k  - b. Hence 

Icy + 6 ( 0 )  + t*(t* - 1) 

> . ( k ( b -  3 ) + b ( r k - b +  l ) + b ' ( r k - b '  + l ) -  2 + ( k - b ) ( k - b - 1 ) )  

= ( k Z - 4 k +  k2b 1 2 + b ' ( r k - b '  + l ) )  

2b 
/> k 2 - 4 k +  k ~ - i  - 

>~k 2 - 3k - 2 

implying, by (5), that 

k - 1  2 
A > ~ T - ( k  - 3 k - 2 ) > k - 4 ,  

a contradiction to (i). 

Thus in both cases 1 and 2 we arrive at a contradiction. This proves Theorem 2.1. 
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