Note
 Colouring triangle-free intersection graphs of boxes on the plane

A.V. Kostochka ${ }^{\text {a, }}$, I.G. Perepelitsa ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Institute of Mathematics, 630090 Novosibirsk, Russia
${ }^{\mathrm{b}}$ Novosibirsk State University, 630090 Novosibirsk, Russia

Received 11 November 1998; revised 10 November 1999; accepted 22 November 1999

Abstract

We prove that intersection graphs of boxes on the plane with girth 6 and 8 are 3- and 2-degenerate, respectively. This implies that these graphs are 4 - and 3-list-colourable, respectively. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Colouring; Intersection graphs; Maximum average degree

1. Introduction

Among other interesting classes of intersection graphs, Asplund and Grünbaum [1] considered class \mathscr{B} of intersection graphs of boxes, i.e. rectangles with sides parallel to the axes on the plane. They proved that every graph in \mathscr{B} with clique number at most r is $4 r^{2}-3 r$-colourable. For $r=2$, they obtained the exact result:

Theorem 1 (Asplund and Grünbaum [1]). The maximum chromatic number of a triangle-free graph in \mathscr{B} is six.

Note that for three-dimensional boxes, the situation is different. Burling [2] constructed a series of triangle-free intersection graphs of three-dimensional boxes with arbitrarily high chromatic number.

The aim of the present paper is to show that graphs in \mathscr{B} with girth greater than 5 can be coloured with fewer than six colours.

[^0]

Fig. 1. An example of an x-intersection.

Theorem 2. If a graph $G \in \mathscr{B}$ has girth at least 6 or 8 , then G is 4 - or 3-list-colourable, respectively.

In fact, a stronger statement will be proved. Recall that the maximum average degree, $\operatorname{mad}(G)$, of a graph G is $\max _{\emptyset \neq H \subseteq G} 2|E(H)| /|V(H)|$, and a graph is said to be k-degenerate if every subgraph has a vertex of degree at most k. Since every graph G with $\operatorname{mad}(G)<k+1$ is k-degenerate and every k-degenerate graph is $(k+1)$-list-colourable, Theorem 2 is an immediate corollary of the following statement.

Theorem 2'. If a graph $G \in \mathscr{B}$ has girth at least 6 or 8 , then $\operatorname{mad}(G)$ is strictly less than 4 or 3, respectively.

Recall that 'girth at least 4' means 'triangle-free', and Theorem 1 applies. We do not know the situation with girth 5 .

In the next section, we introduce the auxiliary notion of a graphical graph of a family of boxes and discuss some its properties. Theorem 2^{\prime} is proved in the last section.

2. Graphical graphs

Let \mathscr{A} be a family of boxes on the plane whose intersection graph is triangle-free. We shall say that two boxes B_{1} and $B_{2} x$-intersect if their intersection is nonempty but no corner of B_{i} is covered by $B_{3-i}, i=1,2$ (see Fig. 1).

We also say that B_{1} and B_{2} z-intersect (respectively, y-intersect) if exactly one corner of B_{i} is covered by $B_{3-i}, i=1,2$ (respectively, one of them contains exactly two corners of the other) (see Fig. 2).

For every $B \in \mathscr{A}$, let $d_{z y}(B)$ denote the number of boxes $B^{\prime} \in \mathscr{A}$ such that B and B^{\prime} z - or y-intersect, and let $d_{x}(B)$ denote the number of boxes $B^{\prime \prime} \in \mathscr{A}$ such that B and $B^{\prime \prime} x$-intersect.

Fig. 2. Examples of a z-intersection (left) and a y-intersection (right).

Let $G \in \mathscr{B}$. There are infinitely many families \mathscr{A} of boxes on the plane such that G is the intersection graph of \mathscr{A}. We say that some such \mathscr{A} is a standard representation of G if all the sides of all boxes lay on different lines and the sum $\sum_{B \in \mathscr{A}} d_{x}(B)$ is minimum possible.

Lemma 1. Let a triangle-free $G \in \mathscr{B}$ have minimum degree at least 2. Let \mathscr{A} be a standard representation of G. Then $d_{z y}(B) \geqslant 2$ for every $B \in \mathscr{A}$.

Proof. Let $B \in \mathscr{A}$. If $d_{x}(B)=0$, then we are done, since $d_{x}(B)+d_{z y}(B) \geqslant 2$. Suppose that B and $B^{\prime} x$-intersect. Then $B \backslash B^{\prime}$ is the disjoint union of two boxes, say, B_{1} and B_{2}. Since G is triangle-free, no box in $\mathscr{A}-B$ meets both B_{1} and B_{2}. If B_{1} does not meet other boxes, then instead of B we can use a shorter box \hat{B} which y-intersects B^{\prime}. This contradicts the condition that \mathscr{A} is a standard representation of G. It follows that each of B_{1} and B_{2} meets another box, say B_{1}^{\prime} and B_{2}^{\prime}, in \mathscr{A}. Repeating (if needed) the argument, we obtain finally that each of B_{1} and $B_{2} z$ - or y-intersects some box in \mathscr{A}.

The following notion (similar to one used in [3]) will be helpful. The vertices of the graphical graph, $\tilde{G}(\mathscr{A})$, of a family \mathscr{A} of boxes on the plane are the corners of all boxes and the crossing points of the sides of the boxes; the edges of $\tilde{G}(\mathscr{A})$ are the pieces of sides of boxes connecting these points (see Fig. 3).

By the construction, $\tilde{G}(\mathscr{A})$ is always a plane graph. We say that a face of $\tilde{G}(\mathscr{A})$ is of type i, if its interior is covered by exactly i boxes of \mathscr{A}. The set of faces of type i will be denoted by $T_{i}=T_{i}(\mathscr{A})$. The faces of type 0 will be called outer and the other faces will be called interior. For every face F of \tilde{G}, let $r(F)$ denote its rank, i.e. the number of edges on the boundary of F. Observe that (since the intersection graph of \mathscr{A} is triangle-free) there are no faces of type i for $i \geqslant 3$ and that the faces of type 2 are always of rank four.

Let $G \in \mathscr{B}$ be triangle-free, \mathscr{A} be a standard representation of G and $\tilde{G}=\tilde{G}(\mathscr{A})$ be the graphical graph of \mathscr{A}. Let $n=n(G)$ and $m=m(G)$ denote the number of vertices and edges of G, respectively. Furthermore, let $v=v(\tilde{G}), e=e(\tilde{G}), f=f(\tilde{G})$ and $f_{i}=f_{i}(\tilde{G})$ denote the number of vertices, edges, faces and faces of rank i in \tilde{G},

Fig. 3. An example: a family of boxes (left), its intersection graph (in the center) and its graphical graph (right).
respectively. Then the following equalities hold:

$$
\begin{align*}
& 2 m=\sum_{B \in \mathscr{A}} d_{x}(B)+\sum_{B \in \mathscr{A}} d_{z y}(B), \tag{1}\\
& v=4 n+2 \sum_{B \in \mathscr{A}} d_{x}(B)+\sum_{B \in \mathscr{A}} d_{z y}(B), \tag{2}\\
& e=4 n+4 \sum_{B \in \mathscr{A}} d_{x}(B)+2 \sum_{B \in \mathscr{A}} d_{z y}(B), \tag{3}\\
& 2 e=\sum_{i=4}^{\infty} i \cdot f_{i} . \tag{4}
\end{align*}
$$

If a box participates in $j x$-intersections, then it contains exactly $j+1$ faces of type 1 in \tilde{G}. Hence

$$
\begin{equation*}
\left|T_{1}\right|=n+\sum_{B \in \mathscr{A}} d_{x}(B) \tag{5}
\end{equation*}
$$

Each z-intersection creates a new face of type 2 and increases the sizes of both faces of type 1 adjacent to this new face by two. Each y-intersection creates a new face of type 2 and increases the size of one of the faces of type 1 adjacent to this new face by four. This yields the following equation:

$$
\begin{equation*}
\sum_{F \in T_{1}} r(F)=4\left|T_{1}\right|+2 \sum_{B \in \mathscr{A}} d_{z y}(B) \tag{6}
\end{equation*}
$$

3. Proof of Theorem 2^{\prime}

Suppose that the theorem does not hold. Let $g \in\{6,8\}$ and G be a counter-example to the theorem for this g with the smallest number of vertices. Let \mathscr{A} be a standard representation of G and $\tilde{G}=\tilde{G}(\mathscr{A})$ be the graphical graph of \mathscr{A}.

Fig. 4.

Due to the minimality of G, we have $2|E(G)| /|V(G)| \geqslant 4$ if $g=6$ and $2|E(G)| /$ $|V(G)| \geqslant 3$ if $g=8$. If G has a vertex B of degree at most one, then $G-B$ is also a counter-example to the theorem, a contradiction. Thus, the minimum degree of G is at least two. Hence Lemma 1 and Eqs. (1)-(6) hold for G, \mathscr{A} and \tilde{G}. Let T_{2}^{x} denote the set of faces in T_{2} created by x-intersections, and $T_{2}^{z y}=T_{2} \backslash T_{2}^{x}$. In order to estimate $f=\sum_{F \in T_{0} \cup T_{1} \cup T_{2}} r(F)$ we use discharging, i.e. giving each F a number $r^{\prime}(F)$ following certain rules so that $\sum_{F \in T_{0} \cup T_{1} \cup T_{2}} r^{\prime}(F)=\sum_{F \in T_{0} \cup T_{1} \cup T_{2}} r(F)$.
α-Discharging procedure: For each $F \in T_{1}$, set $r^{\prime}(F)=r(F)$. For each $F \in T_{2}^{x}$, set $r^{\prime}(F)=r(F)+4 \alpha$. For each $F \in T_{2}^{z y}$, set $r^{\prime}(F)=r(F)+2 \alpha$. For each $F \in T_{0}$, set $r^{\prime}(F)=r(F)-a(F, \pi / 2) \alpha$, where $a(F, \phi)$ denotes the number of angles equal to ϕ on the boundary of F.

Since each angle of $\pi / 2$ on the boundary of a face $F \in T_{0}$ is vertical to an angle on the boundary of a face of type 2 , we can consider our procedure as if every $F \in T_{0}$ sends through each angle equal to $\pi / 2$ on its boundary the share α to the face of type 2 incident with the vertex of this angle (see Fig. 4).

This proves that $\sum_{F \in T_{0} \cup T_{1} \cup T_{2}} r^{\prime}(F)=\sum_{F \in T_{0} \cup T_{1} \cup T_{2}} r(F)$.
Lemma 2. If

$$
\begin{equation*}
\alpha \leqslant \frac{6 g-24}{4+3 g} \tag{7}
\end{equation*}
$$

then for every $F \in T_{0}, r^{\prime}(F) \geqslant 4+4 \alpha / 3$.

Proof. Let $F \in T_{0}$. Condition (7) is equivalent to the inequality

$$
(2-\alpha) g-4 \geqslant 4+\frac{4}{3} \alpha .
$$

Note that the number of boxes adjacent to F is at most $a(F, \pi / 2)$. Therefore, $a(F, \pi / 2) \geqslant g$ and

$$
(2-\alpha) a(F, \pi / 2)-4 \geqslant 4+\frac{4}{3} \alpha .
$$

In other words,

$$
\begin{equation*}
(2 a(F, \pi / 2)-4)-\alpha a(F, \pi / 2) \geqslant 4+\frac{4}{3} \alpha . \tag{8}
\end{equation*}
$$

Observe that for every face F whose angles are only $\pi / 2$ and $3 \pi / 2, a(F, \pi / 2)-$ $a(F, 3 \pi / 2)=4$, that is,

$$
r(F)=2 a(F, \pi / 2)-4 .
$$

This together with (8) yields that $r(F)-\alpha a(F, \pi / 2) \geqslant 4+\frac{4}{3} \alpha$ which proves the lemma.

Let (7) hold. Then due to the discharging procedure and Lemma 2,

$$
2 e=\sum_{F \in T_{0} \cup T_{1} \cup T_{2}} r^{\prime}(F) \geqslant\left(4+\frac{4 \alpha}{3}\right)\left|T_{0}\right|+\sum_{F \in T_{1}} r(F)+(4+2 \alpha)\left|T_{2}\right|+2 \alpha\left|T_{2}^{x}\right| .
$$

By (6) and (5),

$$
\begin{aligned}
\sum_{F \in T_{1}} r(F) & =4\left|T_{1}\right|+2 \sum_{B \in \mathscr{A}} d_{z y}(B) \\
& =\left(4+\frac{4 \alpha}{3}\right)\left|T_{1}\right|-\frac{4 \alpha}{3}\left(n+\sum_{B \in \mathscr{A}} d_{x}(B)\right)+2 \sum_{B \in \mathscr{A}} d_{z y}(B) .
\end{aligned}
$$

Therefore,

$$
2 e \geqslant\left(4+\frac{4 \alpha}{3}\right) f-\frac{4 \alpha}{3}\left(n+\sum_{B \in \mathscr{A}} d_{x}(B)\right)+2 \sum_{B \in \mathscr{A}} d_{z y}(B)+\frac{2 \alpha}{3}\left|T_{2}^{z y}\right|+\frac{8 \alpha}{3}\left|T_{2}^{x}\right| .
$$

Since $\left|T_{2}^{x}\right|=\frac{1}{2} \sum_{B \in \mathscr{A}} d_{x}(B)$ and $\left|T_{2}^{z y}\right|=\frac{1}{2} \sum_{B \in \mathscr{A}} d_{z y}(B)$, this is equivalent to

$$
2 e \geqslant\left(4+\frac{4 \alpha}{3}\right) f-\frac{4 \alpha}{3} n+\left(2+\frac{\alpha}{3}\right) \sum_{B \in \mathscr{A}} d_{z y}(B) .
$$

Recall that $v-e+f=2$ according to Euler's formula. Hence

$$
2 e>\left(4+\frac{4 \alpha}{3}\right)(e-v)-\frac{4 \alpha}{3} n+\left(2+\frac{\alpha}{3}\right) \sum_{B \in \mathscr{A}} d_{z y}(B) .
$$

Substituting the expressions for v and e from (2) and (3), we get

$$
\begin{aligned}
8 n & +8 \sum_{B \in \mathscr{A}} d_{x}(B)+4 \sum_{B \in \mathscr{A}} d_{z y}(B) \\
& >\left(4+\frac{4 \alpha}{3}\right)\left(2 \sum_{B \in \mathscr{A}} d_{x}(B)+\sum_{B \in \mathscr{A}} d_{z y}(B)\right)-\frac{4 \alpha}{3} n+\left(2+\frac{\alpha}{3}\right) \sum_{B \in \mathscr{A}} d_{z y}(B) .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
\left(8+\frac{4 \alpha}{3}\right) n & >\frac{8 \alpha}{3} \sum_{B \in \mathscr{A}} d_{x}(B)+\left(2+\frac{5 \alpha}{3}\right) \sum_{B \in \mathscr{A}} d_{z y}(B) \\
& =\frac{16 \alpha}{3} m+(2-\alpha) \sum_{B \in \mathscr{A}} d_{z y}(B)
\end{aligned}
$$

By Lemma 1, $\sum_{B \in \mathscr{A}} d_{z y}(B) \geqslant 2 n$ and hence

$$
\left(8+\frac{4 \alpha}{3}\right) n>\frac{16 \alpha}{3} m+(2-\alpha) 2 n
$$

i.e.

$$
\begin{equation*}
\frac{m}{n}<\frac{6+5 \alpha}{8 \alpha}=\frac{3}{4 \alpha}+\frac{5}{8} . \tag{9}
\end{equation*}
$$

Let $g \geqslant 8$. Then $\alpha=\frac{6}{7}$ satisfies (7), and from (9) we derive that

$$
\frac{m}{n}<\frac{7}{8}+\frac{5}{8}=\frac{3}{2}
$$

Similarly, for $g \geqslant 6, \alpha=\frac{6}{11}$ satisfies (7), and

$$
\frac{m}{n}<\frac{11}{8}+\frac{5}{8}=2
$$

A contradiction to the choice of G proves Theorem 2^{\prime}.

Remark. Maybe the chromatic number of intersection graphs of three-dimensional boxes with large girth is bounded.

Acknowledgements

We thank Andras Gyárfás for helpful comments.

References

[1] E. Asplund, B. Grünbaum, On a coloring problem, Math. Scand. 8 (1960) 181-188.
[2] J.P. Burling, On coloring problems of families of prototypes, Ph.D. Thesis, University of Colorado, Boulder, CO, 1965.
[3] A.V. Kostochka, J. Nešetřil, Coloring relatives of intervals on the plane, I: chromatic number versus girth, European J. Combin. 19 (1998) 103-110.

[^0]: * Corresponding author.
 ${ }^{1}$ Partially supported by the grant 96-01-01614 of the Russian Foundation for Fundamental Research.
 ${ }^{2}$ Partially supported by the grant 97-01-01075 of the Russian Foundation for Fundamental Research.

