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Abstract

We prove that intersection graphs of boxes on the plane with girth 6 and 8 are 3- and
2-degenerate, respectively. This implies that these graphs are 4- and 3-list-colourable, respec-
tively. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Among other interesting classes of intersection graphs, Asplund and Gr�unbaum [1]
considered class B of intersection graphs of boxes, i.e. rectangles with sides parallel
to the axes on the plane. They proved that every graph in B with clique number at
most r is 4r2 − 3r-colourable. For r = 2, they obtained the exact result:

Theorem 1 (Asplund and Gr�unbaum [1]). The maximum chromatic number of a
triangle-free graph in B is six.

Note that for three-dimensional boxes, the situation is di�erent. Burling [2]
constructed a series of triangle-free intersection graphs of three-dimensional boxes
with arbitrarily high chromatic number.
The aim of the present paper is to show that graphs in B with girth greater than 5

can be coloured with fewer than six colours.
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Fig. 1. An example of an x-intersection.

Theorem 2. If a graph G∈B has girth at least 6 or 8; then G is 4- or 3-list-colourable;
respectively.

In fact, a stronger statement will be proved. Recall that the maximum average
degree, mad(G), of a graph G is max∅6=H ⊆G 2|E(H)|=|V (H)|, and a graph is said
to be k-degenerate if every subgraph has a vertex of degree at most k. Since ev-
ery graph G with mad(G)¡k + 1 is k-degenerate and every k-degenerate graph is
(k + 1)-list-colourable, Theorem 2 is an immediate corollary of the following state-
ment.

Theorem 2′. If a graph G ∈B has girth at least 6 or 8; then mad(G) is strictly less
than 4 or 3; respectively.

Recall that ‘girth at least 4’ means ‘triangle-free’, and Theorem 1 applies. We do
not know the situation with girth 5.
In the next section, we introduce the auxiliary notion of a graphical graph of a

family of boxes and discuss some its properties. Theorem 2′ is proved in the last
section.

2. Graphical graphs

Let A be a family of boxes on the plane whose intersection graph is triangle-free.
We shall say that two boxes B1 and B2 x-intersect if their intersection is nonempty
but no corner of Bi is covered by B3−i, i = 1; 2 (see Fig. 1).
We also say that B1 and B2 z-intersect (respectively, y-intersect) if exactly one

corner of Bi is covered by B3−i, i = 1; 2 (respectively, one of them contains exactly
two corners of the other) (see Fig. 2).
For every B∈A, let dzy(B) denote the number of boxes B′ ∈A such that B and B′

z- or y-intersect, and let dx(B) denote the number of boxes B′′ ∈A such that B and
B′′ x-intersect.
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Fig. 2. Examples of a z-intersection (left) and a y-intersection (right).

Let G∈B. There are in�nitely many families A of boxes on the plane such that G
is the intersection graph of A. We say that some such A is a standard representation
of G if all the sides of all boxes lay on di�erent lines and the sum

∑
B∈A dx(B) is

minimum possible.

Lemma 1. Let a triangle-free G ∈B have minimum degree at least 2. Let A be a
standard representation of G. Then dzy(B)¿2 for every B∈A.

Proof. Let B∈A. If dx(B) = 0, then we are done, since dx(B) + dzy(B)¿2. Suppose
that B and B′ x-intersect. Then B\B′ is the disjoint union of two boxes, say, B1 and
B2. Since G is triangle-free, no box in A − B meets both B1 and B2. If B1 does not
meet other boxes, then instead of B we can use a shorter box B̂ which y-intersects B′.
This contradicts the condition that A is a standard representation of G. It follows that
each of B1 and B2 meets another box, say B′1 and B

′
2, in A. Repeating (if needed)

the argument, we obtain �nally that each of B1 and B2 z- or y-intersects some box
in A.

The following notion (similar to one used in [3]) will be helpful. The vertices of
the graphical graph, G̃(A), of a family A of boxes on the plane are the corners of
all boxes and the crossing points of the sides of the boxes; the edges of G̃(A) are the
pieces of sides of boxes connecting these points (see Fig. 3).
By the construction, G̃(A) is always a plane graph. We say that a face of G̃(A) is

of type i, if its interior is covered by exactly i boxes of A. The set of faces of type i
will be denoted by Ti = Ti(A). The faces of type 0 will be called outer and the other
faces will be called interior. For every face F of G̃, let r(F) denote its rank, i.e. the
number of edges on the boundary of F . Observe that (since the intersection graph of
A is triangle-free) there are no faces of type i for i¿3 and that the faces of type 2
are always of rank four.
Let G ∈B be triangle-free, A be a standard representation of G and G̃ = G̃(A)

be the graphical graph of A. Let n = n(G) and m = m(G) denote the number of
vertices and edges of G, respectively. Furthermore, let v= v(G̃), e = e(G̃), f = f(G̃)
and fi = fi(G̃) denote the number of vertices, edges, faces and faces of rank i in G̃,
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Fig. 3. An example: a family of boxes (left), its intersection graph (in the center) and its graphical graph
(right).

respectively. Then the following equalities hold:

2m=
∑
B∈A

dx(B) +
∑
B∈A

dzy(B); (1)

v= 4n+ 2
∑
B∈A

dx(B) +
∑
B∈A

dzy(B); (2)

e = 4n+ 4
∑
B∈A

dx(B) + 2
∑
B∈A

dzy(B); (3)

2e =
∞∑
i=4

i · fi: (4)

If a box participates in j x-intersections, then it contains exactly j+ 1 faces of type 1
in G̃. Hence

|T1|= n+
∑
B∈A

dx(B): (5)

Each z-intersection creates a new face of type 2 and increases the sizes of both faces
of type 1 adjacent to this new face by two. Each y-intersection creates a new face of
type 2 and increases the size of one of the faces of type 1 adjacent to this new face
by four. This yields the following equation:∑

F∈T1
r(F) = 4|T1|+ 2

∑
B∈A

dzy(B): (6)

3. Proof of Theorem 2′

Suppose that the theorem does not hold. Let g∈{6; 8} and G be a counter-example
to the theorem for this g with the smallest number of vertices. Let A be a standard
representation of G and G̃ = G̃(A) be the graphical graph of A.
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Fig. 4.

Due to the minimality of G, we have 2|E(G)|=|V (G)|¿4 if g = 6 and 2|E(G)|=
|V (G)|¿3 if g = 8. If G has a vertex B of degree at most one, then G − B is also
a counter-example to the theorem, a contradiction. Thus, the minimum degree of G is
at least two. Hence Lemma 1 and Eqs. (1)–(6) hold for G, A and G̃. Let Tx2 denote
the set of faces in T2 created by x-intersections, and T

zy
2 =T2\Tx2 . In order to estimate

f=
∑

F∈T0∪T1∪T2 r(F) we use discharging, i.e. giving each F a number r
′(F) following

certain rules so that
∑

F∈T0∪T1∪T2 r
′(F) =

∑
F∈T0∪T1∪T2 r(F).

�-Discharging procedure: For each F ∈ T1, set r′(F) = r(F). For each F ∈ Tx2 , set
r′(F) = r(F) + 4�. For each F ∈ T zy2 , set r′(F) = r(F) + 2�. For each F ∈ T0, set
r′(F) = r(F)− a(F; �=2)�, where a(F; �) denotes the number of angles equal to � on
the boundary of F .
Since each angle of �=2 on the boundary of a face F ∈T0 is vertical to an angle on

the boundary of a face of type 2, we can consider our procedure as if every F ∈ T0
sends through each angle equal to �=2 on its boundary the share � to the face of type
2 incident with the vertex of this angle (see Fig. 4).
This proves that

∑
F∈T0∪T1∪T2 r

′(F) =
∑

F∈T0∪T1∪T2 r(F).

Lemma 2. If

�6
6g− 24
4 + 3g

; (7)

then for every F ∈T0; r′(F)¿4 + 4�=3.

Proof. Let F ∈T0. Condition (7) is equivalent to the inequality
(2− �)g− 4¿4 + 4

3�:

Note that the number of boxes adjacent to F is at most a(F; �=2). Therefore, a(F; �=2)¿g
and

(2− �)a(F; �=2)− 4¿4 + 4
3�:
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In other words,

(2a(F; �=2)− 4)− �a(F; �=2)¿4 + 4
3�: (8)

Observe that for every face F whose angles are only �=2 and 3�=2, a(F; �=2) −
a(F; 3�=2) = 4, that is,

r(F) = 2a(F; �=2)− 4:
This together with (8) yields that r(F) − �a(F; �=2)¿4 + 4

3� which proves the
lemma.

Let (7) hold. Then due to the discharging procedure and Lemma 2,

2e =
∑

F∈T0∪T1∪T2
r′(F)¿

(
4 +

4�
3

)
|T0|+

∑
F∈T1

r(F) + (4 + 2�)|T2|+ 2�|Tx2 |:

By (6) and (5),∑
F∈T1

r(F) = 4|T1|+ 2
∑
B∈A

dzy(B)

=
(
4 +

4�
3

)
|T1| − 4�

3

(
n+

∑
B∈A

dx(B)

)
+ 2

∑
B∈A

dzy(B):

Therefore,

2e¿
(
4 +

4�
3

)
f − 4�

3

(
n+

∑
B∈A

dx(B)

)
+ 2

∑
B∈A

dzy(B) +
2�
3
|T zy2 |+ 8�

3
|Tx2 |:

Since |Tx2 |= 1
2

∑
B∈A dx(B) and |T zy2 |= 1

2

∑
B∈A dzy(B), this is equivalent to

2e¿
(
4 +

4�
3

)
f − 4�

3
n+

(
2 +

�
3

)∑
B∈A

dzy(B):

Recall that v− e + f = 2 according to Euler’s formula. Hence

2e¿
(
4 +

4�
3

)
(e − v)− 4�

3
n+

(
2 +

�
3

)∑
B∈A

dzy(B):

Substituting the expressions for v and e from (2) and (3), we get

8n+ 8
∑
B∈A

dx(B) + 4
∑
B∈A

dzy(B)

¿
(
4 +

4�
3

)(
2
∑
B∈A

dx(B) +
∑
B∈A

dzy(B)

)
− 4�
3
n+

(
2 +

�
3

)∑
B∈A

dzy(B):

In other words,(
8 +

4�
3

)
n¿

8�
3

∑
B∈A

dx(B) +
(
2 +

5�
3

)∑
B∈A

dzy(B)

=
16�
3
m+ (2− �)

∑
B∈A

dzy(B):
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By Lemma 1,
∑

B∈A dzy(B)¿2n and hence(
8 +

4�
3

)
n¿

16�
3
m+ (2− �)2n;

i.e.
m
n
¡
6 + 5�
8�

=
3
4�
+
5
8
: (9)

Let g¿8. Then �= 6
7 satis�es (7), and from (9) we derive that

m
n
¡
7
8
+
5
8
=
3
2
:

Similarly, for g¿6, �= 6
11 satis�es (7), and

m
n
¡
11
8
+
5
8
= 2:

A contradiction to the choice of G proves Theorem 2′.

Remark. Maybe the chromatic number of intersection graphs of three-dimensional
boxes with large girth is bounded.
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