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Regular Honed Graphs, Isoperimetric Numbers, and Bisection of
Weighted Graphs

NoGA ALONT, PETER HAMBURGER AND ALEXANDR V. KOSTOCHKA¥

The edge-inggrity of agragh G is I /(G) := min{|S| + m(G — S) : Sc E}, wheem(H) denotes
the maximum orde of a componehof H. A graph G is called hones if its edge-inégrity is the
maximum possible that is, equabthe orde of the graph The only hones 2-regular grapts are the 3-,
4-, and 5-cycles Lipman [13] proved that there are exactly twenty hones cubic graphs In this paper
we exploit a techniqee of Bollobas [8, 9] to prove that for every k > 6, almog all k-regular graphs
are honest On the othe hand we show tha there are only finitely many 4-regular hones graphs To
provethis, we use aweighted versian of the uppe bourd on theisoperimetre numbe dueto Alon [1].
We believe tha this versia is of intereg by itself.
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1. INTRODUCTION

There are severd parametestha measue connedivity and vulnerability of graphs One of
them isthe edge-inggrity introducel by Barefod et al. [6, 7].

DEFINITION 1. The edge-inggrity of agraph G is
I'(G) :=min{|S|+ mM(G — S): SC E},
where m(H) denote the maximum orde of a componenof H.

DEFINITION 2. A grafh G is called hones if its edge-inégrity is the maximum possible;
tha is, equa to the orde of the graph.

This definition was introducel by Baggn et al. [4]. They proved the following [4, 5]:
THEOREM A. Evely graph of diamete 2 ishonest.

_ THEOREM B. Withthe exception of the path of lengh 3, eithe G or the complemengraph
G ishonest.

Itiseay to seetha only 3-, 4-, and 5-cyclesare hones 2-regular graphs Lipman [13] proved:
THEOREM C. Theeare exactly twent hones cubic graphs.

In[14], Lipman studied the existen@ of sparehonesgraphsi.e., graptshaving an average
degreelessthanlog, n, wheren isthe numbe of vertices Heintroducel asuficient condition
for honesy (see Theoren 8 of Sectio 2.2). With the help of this theoren he proved that the
Knese graph K (7, 3) ishonest Thisis the larges spare hones gragh constructd in [14].

In this pape we continwe studyirg hones spare graphs It appeas tha there are many
hones grapts with aconstamaverag degree and an arbitrarily large numbe of vertices.
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Itis not difficult to construct explicitly large, bounded-degree honest graphs, using the known
constructions of expanders. Indeed, by the relation between the spectral properties of a graph
and its expansion properties (see, e.g., [2]}zifs ad-regular graph om vertices and. is
the second largest eigenvalue of its adjacency matrix, then for aty eétn vertices ofG,
the number of edges betwebhnand its complement is at Ieaw. It follows from
Theorem 8 of Section 2.2 thatdf — A > 2, thenG is honest. In [15, 16], for each prime
p = 1 (mod4), aninfinite explicit family ofd-regular graphs whose second largest eigenvalue
is at most 2/d — 1 is constructed. Thus, for example, by packing two such 5-regular graphs
together we obtain explicitly infinitely many 10-regular honest graphs. Our first result here
shows that degree 10 is not the best possible.

THEOREM 3. For every k> 6, almost all k-regular graphs are honest.

On the other hand, we prove:
THEOREM 4. Any honest graph with maximum degrekas at mosiL0P0 vertices.

The case of 5-regular graphs remains unsettled.
Our main tool in the proof of Theorem 4 is the following extension of the main result of [1].

THEOREM 5. LetG = (V, E) be a multigraph with maximum degree d on n vertices, where

n is even and n- 40d°. Then there is a partition \= V_ U V,, where|V_| = |V, | = n/2
such that
eV V)<|E|(1 3 ) 8
=2 8v2d)

where €V_, V) is the total number of edges between ahd V,..

This inequality is a particular case of the following weighted version of the main result in [1].
LetG = (V, E) be a simple weighted graph; that is, a graph with no loops and no multiple
edges, with a non-negative weigihte) assigned to each edge. AssufMe= {1,2,...,n}
and letd, denote the degree of For two disjoint subsetd, U’ of V, letw(U, U") denote the
total weight of the edges betwekhandU’.
For any positive integek, define

2
€k = €2k+1 = ﬁ
It is not difficult to check, as is done in [17], that for every positive intedjery > ﬁ.

THEOREM 6. Let G= (V, E) be a weighted graph as above, where2\{1,2,...,n}, n
is even and dis the degree of i. If n> 40di9, then there is a partition \= V_ U V. where
IV_| = |V4| = n/2 such that

i] 3 3 i 3 3
wve v = 3 0 (1 Gy - e ) = 0 5P (1 g - 16J271j>' @

ijeE

The idea of the proofis that of [1] with two twists. We believe that Theorem 6 is of independent
interest.

The structure of the paper is as follows: in the next section we introduce notation and discuss
related results. In Section 3 we prove Theorem 3. In Section 4 we prove Theorem 4 using
Theorem 5. The last section is devoted to the proof of Theorem 6 which immediately implies
Theorem 5.
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2. BACKGROUND

2.1. (n,r)-configurations. Forr > 3 andn > r, let G(n,r — reg) denote the set of all
r-regular graphs with vertex s& = {1, 2,...n}. We always assume thah = 2k is an
even number, and dois the number of edges in a graph. We say #iatost all r-regular
graphs have a certain property ®the portion of graphs it (n,r — reg) not possessin®
iso(|G(n,r —reg)l).

It is not too easy to calculat&s(n,r — reg)| (see e.g., [9]). In order to facilitate study-
ing G(n,r — reg), Bollobas [8] (for a more detailed description see [9]) introduced a very
convenient model ofn, r)-configurations.

LetW = UT:l W; be a fixed set of 2= rn labeled vertices, wher@V;| = r for eachj.
An (n, r)-configuration Fis a partition ofW into k pairs of vertices, calleddgesf F. Let ®
be theset of (n, r)-configurations. Clearly

|®] = N(K) = (2k — D).

(Recall that for any positive odd integer, m!! =m-(m—2)-...-3-1.) ForF € &, let
¢ (F) be the multigraph with vertex s& = {1, 2, ..., n}, in which each and | are joined
by the same number of edges\@sandW; are joined inF. In other wordsg¢ (F) is obtained
from F by merging eacW; into a vertexi. Clearly,¢ (F) is anr-regular multigraph orv
(sometimes with loops). Most important is the fact that the portioR &f & such thaip (F)
is a simple graph is at least, wherec, > 0, for every sufficiently larg@, and each simple
graph onV corresponds to the same numbermfr )-configurations (namely, ta!)"). Thus
if we prove that almost al{n, r)-configurations have a certain prope® then almost all
r-regular graphs hav® as well.

2.2. Edge-integrity vs. isoperimetric numbeknother parameter that measures connectivity
and vulnerability of graphs is the isoperimetric number of a graph introduced by Buser [11]
and studied by several authors, including Bo#lel10]. For a grapls andU c V(G), let

f (U) denote the number of edges betwéktandV (G) \ U.

DEFINITION 7. Theisoperimetric number of G

. [T
G) = min{ ——=
@) m{ U]

where the minimum is taken over all subset®f V with |U| < |V]|/2.

:UCV},

The isoperimetric number @ turns out to be related to its edge-integrity, and, thus, to its
honesty. It is easy to see that if the isoperimetric number of a g&jhless than 1, then
the graph is not honest. Thus, to prove Theorem 4, we shall derive from Theorem 6 that only
finitely many 4-regular graphs have isoperimetric number 1 or larger.

On the other hand, the fact that the isoperimetric number of a deaplyreater than 1 does
not imply that the graph is honest, as can be seen by the following example. Let the graphs
G1, Gz, andGs, be three disjoint copies dfg — {€}, the complete graph on eight vertices
with a missing edge = (a1, a2), (b1, b2), (c1, ¢2), respectively. The degrees of the graphs
at these vertices;, bj, andc; (i = 1, 2) are 6, while all the other vertices have degree 7. We
add 15 edges such that between any two disjoint @&arts;, (i # j, i, j = 1, 2, 3) there are
five edges connecting them, and the obtained g@p$ 8-regular. Now, it is easy to check
thatG is not honest, and(G) = 10/8.

Still, the following theorem of Lipman (which we exploit in the proof of Theorem 3) implies
that each grapks with i (G) > 2 is honest.
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THEOREM 8 (LIPMAN [14]). Let G be a graph with n vertices. Suppose that for every
integer m< n/2 and every set of vertices C wifg| = m,

Then G is honest.
Bollobéas [10] proved the following:
THEOREM 9 ([10]). Letr andO < 5 < 1 be such that

2T < -4 i
Then almost all r-regular graphs have isoperimetric number at |€hast n)r /2.

Theorem 9 implies that for ea&h> 9, the isoperimetric number of almost &regular graphs
is atleast 6. Since all graphs with isoperimetric number greater than or equal to 2 are honest,
it follows that for everyk > 9, almost allk-regular graphs are honest.

3. PROOF OF THEOREM 3

PrROOF. Letr > 6 be afixed integer and letr — f be an even integer. Létn, r, m, f) be
the number ofn, r)-configurations such that a given subset of vertices ofrsileconnected
with the rest by exactlyf edges. Then

t(in,r,m, f) = (n:r) (m —fm)r) flimr—f —DI((n—m)r — f — D!

Hence the portion ofn, r)-configurations in which at least one subset of vertices ofrsize
connected with the rest by at mosheh — m)/n edges is estimated from above by

n mr\ /(n —mr
T, r.m= (m> Z{f < 2m(n—-m)/n|rm—fis ever)< f >< f )

x fimr— f = D!N((n—myr — f —D/(nr — D!, 3)

First, letm < 100 andf < 2m. Then there exists a numb@&r= C(m, r) such that

n
(m)t(n, r.m, f)/(nr — DI < Cn™(n —m) F (nr)y=M+H/2 - cplf-r-2m/2
It follows that forr > 6 andm < 100,T(n,r,m) <2Cn™ ™M,
Now, we consider 10& m < n/2. We show that(n, r, m, f) is an increasing function in
f.For2m < f < 2+ 2m(n — m)/n, consider the ratio

tn.r.m, f —2) ({Tz)((”;_mz”)(f —2mr — f + DN —myr — f + !

tn,r,m f) (M@ frmre — f — DI —myr — f — D!
_ (f-0f - (fF=Df - mr—Ff+2)-(n—myr —f+1)
Tmr—f4+DmMr—f+2((n—myr —f+D((n—mr —f+2)(f —1f

- (f -1t
Tmr—f4+2((n—myr —f +2) <4

This means that 0
TN, r,m) < 2<m>t(n, r,m, fo)/(nr — !, 4)
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where fg is the maximum integer less thamgn — m)/m such thatmr — fg is even. Our

generalaimisto showth{t:r[:fl] T(n,r,m =o0(1). We aIreadysawth@,lncflT(n, r,m) =
o(1/n).

By (4) and Stirling’s formula, we have

(21)(?5) ((n_f;n)r) fol(mr — fo — D!'((n — m)r — fo — D!
(nr — D!
2n n""(mr)™ ((n — myr)r "-m
mm(n — mn—-m fofo(mr — f0)05Mr—=Tfo) (n — m)r — fg)05((N—m)r —fo) (r )05

T(n,r,m) <2

<

Since the derivative of f (mr — £)05M=H((n — myr — £)0.5(n=mr—1 with respect tof
when f is around 2n(n — m)/2 is negative, substitutingin — m)/2 instead offg gives an
upper bound fofl (n, r, m). Dividing both the numerator and the denominatonSy V", we
obtain
2n
(m/m™(1 —m/m"=M(2(1 — m/nm/n)Zmn=m/n
(rm/m™
X
(rm/n — 2(1 — m/n)ym/n)0.5rm—m-mm/n
5 (r (1 —m/n)" ™=
rrn/Z(r (1 _ m/n) _ 2(1 _ m/n)m/n)0.5r(n—m)—(n—m)m/n'

T(n,r,m) <

Lete = m/n. Then

2n (ro)'en
(1 — a)(l_o‘)n(Za(l — O[))201(1—oz)nrrn/2
r1- a))r(l—a)n
x (ar —20(1— a))(O.Sr—(l—a))om((l —a)r —20(1— a))(0.5r—oz)(l—a)n'

T, r,m) <Ty(n,r,a) =

Let To(n, 1, @) = £ log(Ta(n, r, @)/ (2n)). We have

To(n, r,a) = 0.5r logr + «(0.5r — 2+ o) loge + (1 — @)(0.5r — 1 — &) log(1l — @)
—2a(l—a)log2— a(0.5r — 1+ a)logr — 2+ 2a) — (1 — «)(0.5r — ) log(r — 2u).

Now we take three derivatives @5 (n, r, o) with respect tax;

oTa(n,r
% = (0.5r — 24 20) loga — (0.5r — 2a) log(1 — &) + (4 — 2) log 2
o
—(0.5r — 14 2w)log(r — 2+ 2a) + (0.5r + 1 — 2a) log(r — 2a);
32To(n, r 0.5t — 2+ 2« 0.5r — 2
M:2Ioga+7++2Iog(1—a)+7a+4logz
da? o 11—«
r—2+4a r+2—4«a
—2log(r —2420) — ————— —2log(r —20) — —————;
« o 200) r—2+42a x @ r—2a
#P*To(n,r,e) 2 05r—2 2 +o.5r—2 4 r—4
da3 T o? l—-a (1—a)? r—242a¢ (—2+2a)?
4 x —4 200(1 — o) —0.5r +2
=21-2
Y T X “)< 202(1— )2

4 Ar —2)(r — 1)
0 —2420)( —20) (I — 24 20)2(r — 2a)2>'
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It is not hard to check that for & o« < 0.5 andr > 6,

33Ta(n, 1, @)
—_— <

93 0.

It follows that W is concave up. Note also thé%’o*r’) = 0 for everyr. Since

a concave up function has at most two zeros, we conclude that &%H&£22 is negative

on (0, 0.5), or it is first negative and then positive. In other words, eitligin, r, «) is
monotonically decreasing &0, 0.5), or it first decreases and then monotonically increases.
In both cases, in order to find mghe(n, r, «) | 100/n < o < 0.5}, it is enough to check the
values fore = 100/n anda = 0.5. We have

To(n, r,0.5) = 0.5(r logr — (r —2)log2— (r —1)log(r — 1) < —0.02
for eachr > 6. Itis a routine computation to check that
To(n, r, 100/n) = —1001logn (0.5r — 2)/n + O(1/n).

Thus, for a fixed > 6 and largen, T>(n,r, @) < —501logn for any 0 < @ < 0.5. It follows
thatT(n,r, m) < 2n—*9 for each fixed > 6 and any 100< m < n/2. This, together with
Theorem 8, proves the theorem. O

4. PROOF OF THEOREM 4

We shall use the following fact.

LEMMA 10 ([12]). LetT be atree with maximum degree q. Then for ary ¥/ (T)|, the
vertex set (T) can be divided into two parts;\and \4 such that:

(@ Vil =k;

(b) the subgraph TV2) induced by Yis a tree;

(c) the number of components of\f;) is at mostl + logq-1 k.
q-2

PROOF. Letn > 10°0andG = (V, E) be a multigraph on vertices with maximum degree
4. Letk = 10° andm = [n/2k]. If G is not connected, then it is not honest. Otherwse
has a spanning tree. Applying Lemma 10 tdl', and to the subsequent trees guaranteed by
the lemma, thtimes for eachj =1, ..., 2m, we find a disjoint subséw; of V such that

IWjl =k and |Ec(Wj)| = k —1— [logg,p k] > k —30. (5)

DenoteWp = V \ Ufrﬁl W;. Let H be obtained fronG — Wp by merging eaciw; into a
vertex, sayw; and deleting loops. Then by (5),

degy (wj) < 4/Wj| — 2|Ec(Wj)| < 2(k + 30) = 200060 for everywj € V(H).

Applying Theorem 5 tdH, we conclude that there is a partitiod.., U_) of V(H) such that
Uy =|U_|=mand

[E(H)] 3 m( 1 )
En(Us,U)| < 1- < 2000602 (1— =~
B B1= ( 1&/100030) 2\" 2000

< 1.0003- (n/2) - (1 — 0.0005 < (1— 0.0002 - (n/2).
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LetZ = ij€U+ W;. Then|Z| = km > 0.5n — 100 000 and

f(Z) < |En(Us, UL)| + f(Wo) < (1 —0.0002(n/2) + 4 - 200000
< (1—0.0002(|Z| + 100000 + 8- 10° < 0.9999Z| — (0.0001Z| — 10°)
<0.9999Z|.

The setZ witnesses that(G) < 0.9999, and henc& is not honest. a

5. PROOF OF THEOREM 6

5.1. Lemmas.We now prove several lemmas that will enable us to modify the proof of [1]
and adapt it to our purpose. Lef;, wp, ..., wq > 0 bed real numbers whose sum is 1,
and lets1, ..., 8q bed independent, identically distributed random variables , each taking the
values—1 and+1 with equal probability. LeK = X (w1, wa, ..., wqg) be the random variable

X = ‘Zid=15i wi.
LEMMA 11. Foreachws, wa, ..., wq as above, the expectation of X, . .., wq) satisfies
E(X(ws, ..., wq)) > E(X(1/d, 1/d, ..., 1/d)).

PROOF. Givenasequenaes, ..., wg ofd non-negative reals whose sumis 1, and assuming
two elements of the sequence, sayandw, differ, letus, . .., ug be the sequence defined by
up = Uz = (w1 + w2)/2, andu; = wj foralli > 2. By the triangle inequality, for every real
Xl

[X + w1+ w2| + X — w1 — wz| + [X + w1 — wz| + [X — w1 + we|
> X 4+ w1 + wa| + [X — w1 — wa| + 2|X|
= |X 4 U1 + U2| 4+ |[X — Uy — U2| + |X 4+ Up — U2| + |X — U1 + U2|.

This implies, by breaking the expectationBf X (w1, ..., wq)) into the sum of 9-2 terms
each being a sum of four terms as above, thaX (w1, ..., wq)) > E(X(ug, ..., Uq)).
Repeating this argument we obtain the desired result at the limit. |

LEMMA 12. With the numbersy defined in the introduction
E(X(1/d,1/d,...,1/d)) = 2¢g.

PrROOF. We describe the proof for odt] the computation for eveahis similar. For an odd
d, observe that
d—1

PUGRPHEE

i=0

Therefore

@bz g d—1 d—1
oy d—1 d—1 _
2 (i)(d A =2 d<2 ((d—1>/2>)_d<<d—1)/2>'

It follows that

1 & /d 1 Zd((dd—_l)l/z)
E(X(1/d,1/d,...,1/d)) = — (.>|d—2i|—=7=2€d.
2d ; i d d2d 0
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LEMMA 13. Letws, ..., wq be non-negative reals, and suppose that the @fhl 8 wj
is never zero for each of tHZéj choices ofs; € {—1, 1}. Leté; be independent, identically
distributed random variables each taking the valsesand +1 with equal probability, and
define3 + €(i) to be the following probability:

d
% +e(i) = Prob(sign(&i) = sign(z 5i wi>).
i—1

Then

i=1

ProoF. Clearly it suffices to prove the assertion of the lemma for the @%_51 wi = 1,
as both sides are linear with respect to this sum. In this case,

E(X (w1, wy, ..., wd))_z— > (Z(S.m)SIgn(Z&.wl)

Sie{—1,1}
d d
_Zw,<< +e(|)) (E—e(i)))=22wie(i).
i=1 i=1
The result now follows from the previous two lemmas. O

5.2. The proof. We now prove Theorem 6. Given a weighted graph= (V, E) onn
vertices as in the theorem, we must show that there is a pardtica V_ U V., where
IV_| = |V+| = n/2 andw(V_, V;) satisfies (2).

The basic idea is very simple: we first assign each vartaxandom sigm(v) € {—1, 1}
and if h(v) is not equal to sigﬁZueN(v) w(vu)h(u)), then we randomly decide whether to
reverse its sign or leave it as it is. It is then shown that the expected total weight of edges
between the negative vertices and the positive vertices is not too large. One difficulty in the
process of obtaining a rigorous proof along these lines is that we have to keep the two classes of
equal size. This causes several problems, and we overcome them by combining, as in [1], the
FKG Inequality with some combinatorial ideas. The main difference between the proof in [1]
and the proof here, is that in the simple case considered in [1], one can obtain a sufficiently
good upper bound for the probability that each edge separately is a crossing edge, and the
desired result, thus, follows by linearity of expectation. Here one has to average over all edges
incident with a vertex, using the lemmas of the previous subsection. An additional convenient
trick is to first apply, if needed, a small perturbation to the weights to make sure that no linear
combination of the weights of the edges incident with a vertex with1 coefficients vanishes.
This will ensure that the su@ueN(v) w(vu)h(u) will always have a well-defined sign. As
the perturbation can be arbitrarily small, it is obvious that it makes no difference and, hence,
we may and will assume from now on that the weights satisfy this generic assumption.

We need the following lemma, proved in [1].

LEMMA 14. Let H be a graph on = 2m vertices, with maximum degrée and suppose
n > 40A3. Then there is a perfect matching M {(uj, vi) : 1 <i < m} of all vertices of H
satisfying the following properties.

(i) Each edge of M isotan edge of H.
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(i) Thereis no alternating cycle of lengdtor 6 consisting of edges of H and M alternately.

Returning to the proof of Theorem 6, consider the following randomized procedure for con-
structing a partition of the set of vertices®f= (V, E) into two equal part¥_ andV,.. First,
let H be the graph oV in which two vertices are adjacent if their distancéGns at most 3.
By assumption, the maximum degraein H satisfiesn > 40A%, and hence, by Lemma 14
there is a matchind = {(uj,vi) : 1 < i < mj} satisfying the assertion of the lemma.
Leth : V — {-1, 1} be a random function obtained by choosing, for egch < i < m,
randomly and independently, one of the two possibilifiealj) = —1 andh(v;) = 1) or
(h(uj) = 1landh(vi) = —1), both choices being equally probable. Call a vertex V
stableif h(v) = sign(ZueN(U) w(vu)h(u)), otherwise call itactive Call a pair of vertices
(u;, vj) matched undeM anactive pairif both u; andv; are active, otherwise, call itgable
pair. Leth’ : V — {—1, 1} be the random function obtained frdmby randomly modifying
the values of the vertices in active pairs as follows(uif, v;) is an active pair then choose
randomly eithefh’(uj) = —1 andh/(vi) = 1) or (W' (uj) = 1 andh’(vj) = —1), both choices
being equally probable. Otherwise, defiéu;) = h(uj) andh’(vi) = h(vj). Finally, define
Vo = h-1(=1) andV; = h'~1(1).

It is obvious thatV_| = |[V.| = m (= n/2). To complete the proof, we prove an upper
bound for the expected value af(V_, V). Fix an edge of5; by renaming the vertices if
needed, we may assume, without loss of generality, that its two verticeg arelu,, which
are matched undévl to vq andvy, respectively. Our objective is to estimate the probability that
h'(u1) # h’(u2). This is done by estimating the conditional probability of this event assuming
thath(u1) = h(uz) and the conditional probability assuming theti1) # h(uz). Before
starting to estimate these probabilities, note that by the choibg tiie set§v;} U N(v1) and
{v2} U N(v2) of the closed neighborhoods of andv,, respectively, are disjoint and both of
them do not intersect the sts, uz} U N(u1) U N(u2). Moreover, the only edges & whose
two ends lie in the set

{uz, U2, v1, v2} U N(u) U N(u2) U N(v1) U N(v2)

are the two edgefu1, v1} and{uy, v2}. These facts, illustrated in Figure 1, will be useful as
they imply that various events are independent. Thus, for example, the evé&na¢tive and
h(v1) = —1) is independent of the eventy(is active and livp) = 1), as those are determined
by disjoint sets of random choices. (Note that for this to hold it is not enough that the closed
neighborhoods of1 andv, are disjoint; one also needs the fact that there are no edgds of
joining these two neighborhoods.)

In order to estimate the conditional probability Piioliu;) # h’(u2)|h(u1) = h(uz2)] note,
first, that in casda(u1) = h(up) then if at least one of the paifs, v1) or (U2, v2) is active,
then this probability is precisely a half. On the other hand, if they are both stable, it is zero.
Therefore,

Prolfh’(uy) # h'(u2)|h(u) = h(uz)]

1 1
= 5 — 5 Proti(us, vp). (Uz, v2) stablelh(uy) = h(up)]. (6)

Clearly

Prol(u1, v1), (U2, vp) stable| h(uy) = h(uz)] = Prol(u1, vy) stablelh(uy) = h(u)]
- Prod (up, v2) stablelh(u1) = h(u»), (uq, v1) stablg (7
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FIGURE 1. A typical edgeujuo.

Furthermore,

Prol (u1, v1) stable| h(uy) = h(uz)] = Prolv1 stablelh(uy) = h(uy)]
+ Prolv; active|h(u1) = h(up)] - Prolfu; stablelh(uy) = h(uy), v1 active.
Since, by the choice df1, the set{us, up} does not intersedtl (v1) and none of its members
is matched undeM to a member ofN (vy), it follows that

1
Prodv; stablelh(u1) = h(u2)] = Prov, stablg = >

Let e denote the edge;us and defines (uz, ) by the equation

% + €(uy, € = Prol(h(uy) = sign( Z w(ulu)h(u)>.

ueN(uy)

Note that by Lemma 13, &1, ..., g4 is the set of all edges incident with, the inequality

d d
Y w(@)eur, @) > (Zw(m)ed, ®)

i=1 i=1

holds. This will be useful in the end of the proof. We claim that
1
ProHu stable|h(u1) = h(uy), v1 activg = Prou; stable/h(u1) = h(u2)] = > + €(u1, ).

To see this, note first, that by the choice Mfthe event {1 active is determined only by
the values ofh(w) — h(vy)| for w € N(v1) and, hence, does not influence the conditional
probability Prolju; stablelh(u;) = h(uz)]. The above expression for the last conditional
probability, thus, follows from the definition ef(us, €).

Substituting the expressions above we conclude that

1 1/1 3 1
Prokf(uz, v1) stablelh(uy) = h(up)] = >+ 5(5 + €(u, e)) =2+ EG(UL e. (9

We can now apply a similar reasoning to estimate the conditional probability

ProH (uz, v2) stablelh(u1) = h(u»), (u1, v1) stablg.
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The crucial pointis that whem(u1) = h(u2), the event(uz, v2) stablg and the event((i1, v1)

stablg behave monotonically with respect to thievalues on the intersectidd(us) N N(uy),

in case this intersection is non-empty. That s, if one of these events occurs, then by changing
the value of somé(w) for w in this intersection from-h(u1) = —h(u») to h(uy), this event

still occurs. Thus, it follows from the FKG Inequality (cf. e.g., [3], Chapter 6) that

Prol (uz, v2) stablelh(u1) = h(uz), (u1, v1) stable] > ;1 + %e(uz, e, (10)
wheree (uy, e) is defined just likes (u1, €) before. Combining (7), (9) and (10),
Prold(uz, v1), (U2, v2) stable| h(uy) = h(uz)] = 136 + gé(ul» e + ge(Uz, e
+%6(U1, ee(uz, e),
and therefore, by (6),

Prol{h’(uy) # h'(u2)|h(uy) = h(uy)]

<3<1_§(u e)—g(u e)—}(u ee(u e)) (11)
=2\16 g TR Y T O )

Similar arguments can be used to estimate the conditional probability
Prolih’(u1) # h'(u2)|h(uy) # h(u2)1.
Here are the details. Note, first, that

Prol{h’(u1) # h'(uz)|h(uy) # huz)]

1 1
=5+53 Prokf(uz, v1), (U2, v2) stablelh(up) # h(u)]. (12)
Next, observe that

Prod (uq, v1), (U2, v2) stablelh(uy) # h(u2)] = Prol(u1, v1) stablelh(uy) # h(u2)]
- Prol (uz, vo) stablelh(uy) # h(up), (uz, v1) stablg. (13)

Furthermore,

Prod (uy, vy) stablelh(u1) # h(u2)] = Prolv; stable| h(uy) # h(u2)]
+ Prolv1 active| h(ug) # h(uz)] - Prou; stable| h(u1) # h(uy), vy active.

As before, by the choice d¥l,
1
Prolv; stable| h(u1) # h(uz)] = Prolv; stablg = >
and

Prous stable| h(up) # h(uz), v1 active
= ProHus stable| h(u1) # h(uz)] = % —€e(uy, ©),

since ifh(u1) # h(uz) thenuy is stable if and only ih(uz) # sign(}_,cn ) w(ULWh(W)).
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Substituting, we conclude that

Prold(us, v1) stable| h(uz) # h(uz)] = 1 + 1

1 3 1
> 2(— —e(uq, e)> =-——¢€(ug,e. (14)

2 4 2

By a similar computation, and using the FKG Inequality it follows next, that
3 1
Prok{(uz, vz) stable| h(uy) # h(uz), (uy, vy) stabld < 7 — Se(uz. ©), (15)

since wherh(u1) # h(u2) then the event((l1, vy) stablé is monotone increasing with respect
to changing the values of songw) for w € N(u1) N N(uz) from h(uy) to h(uz), whereas
the event (uz, v2) stablg is monotone decreasing with respect to such a change.
By (13)—-(15),
Prol(u1, v1), (Uz, v2) stable| h(u1) # h(uz)]

< 9 36(U e 3e(u e)+1e(u e)e(uz, e)
— 16 8 1’ 8 2’ 4 17 27 9

and therefore, by (12),

Prok{h’(u1) # h'(uz)|h(uy) # huz)]

H=® 3(u e) 3(u e)+1(u e)e(uz, €) (16)
— 2 16 8E l? 86 2? 4-6 l’ 6 2’ .

Combining (11) and (16) we finally conclude that
Prolh’(u1) # h'(u2)] = Prolfh(u1) = h(u2)] - Prolfh’(u1) # h'(u2)|h(u1) = h(uz)]
+ Prolfh(uy) # h(uz)]- Prolfh’(u1) # h'(uz)|h(uy) # h(uz)]

<1 3(U e 3(U e
=271 Y T e

Since(u1, Uz) was a typical edge, by linearity of expectation and by (8), the expected value of
w(V_, V,) satisfies

n i 3
wV—. Vi) <y Y (@—Ew(u)e(l,u))

i=1 jeN()

n w(ij) 3 w(ij) 3 3
< Z Z T(l— ZEdi>= Z T(l— éédi — éédj>.

i=1jeN() ijeE

This completes the proofl
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