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Regular Honest Graphs, Isoperimetric Numbers, and Bisection of
Weighted Graphs

NOGA ALON†, PETER HAMBURGER AND ALEXANDR V. KOSTOCHKA‡

Theedge-integrity of a graph G is I ′(G) := min{|S| +m(G− S) : S⊂ E}, wherem(H) denotes
the maximum order of a component of H. A graph G is called honest if its edge-integrity is the
maximum possible; that is, equals theorder of thegraph. Theonly honest 2-regular graphsarethe3-,
4-, and 5-cycles. Lipman [13] proved that thereareexactly twenty honest cubic graphs. In thispaper
we exploit a technique of Bollobás [8, 9] to prove that for every k ≥ 6, almost all k-regular graphs
arehonest. On theother hand, weshow that thereareonly finitely many 4-regular honest graphs. To
provethis, weuse aweighted version of theupper bound on theisoperimetric number dueto Alon [1].
Webelieve that this version is of interest by itself.

c© 1999 Academic Press

1. INTRODUCTION

Thereareseveral parameters that measureconnectivity and vulnerability of graphs. Oneof
them is theedge-integrity introduced by Barefoot et al. [6, 7].

DEFINITION 1. Theedge-integrity of a graph G is

I ′(G) := min{|S| +m(G− S) : S⊂ E},
wherem(H) denotes themaximum order of a component of H .

DEFINITION 2. A graph G is called honest if its edge-integrity is the maximum possible;
that is, equal to theorder of thegraph.

This definition was introduced by Baggaet al. [4]. They proved the following [4, 5]:

THEOREM A. Every graph of diameter 2 is honest.

THEOREM B. With theexception of thepath of length 3, either G or thecomplement graph
Ḡ is honest.

It iseasy to seethat only 3-, 4-, and 5-cyclesarehonest 2-regular graphs. Lipman [13] proved:

THEOREM C. Thereareexactly twenty honest cubic graphs.

In [14], Lipman studied theexistenceof sparsehonest graphs, i.e., graphshaving an average
degreelessthan log2 n,wheren isthenumber of vertices. Heintroduced asufficient condition
for honesty (see Theorem 8 of Section 2.2). With the help of this theorem he proved that the
Kneser graph K (7,3) is honest. This is the largest sparsehonest graph constructed in [14].

In this paper we continue studying honest sparse graphs. It appears that there are many
honest graphs with aconstant averagedegreeand an arbitrarily largenumber of vertices.
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It is not difficult to construct explicitly large, bounded-degree honest graphs, using the known
constructions of expanders. Indeed, by the relation between the spectral properties of a graph
and its expansion properties (see, e.g., [2]), ifG is a d-regular graph onn vertices andλ is
the second largest eigenvalue of its adjacency matrix, then for any setU of m vertices ofG,
the number of edges betweenU and its complement is at least(d−λ)m(n−m)

n . It follows from
Theorem 8 of Section 2.2 that ifd − λ ≥ 2, thenG is honest. In [15, 16], for each prime
p ≡ 1 (mod4), an infinite explicit family ofd-regular graphs whose second largest eigenvalue
is at most 2

√
d − 1 is constructed. Thus, for example, by packing two such 5-regular graphs

together we obtain explicitly infinitely many 10-regular honest graphs. Our first result here
shows that degree 10 is not the best possible.

THEOREM 3. For every k≥ 6, almost all k-regular graphs are honest.

On the other hand, we prove:

THEOREM 4. Any honest graph with maximum degree4 has at most1060 vertices.

The case of 5-regular graphs remains unsettled.
Our main tool in the proof of Theorem 4 is the following extension of the main result of [1].

THEOREM 5. Let G= (V, E) be a multigraph with maximum degree d on n vertices, where
n is even and n> 40d9. Then there is a partition V= V− ∪ V+, where|V−| = |V+| = n/2
such that

e(V−,V+) ≤ |E|
2

(
1− 3

8
√

2d

)
, (1)

where e(V−,V+) is the total number of edges between V− and V+.

This inequality is a particular case of the following weighted version of the main result in [1].
Let G = (V, E) be a simple weighted graph; that is, a graph with no loops and no multiple

edges, with a non-negative weightw(e) assigned to each edge. AssumeV = {1,2, . . . ,n}
and letdi denote the degree ofi . For two disjoint subsetsU,U ′ of V , letw(U,U ′) denote the
total weight of the edges betweenU andU ′.

For any positive integerk, define

ε2k = ε2k+1 =
(2k

k

)
22k+1 .

It is not difficult to check, as is done in [17], that for every positive integerd, εd ≥ 1
2
√

2
√

d
.

THEOREM 6. Let G= (V, E) be a weighted graph as above, where V= {1,2, . . . ,n}, n
is even and di is the degree of i . If n> 40d9

i , then there is a partition V= V− ∪ V+ where
|V−| = |V+| = n/2 such that

w(V−,V+) ≤
∑
i j ∈E

w(i j )

2

(
1− 3

8
εdi −

3

8
εdj

)
≤
∑
i j ∈E

w(i j )

2

(
1− 3

16
√

2di
− 3

16
√

2dj

)
. (2)

The idea of the proof is that of [1] with two twists. We believe that Theorem 6 is of independent
interest.

The structure of the paper is as follows: in the next section we introduce notation and discuss
related results. In Section 3 we prove Theorem 3. In Section 4 we prove Theorem 4 using
Theorem 5. The last section is devoted to the proof of Theorem 6 which immediately implies
Theorem 5.
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2. BACKGROUND

2.1. (n, r )-configurations. For r ≥ 3 andn > r, let G(n, r − reg) denote the set of all
r -regular graphs with vertex setV = {1,2, . . .n}. We always assume thatrn = 2k is an
even number, and sok is the number of edges in a graph. We say thatalmost all r -regular
graphs have a certain property Qif the portion of graphs inG(n, r − reg) not possessingQ
is o(|G(n, r − reg)|).

It is not too easy to calculate|G(n, r − reg)| (see e.g., [9]). In order to facilitate study-
ing G(n, r − reg), Bollobás [8] (for a more detailed description see [9]) introduced a very
convenient model of(n, r )-configurations.

Let W = ⋃n
j=1 Wj be a fixed set of 2k = rn labeled vertices, where|Wj | = r for each j .

An (n, r )-configuration Fis a partition ofW into k pairs of vertices, callededgesof F. Let8
be theset of (n, r )-configurations. Clearly

|8| = N(k) = (2k− 1)!!.
(Recall that for any positive odd integerm, m!! = m · (m− 2) · . . . · 3 · 1.) For F ∈ 8, let
φ(F) be the multigraph with vertex setV = {1,2, . . . ,n}, in which eachi and j are joined
by the same number of edges asWi andWj are joined inF . In other words,φ(F) is obtained
from F by merging eachWi into a vertexi . Clearly,φ(F) is anr -regular multigraph onV
(sometimes with loops). Most important is the fact that the portion ofF ∈ 8 such thatφ(F)
is a simple graph is at leastcr , wherecr > 0, for every sufficiently largen, and each simple
graph onV corresponds to the same number of(n, r )-configurations (namely, to(r !)n). Thus
if we prove that almost all(n, r )-configurations have a certain propertyQ, then almost all
r -regular graphs haveQ as well.

2.2. Edge-integrity vs. isoperimetric number.Another parameter that measures connectivity
and vulnerability of graphs is the isoperimetric number of a graph introduced by Buser [11]
and studied by several authors, including Bollob´as [10]. For a graphG andU ⊂ V(G), let
f (U ) denote the number of edges betweenU andV(G) \U .

DEFINITION 7. The isoperimetric number of Gis

i (G) = min

{
f (U )

|U | : U ⊂ V

}
,

where the minimum is taken over all subsetsU of V with |U | ≤ |V |/2.
The isoperimetric number ofG turns out to be related to its edge-integrity, and, thus, to its

honesty. It is easy to see that if the isoperimetric number of a graphG is less than 1, then
the graph is not honest. Thus, to prove Theorem 4, we shall derive from Theorem 6 that only
finitely many 4-regular graphs have isoperimetric number 1 or larger.

On the other hand, the fact that the isoperimetric number of a graphG is greater than 1 does
not imply that the graph is honest, as can be seen by the following example. Let the graphs
G1, G2, andG3, be three disjoint copies ofK8 − {e}, the complete graph on eight vertices
with a missing edgee = (a1,a2), (b1,b2), (c1, c2), respectively. The degrees of the graphs
at these verticesai ,bi , andci (i = 1,2) are 6, while all the other vertices have degree 7. We
add 15 edges such that between any two disjoint partsGi ,G j , (i 6= j, i, j = 1,2,3) there are
five edges connecting them, and the obtained graphG is 8-regular. Now, it is easy to check
thatG is not honest, andi (G) = 10/8.

Still, the following theorem of Lipman (which we exploit in the proof of Theorem 3) implies
that each graphG with i (G) ≥ 2 is honest.
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THEOREM 8 (LIPMAN [14]). Let G be a graph with n vertices. Suppose that for every
integer m≤ n/2 and every set of vertices C with|C| = m,

f (C) ≥
⌈

2m(n−m)

n

⌉
.

Then G is honest.

Bollobás [10] proved the following:

THEOREM 9 ([10]). Let r and0< η < 1 be such that

24/r < (1− η)1−η(1+ η)1+η.
Then almost all r-regular graphs have isoperimetric number at least(1− η)r/2.
Theorem 9 implies that for eachk ≥ 9, the isoperimetric number of almost allk-regular graphs
is at least 2.06. Since all graphs with isoperimetric number greater than or equal to 2 are honest,
it follows that for everyk ≥ 9, almost allk-regular graphs are honest.

3. PROOF OF THEOREM 3

PROOF. Let r ≥ 6 be a fixed integer and letmr− f be an even integer. Lett (n, r,m, f ) be
the number of(n, r )-configurations such that a given subset of vertices of sizem is connected
with the rest by exactlyf edges. Then

t (n, r,m, f ) =
(

mr

f

)(
(n−m)r

f

)
f !(mr − f − 1)!!((n−m)r − f − 1)!!.

Hence the portion of(n, r )-configurations in which at least one subset of vertices of sizem is
connected with the rest by at most 2m(n−m)/n edges is estimated from above by

T(n, r,m) =
(

n

m

)∑
{ f ≤ 2m(n−m)/n | rm− f is even}

(
mr

f

)(
(n−m)r

f

)
× f !(mr − f − 1)!!((n−m)r − f − 1)!!/(nr − 1)!!. (3)

First, letm≤ 100 andf < 2m. Then there exists a numberC = C(m, r ) such that(
n

m

)
t (n, r,m, f )/(nr − 1)!! ≤ Cnm(n−m) f (nr)−(mr+ f )/2 < Cn( f−(r−2)m)/2.

It follows that forr ≥ 6 andm≤ 100,T(n, r,m) ≤ 2C n−m.
Now, we consider 100< m ≤ n/2. We show thatt (n, r,m, f ) is an increasing function in

f. For 2m≤ f < 2+ 2m(n−m)/n, consider the ratio

t (n, r,m, f − 2)

t (n, r,m, f )
=
( mr

f−2
)((n−m)r

f−2

)
( f − 2)!(mr − f + 1)!!((n−m)r − f + 1)!!(mr

f
)((n−m)r

f

)
f !(mr − f − 1)!!((n−m)r − f − 1)!!

= ( f − 1) f · ( f − 1) f · (mr − f + 1) · ((n−m)r − f + 1)

(mr − f + 1)(mr − f + 2)((n−m)r − f + 1)((n−m)r − f + 2)( f − 1) f

= ( f − 1) f

(mr − f + 2)((n−m)r − f + 2)
< 1/4.

This means that

T(n, r,m) < 2

(
n

m

)
t (n, r,m, f0)/(nr − 1)!!, (4)
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where f0 is the maximum integer less than 2m(n − m)/m such thatmr − f0 is even. Our
general aim is to show that

∑dn/2e
m=1 T(n, r,m) = o(1).We already saw that

∑100
m=1 T(n, r,m) =

O(1/n).
By (4) and Stirling’s formula, we have

T(n, r,m) < 2

(n
m

)(mr
f0

)(
(n−m)r

f0

)
f0!(mr − f0− 1)!!((n−m)r − f0− 1)!!

(nr − 1)!!
<

2n nn(mr)mr((n−m)r )r (n−m)

mm(n−m)n−m f f0
0 (mr − f0)0.5(mr− f0)((n−m)r − f0)0.5((n−m)r− f0)(rn)0.5rn

.

Since the derivative off f (mr − f )0.5(mr− f )((n−m)r − f )0.5((n−m)r− f ) with respect tof
when f is around 2m(n−m)/2 is negative, substituting 2m(n−m)/2 instead off0 gives an
upper bound forT(n, r,m). Dividing both the numerator and the denominator byn(r+1)n, we
obtain

T(n, r,m) <
2n

(m/n)m(1−m/n)n−m(2(1−m/n)m/n)2m(n−m)/n

× (rm/n)rm

(rm/n− 2(1−m/n)m/n)0.5rm−(n−m)m/n

× (r (1−m/n))r (n−m)

r rn/2(r (1−m/n)− 2(1−m/n)m/n)0.5r (n−m)−(n−m)m/n
.

Let α = m/n. Then

T(n, r,m) < T1(n, r, α) = 2n (rα)rαn

ααn(1− α)(1−α)n(2α(1− α))2α(1−α)nr rn/2

× (r (1− α))r (1−α)n
(αr − 2α(1− α))(0.5r−(1−α))αn((1− α)r − 2α(1− α))(0.5r−α)(1−α)n .

Let T2(n, r, α) = 1
n log(T1(n, r, α)/(2n)). We have

T2(n, r, α) = 0.5r logr + α(0.5r − 2+ α) logα + (1− α)(0.5r − 1− α) log(1− α)
−2α(1− α) log 2− α(0.5r − 1+ α) log(r − 2+ 2α)− (1− α)(0.5r − α) log(r − 2α).

Now we take three derivatives ofT2(n, r, α) with respect toα;

∂T2(n, r, α)

∂α
= (0.5r − 2+ 2α) logα − (0.5r − 2α) log(1− α)+ (4α − 2) log 2

−(0.5r − 1+ 2α) log(r − 2+ 2α)+ (0.5r + 1− 2α) log(r − 2α);
∂2T2(n, r, α)

∂α2 = 2 logα + 0.5r − 2+ 2α

α
+ 2 log(1− α)+ 0.5r − 2α

1− α + 4 log 2

−2 log(r − 2+ 2α)− r − 2+ 4α

r − 2+ 2α
− 2 log(r − 2α)− r + 2− 4α

r − 2α
;

∂3T2(n, r, α)

∂α3 = 2

α
− 0.5r − 2

α2 − 2

1− α +
0.5r − 2

(1− α)2 −
4

r − 2+ 2α
− 2r − 4

(r − 2+ 2α)2

+ 4

r − 2α
+ 2r − 4

(r − 2α)2
= 2(1− 2α)

(
2α(1− α)− 0.5r + 2

2α2(1− α)2
− 4

(r − 2+ 2α)(r − 2α)
− 4(r − 2)(r − 1)

(r − 2+ 2α)2(r − 2α)2

)
.
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It is not hard to check that for 0< α < 0.5 andr ≥ 6,

∂3T2(n, r, α)

∂α3 < 0.

It follows that ∂T2(n,r,α)
∂α

is concave up. Note also that∂T2(n,r,0.5)
∂α

= 0 for everyr . Since
a concave up function has at most two zeros, we conclude that either∂T2(n,r,0.5)

∂α
is negative

on (0,0.5), or it is first negative and then positive. In other words, eitherT2(n, r, α) is
monotonically decreasing at(0,0.5), or it first decreases and then monotonically increases.
In both cases, in order to find max{T2(n, r, α) | 100/n ≤ α ≤ 0.5}, it is enough to check the
values forα = 100/n andα = 0.5. We have

T2(n, r,0.5) = 0.5(r logr − (r − 2) log 2− (r − 1) log(r − 1) < −0.02

for eachr ≥ 6. It is a routine computation to check that

T2(n, r,100/n) = −100 logn (0.5r − 2)/n+ O(1/n).

Thus, for a fixedr ≥ 6 and largen, T2(n, r, α) < −50 logn for any 0< α < 0.5. It follows
that T(n, r,m) < 2n−49 for each fixedr ≥ 6 and any 100< m ≤ n/2. This, together with
Theorem 8, proves the theorem. 2

4. PROOF OF THEOREM 4

We shall use the following fact.

LEMMA 10 ([12]). Let T be a tree with maximum degree q. Then for any k≤ |V(T)|, the
vertex set V(T) can be divided into two parts V1 and V2 such that:

(a) |V1| = k;
(b) the subgraph T〈V2〉 induced by V2 is a tree;
(c) the number of components of T〈V1〉 is at most1+ logq−1

q−2
k.

PROOF. Let n > 1060 andG = (V, E) be a multigraph onn vertices with maximum degree
4. Let k = 105 andm = bn/2kc. If G is not connected, then it is not honest. OtherwiseG
has a spanning treeT . Applying Lemma 10 toT , and to the subsequent trees guaranteed by
the lemma, 2m times for eachj = 1, . . . ,2m, we find a disjoint subsetWj of V such that

|Wj | = k and |EG(Wj )| ≥ k− 1− blog3/2 kc > k− 30. (5)

DenoteW0 = V \⋃2m
j=1 Wj . Let H be obtained fromG −W0 by merging eachWj into a

vertex, sayw j and deleting loops. Then by (5),

degH (w j ) ≤ 4|Wj | − 2|EG(Wj )| ≤ 2(k+ 30) = 200 060 for everyw j ∈ V(H).

Applying Theorem 5 toH , we conclude that there is a partition(U+,U−) of V(H) such that
|U+| = |U−| = m and

|EH (U+,U−)| ≤ |E(H)|
2

(
1− 3

16
√

100 030

)
≤ 200 060

m

2

(
1− 1

2000

)
≤ 1.0003· (n/2) · (1− 0.0005) < (1− 0.0002) · (n/2).
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Let Z =⋃w j∈U+ Wj . Then|Z| = km> 0.5n− 100 000 and

f (Z) < |EH (U+,U−)| + f (W0) < (1− 0.0002)(n/2)+ 4 · 200 000

≤ (1− 0.0002)(|Z| + 100 000)+ 8 · 105 < 0.9999|Z| − (0.0001|Z| − 106)

< 0.9999|Z|.
The setZ witnesses thati (G) < 0.9999, and henceG is not honest. 2

5. PROOF OF THEOREM 6

5.1. Lemmas.We now prove several lemmas that will enable us to modify the proof of [1]
and adapt it to our purpose. Letw1, w2, . . . , wd ≥ 0 bed real numbers whose sum is 1,
and letδ1, . . . , δd bed independent, identically distributed random variables , each taking the
values−1 and+1 with equal probability. LetX = X(w1, w2, . . . , wd) be the random variable
X = ∣∣∑d

i=1 δiwi
∣∣.

LEMMA 11. For eachw1, w2, . . . , wd as above, the expectation of X(w1, . . . , wd) satisfies

E(X(w1, . . . , wd)) ≥ E(X(1/d,1/d, . . . ,1/d)).

PROOF. Given a sequencew1, . . . , wd of d non-negative reals whose sum is 1, and assuming
two elements of the sequence, sayw1 andw2 differ, letu1, . . . ,ud be the sequence defined by
u1 = u2 = (w1+ w2)/2, andui = wi for all i > 2. By the triangle inequality, for every real
x,

|x + w1+ w2| + |x − w1− w2| + |x + w1− w2| + |x − w1+ w2|
≥ |x + w1+ w2| + |x − w1− w2| + 2|x|
= |x + u1+ u2| + |x − u1− u2| + |x + u1− u2| + |x − u1+ u2|.

This implies, by breaking the expectation ofE(X(w1, . . . , wd)) into the sum of 2d−2 terms
each being a sum of four terms as above, thatE(X(w1, . . . , wd)) ≥ E(X(u1, . . . ,ud)).

Repeating this argument we obtain the desired result at the limit. 2

LEMMA 12. With the numbersεd defined in the introduction

E(X(1/d,1/d, . . . ,1/d)) = 2εd.

PROOF. We describe the proof for oddd, the computation for evend is similar. For an odd
d, observe that

(d−1)/2∑
i=0

i

(
d

i

)
= d

(d−1)/2∑
i=1

(
d − 1

i − 1

)
=

d
(
2d−1− ( d−1

(d−1)/2

))
2

.

Therefore

(d−1)/2∑
i=0

(
d

i

)
(d − 2i ) = d2d−1− d

(
2d−1−

(
d − 1

(d − 1)/2

))
= d

(
d − 1

(d − 1)/2

)
.

It follows that

E(X(1/d,1/d, . . . ,1/d)) = 1

2d

d∑
i=0

(
d

i

)
|d − 2i |1

d
= 2d

( d−1
(d−1)/2

)
d2d

= 2εd.
2
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LEMMA 13. Letw1, . . . , wd be non-negative reals, and suppose that the sum
∑d

i=1 δiwi

is never zero for each of the2d choices ofδi ∈ {−1,1}. Let δi be independent, identically
distributed random variables each taking the values−1 and+1 with equal probability, and
define1

2 + ε(i ) to be the following probability:

1

2
+ ε(i ) = Prob

(
sign(δi ) = sign

(
d∑

i=1

δiwi

))
.

Then
d∑

i=1

ε(i )wi ≥
(

d∑
i=1

wi

)
εd.

PROOF. Clearly it suffices to prove the assertion of the lemma for the case
∑d

i=1wi = 1,
as both sides are linear with respect to this sum. In this case,

E(X(w1, w2, . . . , wd)) = 1

2d

∑
δi∈{−1,1}

(
d∑

i=1

δiwi

)
sign

(
d∑

i=1

δiwi

)

=
d∑

i=1

wi

((
1

2
+ ε(i )

)
−
(

1

2
− ε(i )

))
= 2

d∑
i=1

wi ε(i ).

The result now follows from the previous two lemmas. 2

5.2. The proof. We now prove Theorem 6. Given a weighted graphG = (V, E) on n
vertices as in the theorem, we must show that there is a partitionV = V− ∪ V+, where
|V−| = |V+| = n/2 andw(V−,V+) satisfies (2).

The basic idea is very simple: we first assign each vertexv a random signh(v) ∈ {−1,1}
and if h(v) is not equal to sign

(∑
u∈N(v) w(vu)h(u)

)
, then we randomly decide whether to

reverse its sign or leave it as it is. It is then shown that the expected total weight of edges
between the negative vertices and the positive vertices is not too large. One difficulty in the
process of obtaining a rigorous proof along these lines is that we have to keep the two classes of
equal size. This causes several problems, and we overcome them by combining, as in [1], the
FKG Inequality with some combinatorial ideas. The main difference between the proof in [1]
and the proof here, is that in the simple case considered in [1], one can obtain a sufficiently
good upper bound for the probability that each edge separately is a crossing edge, and the
desired result, thus, follows by linearity of expectation. Here one has to average over all edges
incident with a vertex, using the lemmas of the previous subsection. An additional convenient
trick is to first apply, if needed, a small perturbation to the weights to make sure that no linear
combination of the weights of the edges incident with a vertex with−1,1 coefficients vanishes.
This will ensure that the sum

∑
u∈N(v) w(vu)h(u) will always have a well-defined sign. As

the perturbation can be arbitrarily small, it is obvious that it makes no difference and, hence,
we may and will assume from now on that the weights satisfy this generic assumption.

We need the following lemma, proved in [1].

LEMMA 14. Let H be a graph on n= 2m vertices, with maximum degree1, and suppose
n > 4013. Then there is a perfect matching M= {(ui , vi ) : 1 ≤ i ≤ m} of all vertices of H
satisfying the following properties.

(i) Each edge of M isnot an edge of H.
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(ii) There is no alternating cycle of length4or 6consisting of edges of H and M alternately.

Returning to the proof of Theorem 6, consider the following randomized procedure for con-
structing a partition of the set of vertices ofG = (V, E) into two equal partsV− andV+. First,
let H be the graph onV in which two vertices are adjacent if their distance inG is at most 3.
By assumption, the maximum degree1 in H satisfiesn > 4013, and hence, by Lemma 14
there is a matchingM = {(ui , vi ) : 1 ≤ i ≤ m} satisfying the assertion of the lemma.
Let h : V 7→ {−1,1} be a random function obtained by choosing, for eachi , 1 ≤ i ≤ m,
randomly and independently, one of the two possibilities(h(ui ) = −1 andh(vi ) = 1) or
(h(ui ) = 1 andh(vi ) = −1), both choices being equally probable. Call a vertexv ∈ V
stableif h(v) = sign(

∑
u∈N(v) w(vu)h(u)), otherwise call itactive. Call a pair of vertices

(ui , vi )matched underM anactive pairif both ui andvi are active, otherwise, call it astable
pair. Let h′ : V 7→ {−1,1} be the random function obtained fromh by randomly modifying
the values of the vertices in active pairs as follows. If(ui , vi ) is an active pair then choose
randomly either(h′(ui ) = −1 andh′(vi ) = 1) or (h′(ui ) = 1 andh′(vi ) = −1), both choices
being equally probable. Otherwise, defineh′(ui ) = h(ui ) andh′(vi ) = h(vi ). Finally, define
V− = h′−1(−1) andV+ = h′−1(1).

It is obvious that|V−| = |V+| = m (= n/2). To complete the proof, we prove an upper
bound for the expected value ofw(V−,V+). Fix an edge ofG; by renaming the vertices if
needed, we may assume, without loss of generality, that its two vertices areu1 andu2, which
are matched underM tov1 andv2, respectively. Our objective is to estimate the probability that
h′(u1) 6= h′(u2). This is done by estimating the conditional probability of this event assuming
that h(u1) = h(u2) and the conditional probability assuming thath(u1) 6= h(u2). Before
starting to estimate these probabilities, note that by the choice ofM , the sets{v1} ∪ N(v1) and
{v2} ∪ N(v2) of the closed neighborhoods ofv1 andv2, respectively, are disjoint and both of
them do not intersect the set{u1,u2}∪N(u1)∪N(u2). Moreover, the only edges ofM whose
two ends lie in the set

{u1,u2, v1, v2} ∪ N(u1) ∪ N(u2) ∪ N(v1) ∪ N(v2)

are the two edges{u1, v1} and{u2, v2}. These facts, illustrated in Figure 1, will be useful as
they imply that various events are independent. Thus, for example, the event (v1 is active and
h(v1) = −1) is independent of the event (v2 is active and h(v2) = 1), as those are determined
by disjoint sets of random choices. (Note that for this to hold it is not enough that the closed
neighborhoods ofv1 andv2 are disjoint; one also needs the fact that there are no edges ofM
joining these two neighborhoods.)

In order to estimate the conditional probability Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)] note,
first, that in caseh(u1) = h(u2) then if at least one of the pairs(u1, v1) or (u2, v2) is active,
then this probability is precisely a half. On the other hand, if they are both stable, it is zero.
Therefore,

Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)]
= 1

2
− 1

2
Prob[(u1, v1), (u2, v2) stable|h(u1) = h(u2)]. (6)

Clearly

Prob[(u1, v1), (u2, v2) stable| h(u1) = h(u2)] = Prob[(u1, v1) stable|h(u1) = h(u2)]
· Prob[(u2, v2) stable|h(u1) = h(u2), (u1, v1) stable] (7)
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v1

v2

u1

u2

FIGURE 1. A typical edgeu1u2.

Furthermore,

Prob[(u1, v1) stable| h(u1) = h(u2)] = Prob[v1 stable|h(u1) = h(u2)]
+ Prob[v1 active|h(u1) = h(u2)] · Prob[u1 stable|h(u1) = h(u2), v1 active].

Since, by the choice ofM , the set{u1,u2} does not intersectN(v1) and none of its members
is matched underM to a member ofN(v1), it follows that

Prob[v1 stable|h(u1) = h(u2)] = Prob[v1 stable] = 1

2
.

Let e denote the edgeu1u2 and defineε(u1,e) by the equation

1

2
+ ε(u1,e) = Prob(h(u2) = sign

( ∑
u∈N(u1)

w(u1u)h(u)

)
.

Note that by Lemma 13, ife1, . . . ,ed is the set of all edges incident withu1, the inequality

d∑
i=1

w(ei )ε(u1,ei ) ≥
(

d∑
i=1

w(ei )

)
εd, (8)

holds. This will be useful in the end of the proof. We claim that

Prob[u1 stable|h(u1) = h(u2), v1 active] = Prob[u1 stable|h(u1) = h(u2)] = 1

2
+ ε(u1,e).

To see this, note first, that by the choice ofM the event (v1 active) is determined only by
the values of|h(w) − h(v1)| for w ∈ N(v1) and, hence, does not influence the conditional
probability Prob[u1 stable|h(u1) = h(u2)]. The above expression for the last conditional
probability, thus, follows from the definition ofε(u1,e).

Substituting the expressions above we conclude that

Prob[(u1, v1) stable|h(u1) = h(u2)] = 1

2
+ 1

2

(
1

2
+ ε(u1,e)

)
= 3

4
+ 1

2
ε(u1,e). (9)

We can now apply a similar reasoning to estimate the conditional probability

Prob[(u2, v2) stable|h(u1) = h(u2), (u1, v1) stable].
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The crucial point is that whenh(u1) = h(u2), the event ((u2, v2) stable) and the event ((u1, v1)

stable) behave monotonically with respect to theh-values on the intersectionN(u1)∩ N(u2),
in case this intersection is non-empty. That is, if one of these events occurs, then by changing
the value of someh(w) for w in this intersection from−h(u1) = −h(u2) to h(u1), this event
still occurs. Thus, it follows from the FKG Inequality (cf. e.g., [3], Chapter 6) that

Prob[(u2, v2) stable|h(u1) = h(u2), (u1, v1) stable] ≥ 3

4
+ 1

2
ε(u2,e), (10)

whereε(u2,e) is defined just likeε(u1,e) before. Combining (7), (9) and (10),

Prob[(u1, v1), (u2, v2) stable| h(u1) = h(u2)] ≥ 9

16
+ 3

8
ε(u1,e)+ 3

8
ε(u2,e)

+1

4
ε(u1,e)ε(u2,e),

and therefore, by (6),

Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)]
≤ 1

2

(
7

16
− 3

8
ε(u1,e)− 3

8
ε(u2,e)− 1

4
ε(u1,e)ε(u2,e)

)
. (11)

Similar arguments can be used to estimate the conditional probability

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)].
Here are the details. Note, first, that

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)]
= 1

2
+ 1

2
Prob[(u1, v1), (u2, v2) stable|h(u1) 6= h(u2)]. (12)

Next, observe that

Prob[(u1, v1), (u2, v2) stable|h(u1) 6= h(u2)] = Prob[(u1, v1) stable|h(u1) 6= h(u2)]
· Prob[(u2, v2) stable|h(u1) 6= h(u2), (u1, v1) stable]. (13)

Furthermore,

Prob[(u1, v1) stable|h(u1) 6= h(u2)] = Prob[v1 stable| h(u1) 6= h(u2)]
+Prob[v1 active| h(u1) 6= h(u2)] · Prob[u1 stable| h(u1) 6= h(u2), v1 active].

As before, by the choice ofM ,

Prob[v1 stable| h(u1) 6= h(u2)] = Prob[v1 stable] = 1

2
,

and

Prob[u1 stable| h(u1) 6= h(u2), v1 active]
= Prob[u1 stable| h(u1) 6= h(u2)] = 1

2
− ε(u1,e),

since ifh(u1) 6= h(u2) thenu1 is stable if and only ifh(u2) 6= sign
(∑

u∈N(u1)
w(u1u)h(u)

)
.
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Substituting, we conclude that

Prob[(u1, v1) stable| h(u1) 6= h(u2)] = 1

2
+ 1

2

(
1

2
− ε(u1,e)

)
= 3

4
− 1

2
ε(u1,e). (14)

By a similar computation, and using the FKG Inequality it follows next, that

Prob[(u2, v2) stable| h(u1) 6= h(u2), (u1, v1) stable] ≤ 3

4
− 1

2
ε(u2,e), (15)

since whenh(u1) 6= h(u2) then the event ((u1, v1) stable) is monotone increasing with respect
to changing the values of someh(w) for w ∈ N(u1) ∩ N(u2) from h(u2) to h(u1), whereas
the event ((u2, v2) stable) is monotone decreasing with respect to such a change.

By (13)–(15),

Prob[(u1, v1), (u2, v2) stable| h(u1) 6= h(u2)]
≤ 9

16
− 3

8
ε(u1,e)− 3

8
ε(u2,e)+ 1

4
ε(u1,e)ε(u2,e),

and therefore, by (12),

Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)]
≤ 1

2

(
25

16
− 3

8
ε(u1,e)− 3

8
ε(u2,e)+ 1

4
ε(u1,e)ε(u2,e)

)
. (16)

Combining (11) and (16) we finally conclude that

Prob[h′(u1) 6= h′(u2)] = Prob[h(u1) = h(u2)] · Prob[h′(u1) 6= h′(u2)|h(u1) = h(u2)]
+ Prob[h(u1) 6= h(u2)] · Prob[h′(u1) 6= h′(u2)|h(u1) 6= h(u2)]
≤ 1

2
− 3

16
ε(u1,e)− 3

16
ε(u2,e).

Since(u1,u2) was a typical edge, by linearity of expectation and by (8), the expected value of
w(V−,V+) satisfies

w(V−,V+) ≤
n∑

i=1

∑
j∈N(i )

(
w(i j )

4
− 3

16
w(i j )ε(i, i j )

)

≤
n∑

i=1

∑
j∈N(i )

w(i j )

4

(
1− 3

4
εdi

)
=
∑
i j ∈E

w(i j )

2

(
1− 3

8
εdi −

3

8
εdj

)
.

This completes the proof.2

REFERENCES

1. }}N. Alon, On the edge-expansion of graphs,Comb. Prob. Comput., 6 (1997), 145–152.
2. }}N. Alon and V. D. Milman,λ1, Isoperimetric inequalities for graphs and superconcentrators,J.

Comb. Theory, Ser. B, 38 (1985), 73–88.
3. }}N. Alon and J. H. Spencer,The Probabilistic Method, John Wiley and Sons, New York, 1992.
4. }}K. S. Bagga, L. W. Beineke, M. J. Lipman and R. E. Pippert, On the edge-integrity of graphs,

Congressus Numerantium, 60 (1987), 141–144.
5. }}K. S. Bagga, L. W. Beineke, M. J. Lipman and R. E. Pippert, On the honesty of graph complements,

Discrete Math., 122(1993), 1–6.



Honest graphs, isoperimetric number 381

6. }}C. A. Barefoot, R. Entringer and H. C. Swart Vulnerability in graphs—a comparative survey,J.
Comb. Math. Comb. Comput., 1 (1987), 12–22.

7. }}C. A. Barefoot, R. Entringer and H. C. Swart, Integrity of trees and the diameter of a graphs,
Congressus Numerantium, 58 (1987), 103–114.

8. }}B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labeled regular graphs,
Europ. J. Combinatorics, 1 (1980), 311–316.

9. }}B. Bollobás,Random Graphs,Academic Press, New York, 1985.
10. }}B. Bollobás, The isoperimetric number of random regular graphs,Europ. J. Combinatorics, 1 (1988),

241–244.
11. }}P. Buser, Cubic graphs and the first eigenvalue of a Reimann surface,Math. Z., 162(1978), 87–99.
12. }}A. V. Kostochka and L. S. Mel’nikov, On bounds of the bisection width of cubic graphs,Ann.

Discrete Math., 51 (1992), 151–154.
13. }}M. Lipman, The honest cubic graphs,Congressus Numerantium, 85 (1991), 184–192.
14. }}M. Lipman, On sparse honest graphs, (preprint).
15. }}A. Lubotzky, R. Phillips and P. Sarnak, Explicit expanders and the Ramanujan conjectures, in:

Proceedings of the 18th ACM STOC, 1986, pp. 240–246. See also: A. Lubotzky, R. Phillips and
P. Sarnak, Ramanujan graphs,Combinatorica, 8 (1988), 261–277.

16. }}G. A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and their appli-
cation to the design of expanders and superconcentrators,Probl. Pered. Inf., 24 (1988), 51–60 (in
Russian). English translation inProb. Inf. Trans., 24 (1988), 39–46.

17. }}J. B. Shearer, A note on bipartite subgraphs of triangle-free graphs,Random Struct. Algorithms, 3
(1992), 223–226.

Received 21 January 1998 and accepted 15 March 1999

NOGA ALON

Department of Mathematics,
Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv, Israel
and

Institute for Advanced Study
Princeton, NJ 08540, U.S.A.

E-mail: noga@math.tau.ac.il

PETER HAMBURGER

Department of Mathematical Sciences,
Indiana University-Purdue University Fort Wayne,

Fort Wayne, IN 46805, U.S.A.
E-mail: hamburge@ipfw.edu

ALEXANDR V. KOSTOCHKA

Institute of Mathematics,
630090 Novosibirsk,

Russia
E-mail: sasha@math.nsc.ru


	INTRODUCTION
	BACKGROUND
	PROOF OF THEOREM 3
	PROOF OF THEOREM 4
	PROOF OF THEOREM 6
	FIGURE 1.

	REFERENCES

