Hypercube Subgraphs with Local Detours

Peter Hamburger, ${ }^{1 *}$ Alexandr V. Kostochka, ${ }^{2}$ Alexander Sidorenko ${ }^{3}$
${ }^{1}$ DEPARTMENT OF MATHEMATICAL SCIENCES INDIANA UNIVERSITY——PURDUE UNIVERSITY FORT WAYNE FORT WAYNE, INDIANA 46805
E-mail: hamburge@indiana.edu
2 INSTITUTE OF MATHEMATICS 630090 NOVOSIBIRSK, RUSSIA
E-mail: sasha@math.nsc.ru
${ }^{3}$ COURANT INSTITUTE OF MATHEMATICAL SCIENCES
NEW YORK UNIVERSITY
NEW YORK, NY 10012
E-mail: sidorenk@cims.nyu.edu

Received May 16, 1997; revised August 21, 1998

Abstract

A minimal detour subgraph of the n-dimensional cube is a spanning subgraph G of Q_{n} having the property that, for vertices x, y of Q_{n}, distances are related by $d_{G}(x, y) \leq d_{Q_{n}}(x, y)+2$. For a spanning subgraph G of Q_{n} to be a local detour subgraph, we require only that the above inequality be satisfied whenever x and y are adjacent in Q_{n}. Let $f(n)$ (respectively, $f_{l}(n)$) denote the minimum

[^0]number of edges in any minimal detour (respectively, local detour) subgraph of Q_{n} (cf. Erdős et al. [1]). In this article, we find the asymptotics of $f_{l}(n)$ by showing that $3 \cdot 2^{n}\left(1-\mathcal{O}\left(n^{-1 / 2}\right)\right)<f_{l}(n)<3 \cdot 2^{n}(1+o(1))$. We also show that $f(n)>$ $3.00001 \cdot 2^{n}$ (for $n>n_{0}$), thus eventually $f_{l}(n)<f(n)$, answering a question of [1] in the negative. We find the order of magnitude of $F_{l}(n)$, the minimum possible maximum degree in a local detour subgraph of Q_{n} : $\sqrt{2 n+0.25}-0.5 \leq$ $F_{l}(n) \leq 1.5 \sqrt{2 n}-1$. © 1999 John Wiley \& Sons, Inc. J Graph Theory 30: 101-111, 1999

Keywords: hypercube, minimal detour, local detour

1. INTRODUCTION

Parameters such as Hamming distances, distance sums, connectedness, maximum degree, diameter, and the size of a minimum dominating set in the hypercube and its spanning subgraphs have been investigated in many articles. Erdős, Hamburger, Pippert, and Weakley [1] introduced and studied a combination of these types of parameters. Some problems, questions, and conjectures were raised.

We say that a subgraph G of the n-dimensional hypercube Q_{n} has the k-detour property if any two vertices at distance $d \leq k$ in Q_{n} are at distance at most $d+2$ in G. Note that if $k=1$, the definition gives the notion of a local detour subgraph, and if $k=n$, it yields the notion of a minimal detour subgraph of [1]. Let $f(n)$ and $f_{l}(n)$ denote the minimum number of edges of any minimal detour subgraph or any local detour subgraph of Q_{n}, respectively. Further, let $F_{l}(n)$ denote the minimum possible maximum degree in any local detour subgraph of Q_{n}.

Clearly every minimal detour subgraph of Q_{n} is also a local detour subgraph, so $f_{l}(n) \leq f(n)$ for each n.

In [1], the following theorems were shown, among others:
Theorem A. For each positive integer $n, f(n) /\left|E\left(Q_{n}\right)\right|<3 / \sqrt{2 n}$.
Theorem B. For each positive integer $n, f_{l}(n) /\left|E\left(Q_{n}\right)\right|<\sqrt{3 / 2 n}$.
Theorem C. If G is a local detour subgraph of Q_{n}, then $|E(G)| \geq 2 \cdot 2^{n}(1-$ $o(1))$. In other words, $f_{l}(n) \geq 2 \cdot 2^{n}(1-o(1))$.

Theorem D. Each local detour subgraph of Q_{n} contains a vertex of degree at least \sqrt{n}. In other words, $F_{l}(n) \geq \sqrt{n}$.

Also Erdős et al. [1] asked the following question.
Question. Is $f_{l}(n)=f$?
In this article, we improve Theorems B and C by finding the asymptotics of $f_{l}(n)$ and show that $f_{l}(n)<f(n)$. We also improve Theorem D and find a matching upper bound, which gives the right order of magnitude of $F_{l}(n)$.

Namely, in the next section we construct a local detour subgraph of Q_{n} with $3 \cdot 2^{n}(1+o(1))$ edges and a local detour subgraph of Q_{n} with maximum degree at most $1.5 \sqrt{2 n}$. In the last section, we prove that (i) any local detour subgraph has
a vertex of degree $\sqrt{2 n}-0.5$ or more, (ii) any local detour subgraph of Q_{n} has at least $3 \cdot 2^{n}(1-\sqrt{112 / n})$ edges, and (iii) any subgraph of Q_{n} with the 2-detour property has at least $(3.000013-o(1)) \cdot 2^{n}$ edges.

This answers the Question in the negative.

2. CONSTRUCTIONS

In this section, we establish upper bounds for $f_{l}(n)$ and $F_{l}(n)$. To do that we need the following result by Kabatianski and Panchenko [2].

Lemma 1 [2]. The m-dimensional hypercube Q_{m} has a dominating set $D \subset$ $V\left(Q_{m}\right)$ with $|D|=(1+o(1)) 2^{m} / m$.

Theorem 1. For every n there is a subgraph G of Q_{n} with the 1-detour property, which has $3 \cdot 2^{n}(1+o(1))$ edges.
Proof. In this proof we write vertices of Q_{j} as binary j-tuples. First, we define two subsets S_{1} and S_{2} of $V\left(Q_{n}\right)$. Let $m=\lfloor n / 2\rfloor$. Represent Q_{n} as $Q_{m} \times Q_{n-m}$, where the Q_{m} is induced by the first m coordinates and the Q_{n-m} by the last $n-m$ coordinates of elements of our Q_{n}. Each vector $w \in Q_{n}$ can be written as $w=v u$, where $v \in V\left(Q_{m}\right)$ is an m-tuple, and $u \in V\left(Q_{n-m}\right)$ is an $(n-m)$-tuple. By Lemma 1, the m-dimensional hypercube Q_{m} has a dominating set D_{1} of size $(1+o(1)) 2^{m} / m$, and the $(n-m)$-dimensional hypercube Q_{n-m} has a dominating set D_{2} of size $(1+o(1)) 2^{n-m} /(n-m)$. Let

$$
\begin{gathered}
S_{1}=\left\{w=v u \in V\left(Q_{n}\right) \mid v \in D_{1}, u \in V\left(Q_{n-m}\right)\right\}, \\
S_{2}=\left\{w=v u \in V\left(Q_{n}\right) \mid v \in V\left(Q_{m}\right), u \in D_{2}\right\} .
\end{gathered}
$$

Then $\left|S_{1}\right|=2^{n-m} \cdot(1+o(1)) 2^{m} / m=(1+o(1)) 2^{n+1} / n$, and, similarly, $\left|S_{2}\right|=$ $(1+o(1)) 2^{n+1} / n$. Let $S=S_{1} \cup S_{2}$. Clearly, $|S|=(1+o(1)) 2^{n+2} / n$.

Now, let $E(G)$ consist of those edges of Q_{n} that are incident with S, and let G be the subgraph of Q_{n} spanned by the edge set $E(G)$. We need to show that G has the 1-detour property, and $|E(G)|=3 \cdot 2^{n} \cdot(1+o(1))$. To prove the latter statement, observe that $|E(G)|=\sum_{v \in S^{\operatorname{deg}_{Q_{n}}}}(v)-\left|E\left(Q_{n}[S]\right)\right|$, where $Q_{n}[S]$ is the subgraph of Q_{n} induced by S. Since each $w \in S$ is adjacent in Q_{n} to at least m vertices in S, we get $|E(G)| \leq n|S|-0.5 m|S|=(3+o(1)) 2^{n}$.

Finally, let $w_{1}=v_{1} u_{1}$ and $w_{2}=v_{2} u_{2}$ be two vertices of G that are adjacent in Q_{n} but are not adjacent in G. Since the degree in G of every vertex in S is n, neither w_{1} nor w_{2} can be in S. The vectors w_{1} and w_{2} differ in exactly one coordinate, say i. Without loss of generality, we can presume that $i \leq m$. Thus, $w_{1}=v_{1} u$ and $w_{2}=v_{2} u$, where v_{1} and v_{2} differ only in coordinate i. By the definition, there is a vertex $x \in D_{2}$ that is adjacent to u. Then the vertices $y=v_{1} x$ and $z=v_{2} x$ are in S_{2} and differ only in coordinate i. Hence, path (w_{1}, y, z, w_{2}) is present in G.

Remark 1. Since for $m=2^{k}-1$ the graph Q_{m} has a perfect dominating set of vertices, our construction for $n=2\left(2^{k}-1\right)$ has strictly fewer than $3 \cdot 2^{n}(1-1 / n)$ edges.

Remark 2. The construction of Theorem 1 can be generalized to a k-detour subgraph with $\frac{1}{2}(k+1)(k+2) 2^{n}(1+o(1))$ edges; when k is close to n; this gives little useful information, but we think that when k is small relative to n the result is optimal. To do so, we represent Q_{n} as the direct product of $(k+1)$ smaller hypercubes of approximately equal sizes and select a minimum size dominating set in each of them. A vertex of Q_{n} is included in set S, if its projection onto at least one of the small hypercubes belongs to its dominating set. Let graph G include all edges incident with at least one vertex from S. Then G has the k-detour property and $|E(G)|=\frac{1}{2}(k+1)(k+2) 2^{n}(1+o(1))$.

Theorem 2. For every n there is a subgraph G of Q_{n} with the 1-detour property of maximum degree at most $1.5 \sqrt{2 n}-1$.

Proof. For $n<5$ the statement is trivial. Let $n \geq 5$ and m be the power of 2 lying in the half-open interval $[\sqrt{n / 2}, \sqrt{2 n})$, say, $m=2^{r}$. Denote $s=\lceil(n-m+$ 1)/mๆ and partition the set $\{1, \ldots, n\}$ into $m+1$ parts P_{0}, \ldots, P_{m} so that $\left|P_{0}\right|=$ $m-1$ and $\left|P_{i}\right| \in\{s-1, s\}$ for $i=1, \cdots m$. Let H be the subgraph of Q_{n} spanned by the edges along the coordinates in P_{0}. Clearly, H is the disjoint union of 2^{n-m+1} copies of Q_{m-1}. Since $m-1=2^{r}-1$, we can partition $V\left(Q_{m-1}\right)$ into m perfect dominating sets S_{1}, \ldots, S_{m}. For $i=1, \ldots, m$, let S_{i}^{\prime} denote the union of translates of S_{i} over all copies of Q_{m-1} in H. Then every S_{i}^{\prime} is a dominating set in H and induces in Q_{n} the disjoint union of $2^{m-1} / m$ copies of Q_{n-m+1}. Now, for $i=1, \ldots, m$, add to H the edges along the coordinates in P_{i} that are adjacent to the vertices in S_{i}^{\prime}. This is the desired graph G.

In order to see that G is a local detour subgraph of Q_{n}, consider an arbitrary edge $(u, v) \in E\left(Q_{n}\right) \backslash E(G)$. The vertices u and v differ in some coordinate $i \in$ $\{1, \ldots, n\} \backslash P_{0}$, say, $i \in P_{1}$. That means that they belong to different components, say C_{u} and C_{v}, of H, which are adjacent in Q_{n}. Then the common projection of u and v into a copy of Q_{m-1} has a neighbor z in S_{1}. Let z_{u} and z_{v} be the images of z in C_{u} and C_{v}, respectively. By the definition, z_{u} and z_{v} are adjacent. Then $\left(u, z_{u}, z_{v}, v\right)$ is a path in G.

The maximum degree in G is

$$
m-1+s \leq m-1+n / m \leq \sqrt{n / 2}+\sqrt{2 n}-1=1.5 \sqrt{2 n}-1
$$

Theorem 2 together with Theorem 3 below gives the order of magnitude of $F_{l}(n)$.
Remark 3. For each fixed k, the construction of Theorem 2 can be generalized to a k-detour subgraph with the maximum degree of order $n^{k /(k+1)}$. To do so, we choose m as a power of 2 , which is a bit more than $n^{k /(k+1)}$, choose s just large enough so that if we partition $\{m, m+1, \ldots, n\}$ into parts of size close to s, say j parts P_{1}, \ldots, P_{j}, then $\binom{j}{k} \leq m$. Then we assign to each k-element subset of
$\left\{P_{1}, \ldots, P_{j}\right\}$ one of the perfect dominating sets S_{i} of Q_{m-1} and can argue as in the proof of the theorem.
Remark 4. It follows from the proof of Theorem 11 in [1] that any subgraph of Q_{n} with the k-detour property has a vertex of degree of order $n^{k /(k+1)}$. This together with Remark 3 gives for each fixed k the order of magnitude of the minimum possible maximum degree in the subgraphs of Q_{n} with the k-detour property.

3. LOWER BOUNDS

First, we are going to improve the lower bound of Theorem D.
Theorem 3. $F_{l}(n) \geq \sqrt{2 n+\frac{1}{4}}-\frac{1}{2}$.
Proof. Let G be a local detour subgraph of Q_{n} with maximum degree $F=$ $F_{l}(n)$. For a vertex v, let $d(v)$ denote the degree of v in G. Then the total number of 2-edge paths in G is exactly $\sum_{v \in V(G)} \frac{1}{2} d(v)(d(v)-1)$. A detour in G is a 3-edge path, whose edges are coplanar and the end-vertices are not adjacent in G. There exists a detour for every edge of Q_{n} missed in G; thus the total number of detours is at least $n 2^{n-1}-|E(G)|$. Every detour contains two 2-edge paths, and any 2-edge path in G can belong to at most one detour. Thus, the total number of 2-edge paths in G is at least $n 2^{n}-2|E(G)|=n 2^{n}-\sum_{v \in V(G)} d(v)$, so we have

$$
n 2^{n} \leq \sum_{v \in V(G)} \frac{1}{2} d(v)(d(v)+1) \leq \frac{1}{2} 2^{n} F(F+1)
$$

which implies $\left(F+\frac{1}{2}\right)^{2} \geq 2 n+\frac{1}{4}$.
In the rest of this section, we show that the construction of Theorem 1 is asymptotically optimal, and that for large n any subgraph of the hypercube Q_{n} with the 2-detour property has more edges than this construction. To this end, it is enough to consider the subgraphs G of Q_{n} such that

$$
\begin{equation*}
|E(G)| \leq 4 \cdot 2^{n} . \tag{1}
\end{equation*}
$$

Lemma 2. The number of vertices of degree 1 in a subgraph G of Q_{n} with the 1 -detour property satisfying (1) is at most $8 \cdot 2^{n} / n$.
Proof. Assume indirectly that this number is greater than $8 \cdot 2^{n} / n$. As was observed in the proof of Theorem 12 of [1], the neighbor of any vertex of degree 1 in G has degree n and is not adjacent to any other vertex of degree 1 . It follows that the number of vertices of degree n in G also is larger than $8 \cdot 2^{n} / n$. Therefore, $|E(G)|>0.5 n \cdot\left(8 \cdot 2^{n} / n\right)=4 \cdot 2^{n}$, a contradiction to (1).

From now on, we assume the following notation. For a subgraph G of Q_{n} and an arbitrary number α, let $L=L(G, \alpha)=\left\{v \in V\left(Q^{n}\right) \mid d_{G}(v) \leq \alpha\right\}$, and $H=H(G, \alpha)=\left\{v \in V\left(Q^{n}\right) \mid d_{G}(v)>\alpha\right\}=V\left(Q^{n}\right) \backslash L$. For a vertex v, let $d_{L}(v)$ be the number of edges of G incident with v having the second end in L, and $d_{H}(v)$ be the number of edges incident with v having the second end in H.

Lemma 3. Let G be a subgraph of Q_{n} with the 1-detour property. Then

$$
\begin{equation*}
n|L| \leq \alpha 2^{n}+2 \alpha|E(G)|+\sum_{v \in H} d_{L}(v) d_{H}(v) . \tag{2}
\end{equation*}
$$

Proof. Let $d(v)=d_{L}(v)+d_{H}(v)$ denote the degree of v in G. We are going to count oriented 3-paths $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ in G, where $v_{0} \in L$ and $\left\{v_{0}, v_{3}\right\} \in E\left(Q_{n}\right)$. Since any missing edge has such a detour, the number of paths with $v_{0}=v$ as their starting vertex is at least $n-d(v)$. On the other hand, the number of oriented 3 -paths where v_{1} or v_{2} belongs to L does not exceed $2 \alpha|E(G)|$. Indeed, there are at most $2|E(G)|$ choices for the edge $\left\{v_{1}, v_{2}\right\}$. If one of its ends belongs to L, there are at most α choices for the other two edges of the path (they have to be parallel in Q_{n}). The number of oriented 3-paths in which $v_{0} \in L$ while $v_{1}, v_{2} \in H$, is at most $\sum_{v \in H} d_{L}(v) d_{H}(v)$. Indeed, let $v_{1}=v$; there are $d_{L}(v)$ choices for v_{0} and $d_{H}(v)$ choices for v_{2}. The last vertex, v_{3}, is determined uniquely, because the two ending edges have to be parallel. Therefore,

$$
\sum_{v \in L}(n-d(v)) \leq 2 \alpha|E(G)|+\sum_{v \in H} d_{L}(v) d_{H}(v),
$$

which implies (2).

Theorem 4. Any subgraph of Q_{n} with the 1-detour property has at least $3 \cdot 2^{n}(1-\sqrt{112 / n})$ edges.
Proof. Set $\alpha=\alpha(n)=\sqrt{\frac{9}{7} n}$. Since

$$
d_{L}(v) d_{H}(v) \leq \frac{1}{4}\left(d_{L}(v)+d_{H}(v)\right)^{2}=\frac{1}{4} d(v)^{2} \leq \frac{n}{4} d(v),
$$

Lemma 3 yields

$$
\sum_{v \in H} d(v) \geq 4|L|-\frac{4 \alpha}{n} 2^{n}-\frac{8 \alpha}{n}|E(G)| .
$$

By Lemma 2,

$$
\sum_{v \in L} d(v) \geq 2|L|-8 \cdot 2^{n} / n,
$$

and, thus,

$$
2|E(G)|=\sum_{v \in V\left(Q_{n}\right)} d(v) \geq 6|L|-\frac{4 \alpha}{n} 2^{n}-\frac{8 \alpha}{n}|E(G)|-8 \cdot 2^{n} / n .
$$

Because $2|E(G)| \geq \alpha|H|$, we get

$$
2|E(G)|\left(1+\frac{6}{\alpha}+\frac{4 \alpha}{n}\right) \geq 6|H|+6|L|-\frac{4 \alpha}{n} 2^{n}-8 \cdot 2^{n} / n .
$$

It is easily verified that

$$
\left(1-\frac{2 \alpha}{3 n}-\frac{4}{3 n}\right) /\left(1+\frac{6}{\alpha}+\frac{4 \alpha}{n}\right) \geq 1-\frac{4 \alpha}{6 n}-\frac{4 \alpha}{n}-\frac{6}{\alpha} .
$$

Since $|H|+|L|=2^{n}$, we finally get

$$
|E(G)| \geq 3 \cdot 2^{n}\left(1-\frac{4 \alpha}{6 n}-\frac{4 \alpha}{n}-\frac{6}{\alpha}\right)=3 \cdot 2^{n}(1-\sqrt{112 / n}) .
$$

Theorem 5. Any subgraph of Q_{n} with the 2-detour property has at least (3.000013-o(1)) $\cdot 2^{n}$ edges.

Proof. We break the proof of Theorem 5 into a series of observations and lemmas. Let S be a subset of $V\left(Q_{n}\right)$. We say that a pair of vertices $\left\{v^{\prime}, v^{\prime \prime}\right\}$ is an S-bridge if:
(1) $v^{\prime}, v^{\prime \prime} \in S$, and
(2) $v^{\prime}, v^{\prime \prime}$ are at a distance of 2 in both Q_{n} and G, and
(3) The middle vertex of every 2-path from v^{\prime} to $v^{\prime \prime}$ in G also belongs to S.

Notice that any pair of vertices at a distance of 2 in G is a $V\left(Q_{n}\right)$-bridge.
We say that an ordered quadruple of vertices $\left(v_{0}, v_{1}, v_{3}, v_{4}\right)$ in G is an S-detour if:
(1) v_{0}, v_{4} are at a distance of 2 in Q_{n}, and
(2) $\left\{v_{1}, v_{3}\right\}$ is an S-bridge, and
(3) $\left\{v_{0}, v_{1}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ are edges of G and are parallel in Q_{n}.

Every S-detour induces either one or two oriented 4 -paths $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ in G, where $v_{2} \in S$ is called a middle vertex of the detour. Thus, every S-detour has either one or two middle vertices.

We name a quadruple of vertices of Q_{n} an empty square in G, if they induce a Q_{2}-subgraph in Q_{n} and induce no edges in G.

We will use the notation of Lemma 3, where we set $\alpha=n^{1 / 3}$. We also denote $d(v)=d_{L}(v)+d_{H}(v)$ the degree of v in G.

Lemma 4. The number of empty squares in G, where all four vertices belong to L, is at least $\binom{n}{2} 2^{n-2}-\binom{n}{2}|H|-(n-1)|E(G)|$.
Proof. The total number of Q_{2} in Q_{n} is $\binom{n}{2} 2^{n-2}$. The number of Q_{2} with at least one vertex in H does not exceed $\binom{n}{2}|H|$. The number of Q_{2} that are not empty in G does not exceed $(n-1)|E(G)|$, because every edge of G belongs to $(n-1)$ squares in Q_{n}.

Lemma 5. The number of $V\left(Q_{n}\right)$-detours $\left(v_{0}, v_{1}, v_{3}, v_{4}\right)$ in G such that $v_{0}, v_{4} \in L$ is at least $n(n-1) 2^{n-1}-2 n(n-1)|H|-4(n-1)|E(G)|$.

Proof. Consider an empty square in G in which all four vertices belong to L. There are 4 choices of an ordered pair of its opposite vertices. Let $\left(v_{0}, v_{4}\right)$ be such a pair. Since G has a 2-detour property, there should exist an oriented path $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ in G. It is easy to see that $\left(v_{0}, v_{1}, v_{3}, v_{4}\right)$ is a $V\left(Q_{n}\right)$-detour. Thus, Lemma 5 follows from Lemma 4.

Lemma 6. The number of $V\left(Q_{n}\right)$-detours in G that are not H-detours does not exceed $3(n-1) \alpha^{2} 2^{n}$.
Proof. Let $\left(v_{0}, v_{1}, v_{3}, v_{4}\right)$ be a $V\left(Q_{n}\right)$-detour, which is not an H-detour. Then at least one of the following conditions is true:
(i) $v_{1} \in L$, or
(ii) $v_{3} \in L$, or
(iii) There is a middle vertex v_{2} of this detour that belongs to L.

For each of these conditions, we claim that the number of $V\left(Q_{n}\right)$-detours that satisfies this particular condition does not exceed $(n-1) \alpha^{2} 2^{n}$. Indeed, consider detours with $v_{1} \in L$. There are at most 2^{n} choices for $v_{1} \in L$. Since $d\left(v_{1}\right) \leq \alpha$, there are at most α choices for v_{0} and at most α choices for v_{2}. There are at most $(n-1)$ choices for v_{3}. The remaining vertex, v_{4}, is determined uniquely, because the edges $\left\{v_{0}, v_{1}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ are parallel. Thus, $(n-1) \alpha^{2} 2^{n}$ is an upper bound of the number of such detours. Similarly, the same bound holds for the number of detours with $v_{3} \in L$. Finally, consider detours that satisfy (iii). There are at most 2^{n} choices for a middle vertex $v_{2} \in L$. Since $d\left(v_{2}\right) \leq \alpha$, there are at most α choices for v_{1} and at most α choices for v_{3}. There are at most $(n-1)$ choices for v_{0}, and the remaining vertex, v_{4}, is determined uniquely, because the edges $\left\{v_{0}, v_{1}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ are parallel.

Let ϵ be a positive constant that we will choose later. We set $H_{\epsilon}^{\prime}=\{v \in H$: $\left.\left|2 d_{L}(v)-n\right| \leq \epsilon n,\left|2 d_{H}(v)-n\right| \leq \epsilon n\right\}$ and $H_{\epsilon}^{\prime \prime}=H \backslash H_{\epsilon}^{\prime}$. In particular, $v \in H_{\epsilon}^{\prime}$ implies $d(v) \geq(1-\epsilon) n$.

Lemma 7. The number of H-detours in G that are not H_{ϵ}^{\prime}-detours does not exceed

$$
3(n-1) \sum_{v \in H_{\epsilon}^{\prime \prime}} d(v)^{2}
$$

Proof. Similarly to the proof of Lemma 6, if an H-detour $\left(v_{0}, v_{1}, v_{3}, v_{4}\right)$ is not an H_{ϵ}^{\prime}-detour, then either $v_{1} \in H_{\epsilon}^{\prime \prime}$, or $v_{3} \in H_{\epsilon}^{\prime \prime}$, or the detour possesses a middle vertex $v_{2} \in H_{\epsilon}^{\prime \prime}$. The number of detours which satisfy just one of these conditions does not exceed $(n-1) \sum_{v \in H_{\epsilon}^{\prime \prime}} d(v)^{2}$. For instance, for every choice of a middle vertex $v_{2} \in H_{\epsilon}^{\prime \prime}$, the number of choices of $\left(v_{1}, v_{3}\right)$ as its neighbors does not exceed $d\left(v_{2}\right)^{2}$. The number of choices of v_{0} does not exceed $(n-1)$, and v_{4} is determined uniquely.

Let A_{4} be the family of Q_{2}-subgraphs of Q_{n}, where all 4 vertices belong to H_{ϵ}^{\prime} and all 4 edges appear in G. Let A_{3} be the family of Q_{2}-subgraphs of Q_{n},
where all 4 vertices belong to H_{ϵ}^{\prime} and only 3 of the 4 edges appear in G. Notice that each Q_{2} from $A_{3} \cup A_{4}$ induces exactly two unoriented H_{ϵ}^{\prime}-bridges in G. Let A_{2} be the family of Q_{2}-subgraphs of Q_{n} that induce exactly one H_{ϵ}^{\prime}-bridge in G. Such a subgraph contains a 2-path with both edges present in G and all 3 vertices belonging to H_{ϵ}^{\prime}, and at least one of the other two edges is missing from G.

Lemma 8.

$$
\left|A_{4}\right| \leq \frac{1}{32}(1+\epsilon)^{2} n^{2}\left|H_{\epsilon}^{\prime}\right| .
$$

Proof. Indeed, $4\left|A_{4}\right| \leq \sum_{v \in H_{\epsilon}^{\prime}} \frac{1}{2} d_{H}(v)^{2} \leq\left|H_{\epsilon}^{\prime}\right| \cdot \frac{1}{2}\left(\frac{1}{2}(n+\epsilon n)\right)^{2}$.
Lemma 9. $\left|A_{3}\right| \leq \frac{1}{4} \epsilon(1+\epsilon) n^{2}\left|H_{\epsilon}^{\prime}\right|$.
Proof. Every Q_{2}-subgraph in A_{3} has two vertices $v, u \in H_{\epsilon}^{\prime}$, where $\{v, u\} \in$ $E\left(Q_{n}\right) \backslash E(G)$. Given $\{v, u\}$, the other two vertices of this subgraph can be selected in at most $d_{H}(v) \leq \frac{1}{2}(1+\epsilon) n$ ways. Thus,

$$
2\left|A_{3}\right| \leq \sum_{v \in H_{\epsilon}^{\prime}}(n-d(v)) \cdot \frac{1}{2}(1+\epsilon) n \leq\left|H_{\epsilon}^{\prime}\right| \cdot \epsilon n \cdot \frac{1}{2}(1+\epsilon) n .
$$

Lemma 10. $\quad\left|A_{2}\right| \leq \frac{1}{2} \epsilon(1+\epsilon) n^{2}\left|H_{\epsilon}^{\prime}\right|$.
Proof. Every Q_{2}-subgraph in A_{2} has a vertex $v \in H_{\epsilon}^{\prime}$ and another vertex u so that $\{v, u\} \in E\left(Q_{n}\right) \backslash E(G)$. Similarly to the proof of Lemma 9,

$$
\left|A_{2}\right| \leq \sum_{v \in H_{\epsilon}^{\prime}}(n-d(v)) \cdot \frac{1}{2}(1+\epsilon) n \leq\left|H_{\epsilon}^{\prime}\right| \cdot \epsilon n \cdot \frac{1}{2}(1+\epsilon) n .
$$

Lemma 11.

$$
\begin{array}{r}
\frac{1}{16}(1+\epsilon)^{2}(1+17 \epsilon) n^{3}\left|H_{\epsilon}^{\prime}\right| \geq n(n-1) 2^{n-1}-2 n(n-1)|H|-4(n-1)|E(G)| \\
-3(n-1) \alpha^{2} 2^{n}-3(n-1) \sum_{v \in H_{\epsilon}^{\prime \prime}} d(v)^{2} \tag{3}
\end{array}
$$

Proof. The total number of H_{ϵ}^{\prime}-bridges is $2\left|A_{4}\right|+2\left|A_{3}\right|+\left|A_{2}\right|$. Because $2 d_{L}(v) \leq(1+\epsilon) n$ for any $v \in H_{\epsilon}^{\prime}$, we notice that any unoriented H_{ϵ}^{\prime}-bridge supports at most $(1+\epsilon) n$ oriented H_{ϵ}^{\prime}-detours with both ends in L. Thus, $(1+\epsilon) n$. $\left(2\left|A_{4}\right|+2\left|A_{3}\right|+\left|A_{2}\right|\right)$ is an upper bound for the number of oriented H_{ϵ}^{\prime}-detours with both ends in L. The left-hand side of (3) is obtained by replacing $\left|A_{4}\right|,\left|A_{3}\right|$, and $\left|A_{2}\right|$ in the last expression by their upper bounds from Lemmas $8-10$. The right-hand side of (3) is a lower bound of the number of oriented H_{ϵ}^{\prime}-detours with both ends in L derived from Lemmas 5-7.

Lemma 12. For any vertex $v \in H_{\epsilon}^{\prime \prime}$,

$$
4 d_{L}(v) d_{H}(v) \leq n d(v)-\epsilon^{2} d(v)^{2} .
$$

Proof. Let $d=d(v), d_{\min }=\min \left\{d_{L}(v), d_{H}(v)\right\}, d_{\max }=\max \left\{d_{L}(v), d_{H}(v)\right\}$. If $\epsilon \geq 1$, then $H_{\epsilon}^{\prime \prime}$ is empty, so we may assume that $0<\epsilon<1$. Let θ be defined by $d_{\text {min }}=(1-\theta) d / 2$; then $\theta \geq 0$.

The desired inequality is equivalent to $\epsilon^{2}-\theta^{2} \leq(n / d)-1$, so we prove this. Since $n \geq d$, the inequality is satisfied if $\theta \geq \epsilon$, so we may assume that $0 \leq \theta<\epsilon<1$.

For any real ϵ, we have $\epsilon-\epsilon^{2}<\frac{1}{2}$ and then $\epsilon<1$ gives $2 \epsilon<1 /(1-\epsilon)$. From this and $\theta<\epsilon$, it follows first that $\epsilon+\theta<1 /(1-\epsilon)$, then that $\epsilon^{2}-\theta^{2}<\frac{\epsilon-\theta}{1-\epsilon}=\frac{1-\theta}{1-\epsilon}-1$. Now, if both $d_{L}(v)$ and $d_{H}(v)$ are greater than $(1-\epsilon) n / 2$, then the fact that $v \in H_{\epsilon}^{\prime \prime}$, implies $d_{\max }>(1+\epsilon) n / 2$, which results in $d=d_{\min }+d_{\max }>n$, and, therefore, $(1-\theta) d / 2=d_{\min } \leq(1-\epsilon) n / 2$, and so $(1-\theta) /(1-\epsilon) \leq n / d$, which gives the desired conclusion.

We are now ready to proceed with the proof of Theorem 5. Recall that by (1), $|E(G)| \leq 4 \cdot 2^{n}$. Because $|E(G)| \geq \frac{1}{2} \alpha|H|$, we may assume that $|H|=$ $\mathcal{O}\left(n^{-1 / 3} 2^{n}\right)$. Let $a(\epsilon)=\frac{1}{16}(1+\epsilon)^{2}(1+17 \epsilon)$. Since $\alpha=n^{1 / 3}$, Lemma 3 implies

$$
\begin{equation*}
\sum_{v \in H} d_{L}(v) d_{H}(v) \geq n 2^{n}-\mathcal{O}\left(n^{2 / 3} 2^{n}\right) \tag{4}
\end{equation*}
$$

and Lemma 11 implies

$$
a(\epsilon) n^{2}\left|H_{\epsilon}^{\prime}\right|+3 \sum_{v \in H_{\epsilon}^{\prime \prime}} d(v)^{2} \geq \frac{1}{2} n 2^{n}-\mathcal{O}\left(n^{2 / 3} 2^{n}\right) .
$$

For $v \in H_{\epsilon}^{\prime}$, we have $d_{L}(v) d_{H}(v) \leq \frac{n}{4} d(v)$. For $v \in H_{\epsilon}^{\prime \prime}$, we may apply Lemma 12. Thus,

$$
\sum_{v \in H} d_{L}(v) d_{H}(v) \leq \frac{n}{4} \sum_{v \in H} d(v)-\frac{\epsilon^{2}}{4} \sum_{v \in H_{\epsilon}^{\prime \prime}} d(v)^{2} .
$$

By combining the last two inequalities, we get

$$
\sum_{v \in H} d_{L}(v) d_{H}(v) \leq \frac{n}{4} \sum_{v \in H} d(v)-\frac{\epsilon^{2}}{24} n 2^{n}+\frac{a(\epsilon) \epsilon^{2}}{12} n^{2}\left|H_{\epsilon}^{\prime}\right|+\mathcal{O}\left(n^{2 / 3} 2^{n}\right) .
$$

We now estimate $(1-\epsilon) n\left|H_{\epsilon}^{\prime}\right| \leq \sum_{v \in H} d(v)$, and get

$$
\begin{equation*}
\sum_{v \in H} d_{L}(v) d_{H}(v) \leq\left(\frac{1}{4}+\frac{a(\epsilon) \epsilon^{2}}{12(1-\epsilon)}\right) n \sum_{v \in H} d(v)-\frac{\epsilon^{2}}{24} n 2^{n}+\mathcal{O}\left(n^{2 / 3} 2^{n}\right) . \tag{5}
\end{equation*}
$$

Inequalities (4) and (5) yield

$$
\sum_{v \in H} d(v) \geq 4 \cdot \frac{1+\frac{\epsilon^{2}}{24}}{1+\frac{a(\epsilon)^{2}}{3(1-\epsilon)}} \cdot 2^{n}-\mathcal{O}\left(n^{-1 / 3} 2^{n}\right)
$$

By Lemma 2,

$$
\sum_{v \in L} d(v) \geq 2|L|-8 \cdot 2^{n} / n=2 \cdot 2^{n}-\mathcal{O}\left(n^{-1 / 3} 2^{n}\right)
$$

and thus,
$|E(G)|=\frac{1}{2} \sum_{v \in L} d(v)+\frac{1}{2} \sum_{v \in H} d(v) \geq\left(1+2 \cdot \frac{1+\frac{\epsilon^{2}}{24}}{1+\frac{a(\epsilon) \epsilon^{2}}{3(1-\epsilon)}}\right) \cdot 2^{n}-\mathcal{O}\left(n^{-1 / 3} 2^{n}\right)$.
When we select $\epsilon=1 / 33$, the expression in the brackets in the last formula is equal to $3.00001306 \cdots$. This completes the proof of Theorem 5 .

4. FINAL REMARKS

We do not have any knowledge how $f_{l}(n) / 2^{n}$ changes as a function of l. Therefore, we cannot resolve the conjectures of [1] whether the order of magnitude of $f(n)$ is $\sqrt{n} 2^{n-1}$ or the function $f(n) / 2^{n}$ is unbounded.

ACKNOWLEDGMENTS

The authors thank one of the referees for the valuable suggestions that improved this article.

References

[1] P. Erdős, P. Hamburger, R. E. Pippert, and W. D. Weakley, Hypercube subgraphs with minimal detours. J. Graph Theory 23 (1996), 119-128.
[2] G. A. Kabatianski and V. I. Panchenko, Packings and coverings of the Hamming space by balls of unit radius. Problems Inform. Transmission 24 (1988), 261-272.

[^0]: *Dedicated to the memory of Paul Erdős
 Contract grant sponsor: DIMACS. DIMACS is a cooperative project of Rutgers University, Princeton University, AT\&T Labs, Bell Labs and Bellcore. DIMACS is an NSF Science and Technology Center.
 Contract grant number: STC-91-19999.
 Contract grant sponsor: New Jersey Commission on Science and Technology
 Contract grant sponsor: Russian Foundation for Fundamental Research. Contract grant numbers: 96-01-01614 and 97-01-01075
 © 1999 John Wiley \& Sons, Inc.
 CCC 0364-9024/98/020101-11

