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Abstract: A minimal detour subgraph of the n-dimensional cube is a spanning
subgraph G of Qn having the property that, for vertices x, y of Qn, distances are
related by dG(x, y) ≤ dQn(x, y)+2. For a spanning subgraph G of Qn to be a local
detour subgraph, we require only that the above inequality be satisfied whenever
x and y are adjacent in Qn. Let f(n) (respectively, fl(n)) denote the minimum
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number of edges in any minimal detour (respectively, local detour) subgraph of Qn

(cf. Erdős et al. [1]). In this article, we find the asymptotics of fl(n) by showing
that 3 · 2n(1 − O(n−1/2)) < fl(n) < 3 · 2n(1 + o(1)). We also show that f(n) >
3.00001 · 2n (for n > n0), thus eventually fl(n) < f(n), answering a question
of [1] in the negative. We find the order of magnitude of Fl(n), the minimum
possible maximum degree in a local detour subgraph of Qn:

√
2n + 0.25 − 0.5 ≤

Fl(n) ≤ 1.5
√

2n − 1. c© 1999 John Wiley & Sons, Inc. J Graph Theory 30: 101–111, 1999
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1. INTRODUCTION

Parameters such as Hamming distances, distance sums, connectedness, maximum
degree, diameter, and the size of a minimum dominating set in the hypercube and
its spanning subgraphs have been investigated in many articles. Erdős, Hamburger,
Pippert, and Weakley [1] introduced and studied a combination of these types of
parameters. Some problems, questions, and conjectures were raised.

We say that a subgraph G of the n-dimensional hypercube Qn has the k-detour
property if any two vertices at distance d ≤ k in Qn are at distance at most d + 2
in G. Note that if k = 1, the definition gives the notion of a local detour subgraph,
and if k = n, it yields the notion of a minimal detour subgraph of [1]. Let f(n) and
fl(n) denote the minimum number of edges of any minimal detour subgraph or any
local detour subgraph of Qn, respectively. Further, let Fl(n) denote the minimum
possible maximum degree in any local detour subgraph of Qn.

Clearly every minimal detour subgraph of Qn is also a local detour subgraph, so
fl(n) ≤ f(n) for each n.

In [1], the following theorems were shown, among others:

Theorem A. For each positive integer n, f(n)/|E(Qn)| < 3/
√

2n.

Theorem B. For each positive integer n, fl(n)/|E(Qn)| <
√

3/2n.

Theorem C. If G is a local detour subgraph of Qn, then |E(G)| ≥ 2 · 2n(1 −
o(1)). In other words, fl(n) ≥ 2 · 2n(1 − o(1)).

Theorem D. Each local detour subgraph of Qn contains a vertex of degree at
least

√
n. In other words, Fl(n) ≥ √

n.

Also Erdős et al. [1] asked the following question.

Question. Is fl(n) = f?
In this article, we improve Theorems B and C by finding the asymptotics of fl(n)

and show that fl(n) < f(n). We also improve Theorem D and find a matching
upper bound, which gives the right order of magnitude of Fl(n).

Namely, in the next section we construct a local detour subgraph of Qn with
3 · 2n(1 + o(1)) edges and a local detour subgraph of Qn with maximum degree at
most 1.5

√
2n. In the last section, we prove that (i) any local detour subgraph has
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a vertex of degree
√

2n − 0.5 or more, (ii) any local detour subgraph of Qn has at
least 3 · 2n(1 −√

112/n) edges, and (iii) any subgraph of Qn with the 2-detour
property has at least (3.000013 − o(1)) · 2n edges.

This answers the Question in the negative.

2. CONSTRUCTIONS

In this section, we establish upper bounds for fl(n) and Fl(n). To do that we need
the following result by Kabatianski and Panchenko [2].

Lemma 1 [2]. The m-dimensional hypercube Qm has a dominating set D ⊂
V (Qm) with |D| = (1 + o(1))2m/m.

Theorem 1. For every n there is a subgraph G of Qn with the 1-detour property,
which has 3 · 2n(1 + o(1)) edges.

Proof. In this proof we write vertices of Qj as binary j-tuples. First, we define
two subsets S1 and S2 of V (Qn). Let m = bn/2c. Represent Qn as Qm × Qn−m,
where the Qm is induced by the first m coordinates and the Qn−m by the last
n − m coordinates of elements of our Qn. Each vector w ∈ Qn can be written as
w = vu, where v ∈ V (Qm) is an m-tuple, and u ∈ V (Qn−m) is an (n−m)-tuple.
By Lemma 1, the m-dimensional hypercube Qm has a dominating set D1 of size
(1+o(1))2m/m, and the (n−m)-dimensional hypercube Qn−m has a dominating
set D2 of size (1 + o(1))2n−m/(n − m). Let

S1 = {w = vu ∈ V (Qn)|v ∈ D1, u ∈ V (Qn−m)},

S2 = {w = vu ∈ V (Qn)|v ∈ V (Qm), u ∈ D2}.

Then |S1| = 2n−m · (1 + o(1))2m/m = (1 + o(1))2n+1/n, and, similarly, |S2| =
(1 + o(1))2n+1/n. Let S = S1 ∪ S2. Clearly, |S| = (1 + o(1))2n+2/n.

Now, let E(G) consist of those edges of Qn that are incident with S, and let G
be the subgraph of Qn spanned by the edge set E(G). We need to show that G
has the 1-detour property, and |E(G)| = 3 · 2n · (1 + o(1)). To prove the latter
statement, observe that |E(G)| =

∑
v∈SdegQn

(v) − |E(Qn[S])|, where Qn[S] is
the subgraph of Qn induced by S. Since each w ∈ S is adjacent in Qn to at least
m vertices in S, we get |E(G)| ≤ n|S| − 0.5m|S| = (3 + o(1))2n.

Finally, let w1 = v1u1 and w2 = v2u2 be two vertices of G that are adjacent in
Qn but are not adjacent in G. Since the degree in G of every vertex in S is n, neither
w1 nor w2 can be in S. The vectors w1 and w2 differ in exactly one coordinate, say
i. Without loss of generality, we can presume that i ≤ m. Thus, w1 = v1u and
w2 = v2u, where v1 and v2 differ only in coordinate i. By the definition, there is a
vertex x ∈ D2 that is adjacent to u. Then the vertices y = v1x and z = v2x are in
S2 and differ only in coordinate i. Hence, path (w1, y, z, w2) is present in G.
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Remark 1. Since for m = 2k − 1 the graph Qm has a perfect dominating set of
vertices, our construction for n = 2(2k −1) has strictly fewer than 3 ·2n(1−1/n)
edges.

Remark 2. The construction of Theorem 1 can be generalized to a k-detour
subgraph with 1

2(k + 1)(k + 2)2n(1 + o(1)) edges; when k is close to n; this gives
little useful information, but we think that when k is small relative to n the result
is optimal. To do so, we represent Qn as the direct product of (k + 1) smaller
hypercubes of approximately equal sizes and select a minimum size dominating set
in each of them. A vertex of Qn is included in set S, if its projection onto at least
one of the small hypercubes belongs to its dominating set. Let graph G include all
edges incident with at least one vertex from S. Then G has the k-detour property
and |E(G)| = 1

2(k + 1)(k + 2)2n(1 + o(1)).

Theorem 2. For every n there is a subgraph G of Qn with the 1-detour property
of maximum degree at most 1.5

√
2n − 1.

Proof. For n < 5 the statement is trivial. Let n ≥ 5 and m be the power of 2
lying in the half-open interval [

√
n/2,

√
2n), say, m = 2r. Denote s = d(n−m+

1)/me and partition the set {1, . . . , n} into m + 1 parts P0, . . . , Pm so that |P0| =
m − 1 and |Pi| ∈ {s − 1, s} for i = 1, · · ·m. Let H be the subgraph of Qn

spanned by the edges along the coordinates in P0. Clearly, H is the disjoint union
of 2n−m+1 copies of Qm−1. Since m−1 = 2r −1, we can partition V (Qm−1) into
m perfect dominating sets S1, . . . , Sm. For i = 1, . . . , m, let S′

i denote the union
of translates of Si over all copies of Qm−1 in H . Then every S′

i is a dominating set
in H and induces in Qn the disjoint union of 2m−1/m copies of Qn−m+1. Now,
for i = 1, . . . , m, add to H the edges along the coordinates in Pi that are adjacent
to the vertices in S′

i. This is the desired graph G.
In order to see that G is a local detour subgraph of Qn, consider an arbitrary

edge (u, v) ∈ E(Qn) \ E(G). The vertices u and v differ in some coordinate i ∈
{1, . . . , n} \P0, say, i ∈ P1. That means that they belong to different components,
say Cu and Cv, of H , which are adjacent in Qn. Then the common projection of
u and v into a copy of Qm−1 has a neighbor z in S1. Let zu and zv be the images
of z in Cu and Cv, respectively. By the definition, zu and zv are adjacent. Then
(u, zu, zv, v) is a path in G.

The maximum degree in G is

m − 1 + s ≤ m − 1 + n/m ≤
√

n/2 +
√

2n − 1 = 1.5
√

2n − 1.

Theorem 2 together with Theorem 3 below gives the order of magnitude of Fl(n).

Remark 3. For each fixed k, the construction of Theorem 2 can be generalized
to a k-detour subgraph with the maximum degree of order nk/(k+1). To do so, we
choose m as a power of 2, which is a bit more than nk/(k+1), choose s just large
enough so that if we partition {m, m + 1, . . . , n} into parts of size close to s, say
j parts P1, . . . , Pj , then (j

k) ≤ m. Then we assign to each k-element subset of
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{P1, . . . , Pj} one of the perfect dominating sets Si of Qm−1 and can argue as in
the proof of the theorem.

Remark 4. It follows from the proof of Theorem 11 in [1] that any subgraph of Qn

with the k-detour property has a vertex of degree of order nk/(k+1). This together
with Remark 3 gives for each fixed k the order of magnitude of the minimum possible
maximum degree in the subgraphs of Qn with the k-detour property.

3. LOWER BOUNDS

First, we are going to improve the lower bound of Theorem D.

Theorem 3. Fl(n) ≥
√

2n + 1
4 − 1

2 .

Proof. Let G be a local detour subgraph of Qn with maximum degree F =
Fl(n). For a vertex v, let d(v) denote the degree of v in G. Then the total number
of 2-edge paths in G is exactly

∑
v∈V (G)

1
2d(v)(d(v)−1). A detour in G is a 3-edge

path, whose edges are coplanar and the end-vertices are not adjacent in G. There
exists a detour for every edge of Qn missed in G; thus the total number of detours is
at least n2n−1 − |E(G)|. Every detour contains two 2-edge paths, and any 2-edge
path in G can belong to at most one detour. Thus, the total number of 2-edge paths
in G is at least n2n − 2|E(G)| = n2n −∑

v∈V (G) d(v), so we have

n2n ≤
∑

v∈V (G)

1
2
d(v)(d(v) + 1) ≤ 1

2
2nF (F + 1),

which implies (F + 1
2)2 ≥ 2n + 1

4 .
In the rest of this section, we show that the construction of Theorem 1 is asymp-

totically optimal, and that for large n any subgraph of the hypercube Qn with the
2-detour property has more edges than this construction. To this end, it is enough
to consider the subgraphs G of Qn such that

|E(G)| ≤ 4 · 2n. (1)

Lemma 2. The number of vertices of degree 1 in a subgraph G of Qn with the
1-detour property satisfying (1) is at most 8 · 2n/n.

Proof. Assume indirectly that this number is greater than 8 · 2n/n. As was
observed in the proof of Theorem 12 of [1], the neighbor of any vertex of degree
1 in G has degree n and is not adjacent to any other vertex of degree 1. It follows
that the number of vertices of degree n in G also is larger than 8 · 2n/n. Therefore,
|E(G)| > 0.5n · (8 · 2n/n) = 4 · 2n, a contradiction to (1).

From now on, we assume the following notation. For a subgraph G of Qn

and an arbitrary number α, let L = L(G, α) = {v ∈ V (Qn)|dG(v) ≤ α}, and
H = H(G, α) = {v ∈ V (Qn)|dG(v) > α} = V (Qn) \ L. For a vertex v, let
dL(v) be the number of edges of G incident with v having the second end in L, and
dH(v) be the number of edges incident with v having the second end in H .
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Lemma 3. Let G be a subgraph of Qn with the 1-detour property. Then

n|L| ≤ α2n + 2α|E(G)| +
∑
v∈H

dL(v)dH(v). (2)

Proof. Let d(v) = dL(v) + dH(v) denote the degree of v in G. We are going to
count oriented 3-paths (v0, v1, v2, v3) in G, where v0 ∈ L and {v0, v3} ∈ E(Qn).
Since any missing edge has such a detour, the number of paths with v0 = v as
their starting vertex is at least n − d(v). On the other hand, the number of oriented
3-paths where v1 or v2 belongs to L does not exceed 2α|E(G)|. Indeed, there are
at most 2|E(G)| choices for the edge {v1, v2}. If one of its ends belongs to L, there
are at most α choices for the other two edges of the path (they have to be parallel
in Qn). The number of oriented 3-paths in which v0 ∈ L while v1, v2 ∈ H , is at
most

∑
v∈H dL(v)dH(v). Indeed, let v1 = v; there are dL(v) choices for v0 and

dH(v) choices for v2. The last vertex, v3, is determined uniquely, because the two
ending edges have to be parallel. Therefore,∑

v∈L

(n − d(v)) ≤ 2α|E(G)| +
∑
v∈H

dL(v)dH(v),

which implies (2).

Theorem 4. Any subgraph of Qn with the 1-detour property has at least
3 · 2n(1 −√

112/n) edges.

Proof. Set α = α(n) =
√

9
7n. Since

dL(v)dH(v) ≤ 1
4
(dL(v) + dH(v))2 =

1
4
d(v)2 ≤ n

4
d(v),

Lemma 3 yields ∑
v∈H

d(v) ≥ 4|L| − 4α

n
2n − 8α

n
|E(G)|.

By Lemma 2, ∑
v∈L

d(v) ≥ 2|L| − 8 · 2n/n,

and, thus,

2|E(G)| =
∑

v∈V (Qn)

d(v) ≥ 6|L| − 4α

n
2n − 8α

n
|E(G)| − 8 · 2n/n.

Because 2|E(G)| ≥ α|H|, we get

2|E(G)|
(

1 +
6
α

+
4α

n

)
≥ 6|H| + 6|L| − 4α

n
2n − 8 · 2n/n.
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It is easily verified that

(
1 − 2α

3n
− 4

3n

)/(
1 +

6
α

+
4α

n

)
≥ 1 − 4α

6n
− 4α

n
− 6

α
.

Since |H| + |L| = 2n, we finally get

|E(G)| ≥ 3 · 2n
(

1 − 4α

6n
− 4α

n
− 6

α

)
= 3 · 2n(1 −

√
112/n).

Theorem 5. Any subgraph of Qn with the 2-detour property has at least
(3.000013 − o(1)) · 2n edges.

Proof. We break the proof of Theorem 5 into a series of observations and lem-
mas. Let S be a subset of V (Qn). We say that a pair of vertices {v′, v′′} is an
S-bridge if:

(1) v′, v′′ ∈ S, and
(2) v′, v′′ are at a distance of 2 in both Qn and G, and
(3) The middle vertex of every 2-path from v′ to v′′ in G also belongs to S.

Notice that any pair of vertices at a distance of 2 in G is a V (Qn)-bridge.
We say that an ordered quadruple of vertices (v0, v1, v3, v4) in G is an S-detour

if:

(1) v0, v4 are at a distance of 2 in Qn, and
(2) {v1, v3} is an S-bridge, and
(3) {v0, v1} and {v3, v4} are edges of G and are parallel in Qn.

Every S-detour induces either one or two oriented 4-paths (v0, v1, v2, v3, v4) in
G, where v2 ∈ S is called a middle vertex of the detour. Thus, every S-detour has
either one or two middle vertices.

We name a quadruple of vertices of Qn an empty square in G, if they induce a
Q2-subgraph in Qn and induce no edges in G.

We will use the notation of Lemma 3, where we set α = n1/3. We also denote
d(v) = dL(v) + dH(v) the degree of v in G.

Lemma 4. The number of empty squares in G, where all four vertices belong to
L, is at least (n

2 )2n−2 − (n
2 )|H| − (n − 1)|E(G)|.

Proof. The total number of Q2 in Qn is (n
2 )2n−2. The number of Q2 with at

least one vertex in H does not exceed (n
2 )|H|. The number of Q2 that are not empty

in G does not exceed (n − 1)|E(G)|, because every edge of G belongs to (n − 1)
squares in Qn.

Lemma 5. The number of V (Qn)-detours (v0, v1, v3, v4) in G such that
v0, v4 ∈ L is at least n(n − 1)2n−1 − 2n(n − 1)|H| − 4(n − 1)|E(G)|.
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Proof. Consider an empty square in G in which all four vertices belong to L.
There are 4 choices of an ordered pair of its opposite vertices. Let (v0, v4) be
such a pair. Since G has a 2-detour property, there should exist an oriented path
(v0, v1, v2, v3, v4) in G. It is easy to see that (v0, v1, v3, v4) is a V (Qn)-detour.
Thus, Lemma 5 follows from Lemma 4.

Lemma 6. The number of V (Qn)-detours in G that are not H-detours does not
exceed 3(n − 1)α22n.

Proof. Let (v0, v1, v3, v4) be a V (Qn)-detour, which is not an H-detour. Then
at least one of the following conditions is true:

(i) v1 ∈ L, or
(ii) v3 ∈ L, or

(iii) There is a middle vertex v2 of this detour that belongs to L.

For each of these conditions, we claim that the number of V (Qn)-detours that
satisfies this particular condition does not exceed (n − 1)α22n. Indeed, consider
detours with v1 ∈ L. There are at most 2n choices for v1 ∈ L. Since d(v1) ≤ α,
there are at most α choices for v0 and at most α choices for v2. There are at most
(n − 1) choices for v3. The remaining vertex, v4, is determined uniquely, because
the edges {v0, v1} and {v3, v4} are parallel. Thus, (n − 1)α22n is an upper bound
of the number of such detours. Similarly, the same bound holds for the number
of detours with v3 ∈ L. Finally, consider detours that satisfy (iii). There are at
most 2n choices for a middle vertex v2 ∈ L. Since d(v2) ≤ α, there are at most
α choices for v1 and at most α choices for v3. There are at most (n − 1) choices
for v0, and the remaining vertex, v4, is determined uniquely, because the edges
{v0, v1} and {v3, v4} are parallel.

Let ε be a positive constant that we will choose later. We set H ′
ε = {v ∈ H :

|2dL(v) − n| ≤ εn, |2dH(v) − n| ≤ εn} and H
′′
ε = H \ H ′

ε. In particular, v ∈ H ′
ε

implies d(v) ≥ (1 − ε)n.

Lemma 7. The number of H-detours in G that are not H ′
ε-detours does not

exceed

3(n − 1)
∑

v∈H
′′
ε

d(v)2.

Proof. Similarly to the proof of Lemma 6, if an H-detour (v0, v1, v3, v4) is not
an H ′

ε-detour, then either v1 ∈ H
′′
ε , or v3 ∈ H

′′
ε , or the detour possesses a middle

vertex v2 ∈ H
′′
ε . The number of detours which satisfy just one of these conditions

does not exceed (n − 1)
∑

v∈H
′′
ε

d(v)2. For instance, for every choice of a middle

vertex v2 ∈ H
′′
ε , the number of choices of (v1, v3) as its neighbors does not exceed

d(v2)2. The number of choices of v0 does not exceed (n−1), and v4 is determined
uniquely.

Let A4 be the family of Q2-subgraphs of Qn, where all 4 vertices belong to
H ′

ε and all 4 edges appear in G. Let A3 be the family of Q2-subgraphs of Qn,
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where all 4 vertices belong to H ′
ε and only 3 of the 4 edges appear in G. Notice

that each Q2 from A3 ∪ A4 induces exactly two unoriented H ′
ε-bridges in G. Let

A2 be the family of Q2-subgraphs of Qn that induce exactly one H ′
ε-bridge in G.

Such a subgraph contains a 2-path with both edges present in G and all 3 vertices
belonging to H ′

ε, and at least one of the other two edges is missing from G.

Lemma 8.

|A4| ≤ 1
32

(1 + ε)2n2|H ′
ε|.

Proof. Indeed, 4|A4| ≤ ∑
v∈H′

ε

1
2dH(v)2 ≤ |H ′

ε| · 1
2(1

2(n + εn))2.

Lemma 9. |A3| ≤ 1
4ε(1 + ε)n2|H ′

ε|.
Proof. Every Q2-subgraph in A3 has two vertices v, u ∈ H ′

ε, where {v, u} ∈
E(Qn)\E(G). Given {v, u}, the other two vertices of this subgraph can be selected
in at most dH(v) ≤ 1

2(1 + ε)n ways. Thus,

2|A3| ≤
∑

v∈H′
ε

(n − d(v)) · 1
2
(1 + ε)n ≤ |H ′

ε| · εn · 1
2
(1 + ε)n.

Lemma 10. |A2| ≤ 1
2ε(1 + ε)n2|H ′

ε|.
Proof. Every Q2-subgraph in A2 has a vertex v ∈ H ′

ε and another vertex u so
that {v, u} ∈ E(Qn) \ E(G). Similarly to the proof of Lemma 9,

|A2| ≤
∑

v∈H′
ε

(n − d(v)) · 1
2
(1 + ε)n ≤ |H ′

ε| · εn · 1
2
(1 + ε)n.

Lemma 11.

1
16

(1 + ε)2(1 + 17ε)n3|H ′
ε| ≥ n(n − 1)2n−1 − 2n(n − 1)|H| − 4(n − 1)|E(G)|

−3(n − 1)α22n − 3(n − 1)
∑

v∈H
′′
ε

d(v)2. (3)

Proof. The total number of H ′
ε-bridges is 2|A4| + 2|A3| + |A2|. Because

2dL(v) ≤ (1 + ε)n for any v ∈ H ′
ε, we notice that any unoriented H ′

ε-bridge
supports at most (1+ ε)n oriented H ′

ε-detours with both ends in L. Thus, (1+ ε)n ·
(2|A4| + 2|A3| + |A2|) is an upper bound for the number of oriented H ′

ε-detours
with both ends in L. The left-hand side of (3) is obtained by replacing |A4|, |A3|,
and |A2| in the last expression by their upper bounds from Lemmas 8–10. The
right-hand side of (3) is a lower bound of the number of oriented H ′

ε-detours with
both ends in L derived from Lemmas 5–7.
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Lemma 12. For any vertex v ∈ H
′′
ε ,

4dL(v)dH(v) ≤ nd(v) − ε2d(v)2.

Proof. Letd = d(v), dmin = min{dL(v), dH(v)}, dmax = max{dL(v), dH(v)}.
If ε ≥ 1, then H

′′
ε is empty, so we may assume that 0 < ε < 1. Let θ be defined by

dmin = (1 − θ)d/2; then θ ≥ 0.
The desired inequality is equivalent to ε2 − θ2 ≤ (n/d) − 1, so we prove

this. Since n ≥ d, the inequality is satisfied if θ ≥ ε, so we may assume that
0 ≤ θ < ε < 1.

For any real ε, we have ε−ε2 < 1
2 and then ε < 1 gives 2ε < 1/(1−ε). From this

and θ < ε, it follows first that ε+θ < 1/(1−ε), then that ε2−θ2 < ε−θ
1−ε = 1−θ

1−ε −1.

Now, if both dL(v) and dH(v) are greater than (1−ε)n/2, then the fact that v ∈ H
′′
ε ,

implies dmax > (1+ ε)n/2, which results in d = dmin +dmax > n, and, therefore,
(1 − θ)d/2 = dmin ≤ (1 − ε)n/2, and so (1 − θ)/(1 − ε) ≤ n/d, which gives the
desired conclusion.

We are now ready to proceed with the proof of Theorem 5. Recall that by
(1), |E(G)| ≤ 4 · 2n. Because |E(G)| ≥ 1

2α|H|, we may assume that |H| =
O(n−1/32n). Let a(ε) = 1

16(1 + ε)2(1 + 17ε). Since α = n1/3, Lemma 3 implies∑
v∈H

dL(v)dH(v) ≥ n2n − O(n2/32n), (4)

and Lemma 11 implies

a(ε)n2|H ′
ε| + 3

∑
v∈H

′′
ε

d(v)2 ≥ 1
2
n2n − O(n2/32n).

For v ∈ H ′
ε, we have dL(v)dH(v) ≤ n

4 d(v). For v ∈ H
′′
ε , we may apply Lemma

12. Thus, ∑
v∈H

dL(v)dH(v) ≤ n

4

∑
v∈H

d(v) − ε2

4

∑
v∈H

′′
ε

d(v)2.

By combining the last two inequalities, we get

∑
v∈H

dL(v)dH(v) ≤ n

4

∑
v∈H

d(v) − ε2

24
n2n +

a(ε)ε2

12
n2|H ′

ε| + O(n2/32n).

We now estimate (1 − ε)n|H ′
ε| ≤ ∑

v∈H d(v), and get

∑
v∈H

dL(v)dH(v) ≤
(

1
4

+
a(ε)ε2

12(1 − ε)

)
n
∑
v∈H

d(v) − ε2

24
n2n + O(n2/32n). (5)

Inequalities (4) and (5) yield

∑
v∈H

d(v) ≥ 4 · 1 + ε2

24

1 + a(ε)ε2
3(1−ε)

· 2n − O(n−1/32n).
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By Lemma 2, ∑
v∈L

d(v) ≥ 2|L| − 8 · 2n/n = 2 · 2n − O(n−1/32n),

and thus,

|E(G)| =
1
2

∑
v∈L

d(v) +
1
2

∑
v∈H

d(v) ≥

1 + 2 · 1 + ε2

24

1 + a(ε)ε2
3(1−ε)


 · 2n − O(n−1/32n).

When we select ε = 1/33, the expression in the brackets in the last formula is equal
to 3.00001306 · · ·. This completes the proof of Theorem 5.

4. FINAL REMARKS

We do not have any knowledge how fl(n)/2n changes as a function of l. Therefore,
we cannot resolve the conjectures of [1] whether the order of magnitude of f(n) is√

n2n−1 or the function f(n)/2n is unbounded.
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