Hypercube Subgraphs with Local Detours

Peter Hamburger,¹* Alexandr V. Kostochka,² Alexander Sidorenko³

¹ DEPARTMENT OF MATHEMATICAL SCIENCES INDIANA UNIVERSITY—PURDUE UNIVERSITY FORT WAYNE FORT WAYNE, INDIANA 46805 E-mail: hamburge@indiana.edu ² INSTITUTE OF MATHEMATICS 630090 NOVOSIBIRSK, RUSSIA E-mail: sasha@math.nsc.ru ³ COURANT INSTITUTE OF MATHEMATICAL SCIENCES NEW YORK UNIVERSITY NEW YORK, NY 10012 E-mail: sidorenk@cims.nyu.edu

Received May 16, 1997; revised August 21, 1998

Abstract: A minimal detour subgraph of the n-dimensional cube is a spanning subgraph G of Q_n having the property that, for vertices x, y of Q_n , distances are related by $d_G(x, y) \leq d_{Q_n}(x, y)+2$. For a spanning subgraph G of Q_n to be a local detour subgraph, we require only that the above inequality be satisfied whenever x and y are adjacent in Q_n . Let f(n) (respectively, $f_l(n)$) denote the minimum

CCC 0364-9024/98/020101-11

^{*}Dedicated to the memory of Paul Erdős

Contract grant sponsor: DIMACS. DIMACS is a cooperative project of Rutgers University, Princeton University, AT&T Labs, Bell Labs and Bellcore. DIMACS is an NSF Science and Technology Center.

Contract grant number: STC-91-19999.

Contract grant sponsor: New Jersey Commission on Science and Technology Contract grant sponsor: Russian Foundation for Fundamental Research. Contract grant numbers: 96-01-01614 and 97-01-01075

 $^{{\}scriptstyle {\rm (\!C\!C\!}}$ 1999 John Wiley & Sons, Inc.

number of edges in any minimal detour (respectively, local detour) subgraph of Q_n (cf. Erdős et al. [1]). In this article, we find the asymptotics of $f_l(n)$ by showing that $3 \cdot 2^n(1 - \mathcal{O}(n^{-1/2})) < f_l(n) < 3 \cdot 2^n(1 + o(1))$. We also show that $f(n) > 3.00001 \cdot 2^n$ (for $n > n_0$), thus eventually $f_l(n) < f(n)$, answering a question of [1] in the negative. We find the order of magnitude of $F_l(n)$, the minimum possible maximum degree in a local detour subgraph of Q_n : $\sqrt{2n + 0.25} - 0.5 \leq F_l(n) \leq 1.5\sqrt{2n} - 1$. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 101–111, 1999

Keywords: hypercube, minimal detour, local detour

1. INTRODUCTION

Parameters such as Hamming distances, distance sums, connectedness, maximum degree, diameter, and the size of a minimum dominating set in the hypercube and its spanning subgraphs have been investigated in many articles. Erdős, Hamburger, Pippert, and Weakley [1] introduced and studied a combination of these types of parameters. Some problems, questions, and conjectures were raised.

We say that a subgraph G of the n-dimensional hypercube Q_n has the k-detour property if any two vertices at distance $d \le k$ in Q_n are at distance at most d + 2in G. Note that if k = 1, the definition gives the notion of a local detour subgraph, and if k = n, it yields the notion of a minimal detour subgraph of [1]. Let f(n) and $f_l(n)$ denote the minimum number of edges of any minimal detour subgraph or any local detour subgraph of Q_n , respectively. Further, let $F_l(n)$ denote the minimum possible maximum degree in any local detour subgraph of Q_n .

Clearly every minimal detour subgraph of Q_n is also a local detour subgraph, so $f_l(n) \leq f(n)$ for each n.

In [1], the following theorems were shown, among others:

Theorem A. For each positive integer n, $f(n)/|E(Q_n)| < 3/\sqrt{2n}$.

Theorem B. For each positive integer n, $f_l(n)/|E(Q_n)| < \sqrt{3/2n}$.

Theorem C. If G is a local detour subgraph of Q_n , then $|E(G)| \ge 2 \cdot 2^n (1 - o(1))$. In other words, $f_l(n) \ge 2 \cdot 2^n (1 - o(1))$.

Theorem D. Each local detour subgraph of Q_n contains a vertex of degree at least \sqrt{n} . In other words, $F_l(n) \ge \sqrt{n}$.

Also Erdős et al. [1] asked the following question.

Question. Is $f_l(n) = f$?

In this article, we improve Theorems B and C by finding the asymptotics of $f_l(n)$ and show that $f_l(n) < f(n)$. We also improve Theorem D and find a matching upper bound, which gives the right order of magnitude of $F_l(n)$.

Namely, in the next section we construct a local detour subgraph of Q_n with $3 \cdot 2^n(1 + o(1))$ edges and a local detour subgraph of Q_n with maximum degree at most $1.5\sqrt{2n}$. In the last section, we prove that (i) any local detour subgraph has

a vertex of degree $\sqrt{2n} - 0.5$ or more, (*ii*) any local detour subgraph of Q_n has at least $3 \cdot 2^n (1 - \sqrt{112/n})$ edges, and (*iii*) any subgraph of Q_n with the 2-detour property has at least $(3.000013 - o(1)) \cdot 2^n$ edges.

This answers the Question in the negative.

2. CONSTRUCTIONS

In this section, we establish upper bounds for $f_l(n)$ and $F_l(n)$. To do that we need the following result by Kabatianski and Panchenko [2].

Lemma 1 [2]. The *m*-dimensional hypercube Q_m has a dominating set $D \subset V(Q_m)$ with $|D| = (1 + o(1))2^m/m$.

Theorem 1. For every *n* there is a subgraph G of Q_n with the 1-detour property, which has $3 \cdot 2^n(1 + o(1))$ edges.

Proof. In this proof we write vertices of Q_j as binary *j*-tuples. First, we define two subsets S_1 and S_2 of $V(Q_n)$. Let $m = \lfloor n/2 \rfloor$. Represent Q_n as $Q_m \times Q_{n-m}$, where the Q_m is induced by the first *m* coordinates and the Q_{n-m} by the last n-m coordinates of elements of our Q_n . Each vector $w \in Q_n$ can be written as w = vu, where $v \in V(Q_m)$ is an *m*-tuple, and $u \in V(Q_{n-m})$ is an (n-m)-tuple. By Lemma 1, the *m*-dimensional hypercube Q_m has a dominating set D_1 of size $(1+o(1))2^m/m$, and the (n-m)-dimensional hypercube Q_{n-m} has a dominating set D_2 of size $(1+o(1))2^{n-m}/(n-m)$. Let

$$S_1 = \{ w = vu \in V(Q_n) | v \in D_1, u \in V(Q_{n-m}) \},\$$

$$S_2 = \{ w = vu \in V(Q_n) | v \in V(Q_m), u \in D_2 \}.$$

Then $|S_1| = 2^{n-m} \cdot (1+o(1))2^m/m = (1+o(1))2^{n+1}/n$, and, similarly, $|S_2| = (1+o(1))2^{n+1}/n$. Let $S = S_1 \cup S_2$. Clearly, $|S| = (1+o(1))2^{n+2}/n$.

Now, let E(G) consist of those edges of Q_n that are incident with S, and let G be the subgraph of Q_n spanned by the edge set E(G). We need to show that G has the 1-detour property, and $|E(G)| = 3 \cdot 2^n \cdot (1 + o(1))$. To prove the latter statement, observe that $|E(G)| = \sum_{v \in S^{\deg}Q_n} (v) - |E(Q_n[S])|$, where $Q_n[S]$ is the subgraph of Q_n induced by S. Since each $w \in S$ is adjacent in Q_n to at least m vertices in S, we get $|E(G)| \leq n|S| - 0.5m|S| = (3 + o(1))2^n$.

Finally, let $w_1 = v_1u_1$ and $w_2 = v_2u_2$ be two vertices of G that are adjacent in Q_n but are not adjacent in G. Since the degree in G of every vertex in S is n, neither w_1 nor w_2 can be in S. The vectors w_1 and w_2 differ in exactly one coordinate, say i. Without loss of generality, we can presume that $i \leq m$. Thus, $w_1 = v_1u$ and $w_2 = v_2u$, where v_1 and v_2 differ only in coordinate i. By the definition, there is a vertex $x \in D_2$ that is adjacent to u. Then the vertices $y = v_1x$ and $z = v_2x$ are in S_2 and differ only in coordinate i. Hence, path (w_1, y, z, w_2) is present in G.

Remark 1. Since for $m = 2^k - 1$ the graph Q_m has a perfect dominating set of vertices, our construction for $n = 2(2^k - 1)$ has strictly fewer than $3 \cdot 2^n(1 - 1/n)$ edges.

Remark 2. The construction of Theorem 1 can be generalized to a k-detour subgraph with $\frac{1}{2}(k+1)(k+2)2^n(1+o(1))$ edges; when k is close to n; this gives little useful information, but we think that when k is small relative to n the result is optimal. To do so, we represent Q_n as the direct product of (k+1) smaller hypercubes of approximately equal sizes and select a minimum size dominating set in each of them. A vertex of Q_n is included in set S, if its projection onto at least one of the small hypercubes belongs to its dominating set. Let graph G include all edges incident with at least one vertex from S. Then G has the k-detour property and $|E(G)| = \frac{1}{2}(k+1)(k+2)2^n(1+o(1))$.

Theorem 2. For every *n* there is a subgraph G of Q_n with the 1-detour property of maximum degree at most $1.5\sqrt{2n} - 1$.

Proof. For n < 5 the statement is trivial. Let $n \ge 5$ and m be the power of 2 lying in the half-open interval $[\sqrt{n/2}, \sqrt{2n})$, say, $m = 2^r$. Denote $s = \lceil (n - m + 1)/m \rceil$ and partition the set $\{1, \ldots, n\}$ into m + 1 parts P_0, \ldots, P_m so that $|P_0| = m - 1$ and $|P_i| \in \{s - 1, s\}$ for $i = 1, \cdots m$. Let H be the subgraph of Q_n spanned by the edges along the coordinates in P_0 . Clearly, H is the disjoint union of 2^{n-m+1} copies of Q_{m-1} . Since $m-1=2^r-1$, we can partition $V(Q_{m-1})$ into m perfect dominating sets S_1, \ldots, S_m . For $i = 1, \ldots, m$, let S'_i denote the union of translates of S_i over all copies of Q_{m-1} in H. Then every S'_i is a dominating set in H and induces in Q_n the disjoint union of $2^{m-1}/m$ copies of Q_{n-m+1} . Now, for $i = 1, \ldots, m$, add to H the edges along the coordinates in P_i that are adjacent to the vertices in S'_i . This is the desired graph G.

In order to see that G is a local detour subgraph of Q_n , consider an arbitrary edge $(u, v) \in E(Q_n) \setminus E(G)$. The vertices u and v differ in some coordinate $i \in \{1, \ldots, n\} \setminus P_0$, say, $i \in P_1$. That means that they belong to different components, say C_u and C_v , of H, which are adjacent in Q_n . Then the common projection of u and v into a copy of Q_{m-1} has a neighbor z in S_1 . Let z_u and z_v be the images of z in C_u and C_v , respectively. By the definition, z_u and z_v are adjacent. Then (u, z_u, z_v, v) is a path in G.

The maximum degree in G is

$$m - 1 + s \le m - 1 + n/m \le \sqrt{n/2} + \sqrt{2n} - 1 = 1.5\sqrt{2n} - 1.5\sqrt{2n}$$

Theorem 2 together with Theorem 3 below gives the order of magnitude of $F_l(n)$.

Remark 3. For each fixed k, the construction of Theorem 2 can be generalized to a k-detour subgraph with the maximum degree of order $n^{k/(k+1)}$. To do so, we choose m as a power of 2, which is a bit more than $n^{k/(k+1)}$, choose s just large enough so that if we partition $\{m, m+1, \ldots, n\}$ into parts of size close to s, say j parts P_1, \ldots, P_j , then $\binom{j}{k} \leq m$. Then we assign to each k-element subset of $\{P_1, \ldots, P_j\}$ one of the perfect dominating sets S_i of Q_{m-1} and can argue as in the proof of the theorem.

Remark 4. It follows from the proof of Theorem 11 in [1] that any subgraph of Q_n with the k-detour property has a vertex of degree of order $n^{k/(k+1)}$. This together with Remark 3 gives for each fixed k the order of magnitude of the minimum possible maximum degree in the subgraphs of Q_n with the k-detour property.

3. LOWER BOUNDS

First, we are going to improve the lower bound of Theorem D.

Theorem 3. $F_l(n) \ge \sqrt{2n + \frac{1}{4}} - \frac{1}{2}$.

Proof. Let G be a local detour subgraph of Q_n with maximum degree $F = F_l(n)$. For a vertex v, let d(v) denote the degree of v in G. Then the total number of 2-edge paths in G is exactly $\sum_{v \in V(G)} \frac{1}{2}d(v)(d(v)-1)$. A detour in G is a 3-edge path, whose edges are coplanar and the end-vertices are not adjacent in G. There exists a detour for every edge of Q_n missed in G; thus the total number of detours is at least $n2^{n-1} - |E(G)|$. Every detour contains two 2-edge paths, and any 2-edge path in G can belong to at most one detour. Thus, the total number of 2-edge paths in G is at least $n2^n - 2|E(G)| = n2^n - \sum_{v \in V(G)} d(v)$, so we have

$$n2^n \le \sum_{v \in V(G)} \frac{1}{2} d(v)(d(v)+1) \le \frac{1}{2} 2^n F(F+1),$$

which implies $(F + \frac{1}{2})^2 \ge 2n + \frac{1}{4}$.

In the rest of this section, we show that the construction of Theorem 1 is asymptotically optimal, and that for large n any subgraph of the hypercube Q_n with the 2-detour property has more edges than this construction. To this end, it is enough to consider the subgraphs G of Q_n such that

$$|E(G)| \le 4 \cdot 2^n. \tag{1}$$

Lemma 2. The number of vertices of degree 1 in a subgraph G of Q_n with the 1-detour property satisfying (1) is at most $8 \cdot 2^n/n$.

Proof. Assume indirectly that this number is greater than $8 \cdot 2^n/n$. As was observed in the proof of Theorem 12 of [1], the neighbor of any vertex of degree 1 in G has degree n and is not adjacent to any other vertex of degree 1. It follows that the number of vertices of degree n in G also is larger than $8 \cdot 2^n/n$. Therefore, $|E(G)| > 0.5n \cdot (8 \cdot 2^n/n) = 4 \cdot 2^n$, a contradiction to (1).

From now on, we assume the following notation. For a subgraph G of Q_n and an arbitrary number α , let $L = L(G, \alpha) = \{v \in V(Q^n) | d_G(v) \leq \alpha\}$, and $H = H(G, \alpha) = \{v \in V(Q^n) | d_G(v) > \alpha\} = V(Q^n) \setminus L$. For a vertex v, let $d_L(v)$ be the number of edges of G incident with v having the second end in L, and $d_H(v)$ be the number of edges incident with v having the second end in H.

Lemma 3. Let G be a subgraph of Q_n with the 1-detour property. Then

$$n|L| \le \alpha 2^n + 2\alpha |E(G)| + \sum_{v \in H} d_L(v) d_H(v).$$

$$\tag{2}$$

Proof. Let $d(v) = d_L(v) + d_H(v)$ denote the degree of v in G. We are going to count oriented 3-paths (v_0, v_1, v_2, v_3) in G, where $v_0 \in L$ and $\{v_0, v_3\} \in E(Q_n)$. Since any missing edge has such a detour, the number of paths with $v_0 = v$ as their starting vertex is at least n - d(v). On the other hand, the number of oriented 3-paths where v_1 or v_2 belongs to L does not exceed $2\alpha |E(G)|$. Indeed, there are at most 2|E(G)| choices for the edge $\{v_1, v_2\}$. If one of its ends belongs to L, there are at most α choices for the other two edges of the path (they have to be parallel in Q_n). The number of oriented 3-paths in which $v_0 \in L$ while $v_1, v_2 \in H$, is at most $\sum_{v \in H} d_L(v) d_H(v)$. Indeed, let $v_1 = v$; there are $d_L(v)$ choices for v_0 and $d_H(v)$ choices for v_2 . The last vertex, v_3 , is determined uniquely, because the two ending edges have to be parallel. Therefore,

$$\sum_{v \in L} (n - d(v)) \le 2\alpha |E(G)| + \sum_{v \in H} d_L(v) d_H(v),$$

which implies (2).

Theorem 4. Any subgraph of Q_n with the 1-detour property has at least $3 \cdot 2^n (1 - \sqrt{112/n})$ edges.

Proof. Set
$$\alpha = \alpha(n) = \sqrt{\frac{9}{7}n}$$
. Since
 $d_L(v)d_H(v) \le \frac{1}{4}(d_L(v) + d_H(v))^2 = \frac{1}{4}d(v)^2 \le \frac{n}{4}d(v),$

Lemma 3 yields

$$\sum_{e \in H} d(v) \ge 4|L| - \frac{4\alpha}{n} 2^n - \frac{8\alpha}{n} |E(G)|.$$

By Lemma 2,

$$\sum_{v \in L} d(v) \ge 2|L| - 8 \cdot 2^n/n,$$

and, thus,

$$2|E(G)| = \sum_{v \in V(Q_n)} d(v) \ge 6|L| - \frac{4\alpha}{n} 2^n - \frac{8\alpha}{n} |E(G)| - 8 \cdot 2^n/n.$$

Because $2|E(G)| \ge \alpha |H|$, we get

$$2|E(G)|\left(1+\frac{6}{\alpha}+\frac{4\alpha}{n}\right) \ge 6|H|+6|L|-\frac{4\alpha}{n}2^n-8\cdot 2^n/n.$$

It is easily verified that

$$\left(1 - \frac{2\alpha}{3n} - \frac{4}{3n}\right) \left/ \left(1 + \frac{6}{\alpha} + \frac{4\alpha}{n}\right) \ge 1 - \frac{4\alpha}{6n} - \frac{4\alpha}{n} - \frac{6}{\alpha}\right)$$

Since $|H| + |L| = 2^n$, we finally get

$$|E(G)| \ge 3 \cdot 2^n \left(1 - \frac{4\alpha}{6n} - \frac{4\alpha}{n} - \frac{6}{\alpha} \right) = 3 \cdot 2^n (1 - \sqrt{112/n}).$$

Theorem 5. Any subgraph of Q_n with the 2-detour property has at least $(3.000013 - o(1)) \cdot 2^n$ edges.

Proof. We break the proof of Theorem 5 into a series of observations and lemmas. Let S be a subset of $V(Q_n)$. We say that a pair of vertices $\{v', v''\}$ is an S-bridge if:

- (1) $v', v'' \in S$, and
- (2) v', v'' are at a distance of 2 in both Q_n and G, and

(3) The middle vertex of every 2-path from v' to v'' in G also belongs to S.

Notice that any pair of vertices at a distance of 2 in G is a $V(Q_n)$ -bridge.

We say that an ordered quadruple of vertices (v_0, v_1, v_3, v_4) in G is an S-detour if:

- (1) v_0, v_4 are at a distance of 2 in Q_n , and
- (2) $\{v_1, v_3\}$ is an S-bridge, and
- (3) $\{v_0, v_1\}$ and $\{v_3, v_4\}$ are edges of G and are parallel in Q_n .

Every S-detour induces either one or two oriented 4-paths $(v_0, v_1, v_2, v_3, v_4)$ in G, where $v_2 \in S$ is called a *middle vertex* of the detour. Thus, every S-detour has either one or two middle vertices.

We name a quadruple of vertices of Q_n an *empty square* in G, if they induce a Q_2 -subgraph in Q_n and induce no edges in G.

We will use the notation of Lemma 3, where we set $\alpha = n^{1/3}$. We also denote $d(v) = d_L(v) + d_H(v)$ the degree of v in G.

Lemma 4. The number of empty squares in G, where all four vertices belong to L, is at least $\binom{n}{2}2^{n-2} - \binom{n}{2}|H| - (n-1)|E(G)|$.

Proof. The total number of Q_2 in Q_n is $\binom{n}{2}2^{n-2}$. The number of Q_2 with at least one vertex in H does not exceed $\binom{n}{2}|H|$. The number of Q_2 that are not empty in G does not exceed (n-1)|E(G)|, because every edge of G belongs to (n-1) squares in Q_n .

Lemma 5. The number of $V(Q_n)$ -detours (v_0, v_1, v_3, v_4) in G such that $v_0, v_4 \in L$ is at least $n(n-1)2^{n-1} - 2n(n-1)|H| - 4(n-1)|E(G)|$.

Proof. Consider an empty square in G in which all four vertices belong to L. There are 4 choices of an ordered pair of its opposite vertices. Let (v_0, v_4) be such a pair. Since G has a 2-detour property, there should exist an oriented path $(v_0, v_1, v_2, v_3, v_4)$ in G. It is easy to see that (v_0, v_1, v_3, v_4) is a $V(Q_n)$ -detour. Thus, Lemma 5 follows from Lemma 4.

Lemma 6. The number of $V(Q_n)$ -detours in G that are not H-detours does not exceed $3(n-1)\alpha^2 2^n$.

Proof. Let (v_0, v_1, v_3, v_4) be a $V(Q_n)$ -detour, which is not an *H*-detour. Then at least one of the following conditions is true:

- (i) $v_1 \in L$, or
- (ii) $v_3 \in L$, or
- (iii) There is a middle vertex v_2 of this detour that belongs to L.

For each of these conditions, we claim that the number of $V(Q_n)$ -detours that satisfies this particular condition does not exceed $(n-1)\alpha^2 2^n$. Indeed, consider detours with $v_1 \in L$. There are at most 2^n choices for $v_1 \in L$. Since $d(v_1) \leq \alpha$, there are at most α choices for v_0 and at most α choices for v_2 . There are at most (n-1) choices for v_3 . The remaining vertex, v_4 , is determined uniquely, because the edges $\{v_0, v_1\}$ and $\{v_3, v_4\}$ are parallel. Thus, $(n-1)\alpha^2 2^n$ is an upper bound of the number of such detours. Similarly, the same bound holds for the number of detours with $v_3 \in L$. Finally, consider detours that satisfy (*iii*). There are at most 2^n choices for a middle vertex $v_2 \in L$. Since $d(v_2) \leq \alpha$, there are at most α choices for v_1 and at most α choices for v_3 . There are at most (n-1) choices for v_0 , and the remaining vertex, v_4 , is determined uniquely, because the edges $\{v_0, v_1\}$ and $\{v_3, v_4\}$ are parallel.

Let ϵ be a positive constant that we will choose later. We set $H'_{\epsilon} = \{v \in H : |2d_L(v) - n| \le \epsilon n, |2d_H(v) - n| \le \epsilon n\}$ and $H''_{\epsilon} = H \setminus H'_{\epsilon}$. In particular, $v \in H'_{\epsilon}$ implies $d(v) \ge (1 - \epsilon)n$.

Lemma 7. The number of *H*-detours in *G* that are not H'_{ϵ} -detours does not exceed

$$3(n-1)\sum_{v\in H_{\epsilon}''}d(v)^2.$$

Proof. Similarly to the proof of Lemma 6, if an H-detour (v_0, v_1, v_3, v_4) is not an H'_{ϵ} -detour, then either $v_1 \in H''_{\epsilon}$, or $v_3 \in H''_{\epsilon}$, or the detour possesses a middle vertex $v_2 \in H''_{\epsilon}$. The number of detours which satisfy just one of these conditions does not exceed $(n-1) \sum_{v \in H''_{\epsilon}} d(v)^2$. For instance, for every choice of a middle vertex $v_2 \in H''_{\epsilon}$, the number of choices of (v_1, v_3) as its neighbors does not exceed $d(v_2)^2$. The number of choices of v_0 does not exceed (n-1), and v_4 is determined uniquely.

Let A_4 be the family of Q_2 -subgraphs of Q_n , where all 4 vertices belong to H'_{ϵ} and all 4 edges appear in G. Let A_3 be the family of Q_2 -subgraphs of Q_n ,

where all 4 vertices belong to H'_{ϵ} and only 3 of the 4 edges appear in G. Notice that each Q_2 from $A_3 \cup A_4$ induces exactly two unoriented H'_{ϵ} -bridges in G. Let A_2 be the family of Q_2 -subgraphs of Q_n that induce exactly one H'_{ϵ} -bridge in G. Such a subgraph contains a 2-path with both edges present in G and all 3 vertices belonging to H'_{ϵ} , and at least one of the other two edges is missing from G.

Lemma 8.

$$|A_4| \le \frac{1}{32}(1+\epsilon)^2 n^2 |H'_{\epsilon}|.$$

Proof. Indeed, $4|A_4| \leq \sum_{v \in H'_{\epsilon}} \frac{1}{2} d_H(v)^2 \leq |H'_{\epsilon}| \cdot \frac{1}{2} (\frac{1}{2}(n+\epsilon n))^2$.

Lemma 9. $|A_3| \leq \frac{1}{4}\epsilon(1+\epsilon)n^2|H'_{\epsilon}|.$

Proof. Every Q_2 -subgraph in A_3 has two vertices $v, u \in H'_{\epsilon}$, where $\{v, u\} \in E(Q_n) \setminus E(G)$. Given $\{v, u\}$, the other two vertices of this subgraph can be selected in at most $d_H(v) \leq \frac{1}{2}(1+\epsilon)n$ ways. Thus,

$$2|A_3| \le \sum_{v \in H'_{\epsilon}} (n - d(v)) \cdot \frac{1}{2} (1 + \epsilon)n \le |H'_{\epsilon}| \cdot \epsilon n \cdot \frac{1}{2} (1 + \epsilon)n.$$

Lemma 10. $|A_2| \le \frac{1}{2}\epsilon(1+\epsilon)n^2|H'_{\epsilon}|.$

Proof. Every Q_2 -subgraph in A_2 has a vertex $v \in H'_{\epsilon}$ and another vertex u so that $\{v, u\} \in E(Q_n) \setminus E(G)$. Similarly to the proof of Lemma 9,

$$|A_2| \le \sum_{v \in H'_{\epsilon}} (n - d(v)) \cdot \frac{1}{2} (1 + \epsilon)n \le |H'_{\epsilon}| \cdot \epsilon n \cdot \frac{1}{2} (1 + \epsilon)n.$$

Lemma 11.

$$\frac{1}{16}(1+\epsilon)^2(1+17\epsilon)n^3|H'_{\epsilon}| \ge n(n-1)2^{n-1} - 2n(n-1)|H| - 4(n-1)|E(G)| -3(n-1)\alpha^2 2^n - 3(n-1)\sum_{v\in H''_{\epsilon}} d(v)^2.$$
 (3)

Proof. The total number of H'_{ϵ} -bridges is $2|A_4| + 2|A_3| + |A_2|$. Because $2d_L(v) \leq (1 + \epsilon)n$ for any $v \in H'_{\epsilon}$, we notice that any unoriented H'_{ϵ} -bridge supports at most $(1 + \epsilon)n$ oriented H'_{ϵ} -detours with both ends in L. Thus, $(1 + \epsilon)n \cdot (2|A_4| + 2|A_3| + |A_2|)$ is an upper bound for the number of oriented H'_{ϵ} -detours with both ends in L. The left-hand side of (3) is obtained by replacing $|A_4|, |A_3|$, and $|A_2|$ in the last expression by their upper bounds from Lemmas 8–10. The right-hand side of (3) is a lower bound of the number of oriented H'_{ϵ} -detours with both ends in L derived from Lemmas 5–7.

Lemma 12. For any vertex $v \in H_{\epsilon}^{"}$,

$$4d_L(v)d_H(v) \le nd(v) - \epsilon^2 d(v)^2.$$

Proof. Let d = d(v), $d_{\min} = \min\{d_L(v), d_H(v)\}$, $d_{\max} = \max\{d_L(v), d_H(v)\}$. If $\epsilon \ge 1$, then H_{ϵ}'' is empty, so we may assume that $0 < \epsilon < 1$. Let θ be defined by $d_{\min} = (1 - \theta)d/2$; then $\theta \ge 0$.

The desired inequality is equivalent to $\epsilon^2 - \theta^2 \leq (n/d) - 1$, so we prove this. Since $n \geq d$, the inequality is satisfied if $\theta \geq \epsilon$, so we may assume that $0 \leq \theta < \epsilon < 1$.

For any real ϵ , we have $\epsilon - \epsilon^2 < \frac{1}{2}$ and then $\epsilon < 1$ gives $2\epsilon < 1/(1-\epsilon)$. From this and $\theta < \epsilon$, it follows first that $\epsilon + \theta < 1/(1-\epsilon)$, then that $\epsilon^2 - \theta^2 < \frac{\epsilon - \theta}{1-\epsilon} = \frac{1-\theta}{1-\epsilon} - 1$. Now, if both $d_L(v)$ and $d_H(v)$ are greater than $(1-\epsilon)n/2$, then the fact that $v \in H_{\epsilon}''$, implies $d_{\max} > (1+\epsilon)n/2$, which results in $d = d_{\min} + d_{\max} > n$, and, therefore, $(1-\theta)d/2 = d_{\min} \le (1-\epsilon)n/2$, and so $(1-\theta)/(1-\epsilon) \le n/d$, which gives the desired conclusion.

We are now ready to proceed with the proof of Theorem 5. Recall that by (1), $|E(G)| \leq 4 \cdot 2^n$. Because $|E(G)| \geq \frac{1}{2}\alpha|H|$, we may assume that $|H| = O(n^{-1/3}2^n)$. Let $a(\epsilon) = \frac{1}{16}(1+\epsilon)^2(1+17\epsilon)$. Since $\alpha = n^{1/3}$, Lemma 3 implies

$$\sum_{v \in H} d_L(v) d_H(v) \ge n2^n - \mathcal{O}(n^{2/3}2^n),$$
(4)

and Lemma 11 implies

$$a(\epsilon)n^2|H'_{\epsilon}| + 3\sum_{v\in H''_{\epsilon}} d(v)^2 \ge \frac{1}{2}n2^n - \mathcal{O}(n^{2/3}2^n).$$

For $v \in H'_{\epsilon}$, we have $d_L(v)d_H(v) \leq \frac{n}{4}d(v)$. For $v \in H''_{\epsilon}$, we may apply Lemma 12. Thus,

$$\sum_{v \in H} d_L(v) d_H(v) \le \frac{n}{4} \sum_{v \in H} d(v) - \frac{\epsilon^2}{4} \sum_{v \in H_{\epsilon}''} d(v)^2.$$

By combining the last two inequalities, we get

$$\sum_{v \in H} d_L(v) d_H(v) \le \frac{n}{4} \sum_{v \in H} d(v) - \frac{\epsilon^2}{24} n 2^n + \frac{a(\epsilon)\epsilon^2}{12} n^2 |H'_{\epsilon}| + \mathcal{O}(n^{2/3} 2^n).$$

We now estimate $(1 - \epsilon)n|H'_{\epsilon}| \leq \sum_{v \in H} d(v)$, and get

$$\sum_{v \in H} d_L(v) d_H(v) \le \left(\frac{1}{4} + \frac{a(\epsilon)\epsilon^2}{12(1-\epsilon)}\right) n \sum_{v \in H} d(v) - \frac{\epsilon^2}{24} n 2^n + \mathcal{O}(n^{2/3}2^n).$$
(5)

Inequalities (4) and (5) yield

$$\sum_{v \in H} d(v) \ge 4 \cdot \frac{1 + \frac{\epsilon^2}{24}}{1 + \frac{a(\epsilon)\epsilon^2}{3(1-\epsilon)}} \cdot 2^n - \mathcal{O}(n^{-1/3}2^n).$$

By Lemma 2,

$$\sum_{v \in L} d(v) \ge 2|L| - 8 \cdot 2^n / n = 2 \cdot 2^n - \mathcal{O}(n^{-1/3}2^n),$$

and thus,

$$|E(G)| = \frac{1}{2} \sum_{v \in L} d(v) + \frac{1}{2} \sum_{v \in H} d(v) \ge \left(1 + 2 \cdot \frac{1 + \frac{\epsilon^2}{24}}{1 + \frac{a(\epsilon)\epsilon^2}{3(1 - \epsilon)}} \right) \cdot 2^n - \mathcal{O}(n^{-1/3}2^n).$$

When we select $\epsilon = 1/33$, the expression in the brackets in the last formula is equal to $3.00001306\cdots$. This completes the proof of Theorem 5.

4. FINAL REMARKS

We do not have any knowledge how $f_l(n)/2^n$ changes as a function of l. Therefore, we cannot resolve the conjectures of [1] whether the order of magnitude of f(n) is $\sqrt{n}2^{n-1}$ or the function $f(n)/2^n$ is unbounded.

ACKNOWLEDGMENTS

The authors thank one of the referees for the valuable suggestions that improved this article.

References

- [1] P. Erdős, P. Hamburger, R. E. Pippert, and W. D. Weakley, Hypercube subgraphs with minimal detours. J. Graph Theory 23 (1996), 119–128.
- [2] G. A. Kabatianski and V. I. Panchenko, Packings and coverings of the Hamming space by balls of unit radius. Problems Inform. Transmission 24 (1988), 261–272.