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A c y c l i c  k - S t r o n g  C o l o r i n g  o f  M a p s  o n  S u r f a c e s  

O. V. Borodin,  A. V. Kostochka,  A. Raspaud,  and E. Sopena UDC 519.7 

ABSTRACT. A coloring of graph vertices is called acyclic if the ends of each edge are colored in distinct  colors 
and ' the re  are no two-colored cycles. Suppose each face of rank not greater than  k,  k __. 4, on a surface S N is 
replaced by the clique on the same set of vertices. Then the pseudograph obtained in this way can be colored 
acyclically in a set of colors whose cardinal i ty depends linearly on N and on k .  Results of this kind were known 
before only for 1 < N _ < 2  and 3 < k < 4 .  
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1. In t roduc t ion  

Graph coloring problems for graphs embedded in surfaces play an important role in graph theory. The 
famous four-color problem is one of them. 

Let V(G) denote the set of vertices of a graph G and let E(G) denote the set of its edges. A (regular) 
k-coloring of the graph G ~ a function .f : V(G) -+ {1, 2, . . . ,  k} such that f(x) # / ( y )  for any pair of 
adjacent vertices x and y of G. 

A vertex coloring of a graph is said to be a k-cyclic or a k-strong coloring if any two vertices on the 
boundary of any face of rank not greater than k have distinct colors. (Below we use both terms.) Such a 
coloring is equivalent to a regular coloring of the pseudograph obtained by replacing each face of rank not 
greater than k by the clique having the same number of vertices. Let Xk (G) denote the minimal number 
of colors sufficient for a k-cyclic coloring of a graph G, and let xk(S N) be the minimal number of colors 
sufficient for a k-cyclic coloring of each map on the surface S N of Euler characteristic N.  (Sometimes 
the arguments will be omitted.) 

The case k - 3 corresponds to the usual regular coloring; the four-color-map theorem due to Appel and 
Haken [1] and the Heawood Theorem [2] give the sharp upper bound for xk(S N) for the plane (N = 2) 
and for all other surfaces, respectively. 

The case k - 4 admits various formulations, in particular, in terms of combined vertex-face coloring and 
vertex coloring of so-called 1-embeddable graphs. For the plane, Borodin [3] proved the sharp estimate 
X4 -< 6, confirming Ringel's conjecture [4], Schumacher [5] proved the sharp estimate X4 -< 7 for the 
projective plane, and Ringel [6] proved that 

X4(S N) <~ 2H(N)/v~, where H(N)= [(7 + x /49-  24N)/2] 

is the Heawood number. 
In [7], Ore and Plummer proved that for any k > 3 each plane graph G has a k-cyclic 2k-coloring, 

and recently Borodin, Sanders, and Zhao [8] improved this estimate, proving that xk(G) <_ 9k/5 for any 
k > 3 .  

A vertex coloring of a graph is called acyclic if it is regular, i.e., the ends~ of each edge are colored in 
distinct colors, and there are no two-colored cycles. Note that a loop is always a one-colored edge, and 
any double edge provides a two-colored cycle. We regard a coloring acyclic if the ends of any nonloop 
edge e are colored differently and there are no two-colored cycles of length greater than 2. Borodin [9] 
proved that each plane graph admits an acyclic 5-coloring. This estimate is sharp. In [10] Albertson and 
Berman proved that each graph embeddable in a surface S N with N < 0 is acyclically (8 -  2N)-colorable. 
Alon, Mohar and Sanders [11] proved, using the acyclic 5-colorability of plane graphs, that any graph 
on the projective plane is acyclic 7-colorable and that this estimate is sharp. They showed as well that 
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each graph embeddable in arbitrary surface S N is acyclic O(N 4/7)-cO1Orable and that this estimate is not 
more than (log N) 1/7 times worse than the sharp one. 

Acyclic colorings have a number of applications to other coloring problems [12-16]. Suppose a(G) < a. 
Then the star chromatic number of the graph G is not greater than a2 a-1 (Griinbaum [13]) and the 
oriented chromatic number also is not greater than a2 a-1 (Raspaud and Sopena [16]); any graph G with 
an edge m-coloring admits a homomorphic mapping on a graph with not more than am ~-1 vertices 
(Alon and Marshall [12]); any composite graph with a vertex m-coloring and an edge n-coloring admits 
a homomorphic mapping on a graph with a(2n + m) a-I  vertices (Ne~hetfil and Raspaud [15]). 

Besides, Hakimi, Mitchem and Schmeichel [14, pp. 38-39] proved that E(G) can be split into a(G) star 
(i.e., with star connected components) forests. As an inimediate corollary, together with the results of [9] 
this confirms the Algor and Alon conjecture [17] that the set of edges of any planar graph is decomposable 
into five star forests. 

In the present paper we study colorings that are both acyclic and k-cyclic. Namely, we consider acyclic 
colorings of the pseudograph obtained by replacing each face of the map of rank not greater than k by 
the k-clique. This means that each face of rank k is endowed with all "invisible diagonals." For k = 3 
such a coloring coincides with an acyclic coloring. 

The following statement is the main result of the paper. 

T h e o r e m  1. Each map on the surface S g admits an acyclic k-strong coloring in cNk + dN colors 
for any k >_ 4 and N <_ O, where c lv= max{999,117 - 471N} and d N =  39 - 156N. 

We deliberately use the simplest scheme of argument; a more sophisticated argument allows one to 
diminish clv and ally. 

Coro l l a ry  1. Any map on the plane ( N = 2 ) or on the projective plane ( N -- 1 ) admits an acyclie k - 
strong coloring in cok + do colors for any k > 4. 

Proof .  Indeed, each map on the plane or on the projective plane is a map on the torus or on the Klein 
bottle, respectively. [] 

In [18] we proved that any projective-plane graph (and therefore, any plane graph) admits an acyclic 4- 
strong 20-coloring, i.e., that any graph 1-embeddable into the projective plane is acyclic 20-colorable. 
Thus, Theorem 1 and Corollary 1 extend the results of [9] (N  = 2, k = 3), [11] ( N  < 1, k = 3) and [18] 
( l < g < _ 2 ,  k -- a). 

2. P r o o f  of  T h e o r e m  1 

The sets of vertices, edges and faces of the graph under consideration will be denoted by V, E and F 
respectively. The rank s ( f )  of a face f is the number of edges in its boundary a ( f )  taking the multiplicities 
into account. For example, a bridge enters the boundary of the face twice. For the sake of simplicity of 
the argument, we restrict ourselves to the case of a connected boundary a ( f )  for any face f E F .  The 
degree of a vertex v, i.e., the number of edges incident to this vertex (loops counted twice), is denoted by 
d(v). A ~ k -verte.z is a vertex of degree at least k, and so on. 

For given S N and k, let P "  be a counterexample with the minimal number of vertices. An acyclic k- 
strong coloring in cNk + d N  colors we are looking for will be called good, for brevity. 

Erasing in pm each loop e forming a 1-face we diminish the rank of the other face incident to e by 1. 
Similarly, erasing one of the two boundary edges, say el ,  from each 2-face f = ele2 in P~", we obtain a 
face of the same rank as the one incident to el and different from f .  

Whenever the pseudograph P"  thus obtained admits a good coloring, restoring the erased loops and 
double edges preserves the coloring. Hence, P"  also is a minimal counterexample. 

Triangulating all > k-faces P"  by adding diagonals we obtain one more counterexample P '  with the 
minimal number of vertices. (A good coloring of pt  would be a good coloring for P "  as well.) 

Now erase in P~ the common edge of two adjacent 3-faces, whenever the two exist, and repeat this 
operation until we obtain a counterexample P without adjacent 3-faces. Hence, we have proved the 
following statement. 
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L e m m a  1. I f  f is a face in P ,  then 3 <_ s ( f )  < k; there are no adjacent 3-faces in P .  

Speaking unprecisely, only adding nontrivial adjacency represented by "visible" edges and "invisible 
diagonals" can spoil a good coloring. Therefore, we shall take care of adjacencies when transforming the 
pseudograph P into a smaller pseudograph admitting a good coloring. 

Below, the following two remarks will be useful. 

R e m a r k  1. Contracting an edge e = vz into the vertex v • z diminishes the rank of each face f in P 
by 0, 1 or 2 depending on the multiplicity With which e occurs in O(f).  

The map R obtained in this way admits a good coloring since P is minimal. Let us pull back this 
coloring to P assigning the color of the vertex v • z to z and leaving v uncolored. Then, in order to 
obtain a good coloring of the map P ,  it is sufficient to find a color for v so that no one-colored edges that 
are not loops and no two-colored cycles that  are not 2-cycles appear. 

R e m a r k  2. Suppose a vertex v is incident to the edges ei = vzi enumerated in cyclic order, where 
0 < i < d(v) <_ k - 1. (Of course, the vertices zi must not all be distinct.) Let us split each nontriangular 
face f i  = . . .  zivzi+l (indices taken modulo d(v)) into the triangle zivzi+l and the face f~. Then 
s(f~) < s( f i ) .  Erasing v and all the ei,  we obtain a face of rank d(v) < k, whence the map obtained in 
this way admits a good coloring. Here all distinct vertices zi have distinct colors. Choosing the color a 
not contained in the set Uo<i<k-10(fi) for the vertex v,  we obtain a two-colored a ,  fLcycle (i.e., a cycle 
consisting of vertices colored alternately in a and 8) passing through v and a vertex u such that the 
color of u is ~ and u E O(fi) \ {zi, zi+l) for some fi as the unique obstruction for a good coloring of P .  

L e m r n a  2. I f  v e V (P) ,  then d(v) >_ 2. 

Proof .  If d(v) = 1, then contract the edge vz ,  pull back the good coloring of the pseudograph thus 
obtained to P and for v choose a color distinct from that of the vertices that belong to the same faces 
as v does (there is not more than k of them). [] 

Len~ma 3. Any face in P is incident to not more than three vertices (not necessarily distinct) of 
degree at least three. 

Proof .  If the boundary O(f) of a face f in P contains precisely two (not necessarily distinct) ver- 
tices u,  w of degree greater than two, then erase the longer of the two chains constituting O(f).  Then 
we obtain a face f '  of rank _. k. A good coloring of the resulting pseudograph can be easily extended to 
a good coloring of P since vertices of 0 ( f ' )  have pairwise distinct colors. 

The case with O(f) having only one vertex of degree greater than two can be easily reduced to the 
previous one. And if the degree of all vertices of O(f) is two, then P is a cycle, and this is a contradic- 
tion: [] 

If each face in P is homeomorphic to an open 2-disk, then the Euler formula for P gives IV[ - [E[ + 
IF[ = N;  otherwise I V [ -  [E[ + IF[ >_ N .  

Then the obvious relations 2[E[ = Y'~,ev d(v) = ~'~IEF s( f )  give 

E ( d ( v ) - 4 )  + E ( s ( f ) - 4 )  < - 4 N ,  (1) 
vGV f E F  

o r  

-2n2 + E (d(v) - 4) + E (s( f )  - 4) < - 4 N  + 1, (2) 
vEv3+ feF  

where ni is the number of i-vertices in P ,  and Vi+ is the set of > i-vertices in P .  
Denote by n2(f )  the number of 2-vertices on the boundary of a face f (taking multiplicities into 

account). The reduced rank s ( f )  of f is the difference s ( f )  - n2( f ) .  Essentially, s*(f)  is the number of 
> 2-vertices in O(f) taking multiplicities into account. Then (2) reads 

- 4)  + - 4) < - a N  + 1. 
vE Va+ f E F 

(3)  

31 



By Lemma 3, 
s*(]) - i. Then 

v~va+ 

where Fi* + is the set of all > i*-faces in P ,  or 

(~(v)  - 4 /~ (v)  + _ _  Z ~,~v3+ \ 3 

where n* = IVa. l = I V ] -  n2. 
We set ch(v) = d(v) - 4 - f~(v)/3 + (4N - 1)/n* if v 6 r3+ ; 

ch(I)  = s* (f)  - 4 if I e F;+.  Then (5) gives 

ch(v) + ~ ch(I) < 0. 
veva+ /~F 

s*(f)  > 3 for all f 6 F .  Let f~(v) be the number of /*-faces at v, i.e., faces with 

Z ( s * ( f ) -  4) < - 4 N +  1, 4 -  (4) 
SeF:+ 

4Nn. -1 )  4- ~ ( s * ( f ) - 4 ) < 0 ,  

fEF/+ 
(5) 

ch(f)  = 0 if ] is a 3*-face, and 

(6) 

The remaining part of the proof consists in redistributing the charge ch(x) on x EVa+ U F preserving 
the sum of charges in such a way that the new charge ch* (x) becomes positive for any x E V3+ U F .  The 
contradiction with (6) will complete the proof. 

We start by proving the following statement. 

L e r a m a  4. We have n* > 3 9 ( - 4 N  + 1). 

P roo f .  The Euler formula (2) for the map P* obtained from P by contacting each chain uvz . . ,  vsw, 
where d(u) >_ 3, d(vl) = . . .  = d(vs) = 2, d(w) > 3, to the edge uw can be easily rewritten in the form 

(d~.(v)  - 6) + Z ( 2 , ~ . ( S )  - 6) _< - 6 N .  
vEV(P °) .fEF(P') 

whence 5"]~ev(p.)(dp.(v) - 6) < - 6 N  or ]E(P*)I < 3n* - 3N.  
By Lemma 1, n <. n* + klE(P*)I.  
But n > cNk + dN since otherwise P would admit a trivial good coloring (with all vertices colored 

distinctly), and therefore, 

n*(1 + 3k) - 3kN > elvk + dg ~_ (117 -- 471N)k + 39 - 156N 

= 3 9 ( - 4 N  + 1)(1 + 3k) - 3kN,  

and the required assertion (compare the left most and the right most expressions). [] 

L e m m a  5. /~ d(v) ~ 7, then ch(v) > 0. 

P roof .  Indeed, 

c h ( v ) > d ( v ) - 4  f~(v) + 4 N - 1  d(v) 4 N - 1  2 4 N - 1  
- 3 n - - - 7 -  > d(v)  - 4 - - - 5 -  + 7 - -  > ~ + n - - z - '  

and we apply Lemma 4. 
1 If v E V and ch(v) < 0, then we call the vertex v poor. Let us set ~ = ( - 4 N  + 1)/n* and e = 3-6" 

By Lemmas 4 and 5, ~ < ~ and for each poor vertex v we have 3 _< d(v) <_ 6. 
The charge redistribution rules are as follows. 
R1. Each _> 14-vertex gives 2/3 + e to each > 4*-face and 1/3 4- e to each 3*-face incident to it. 
R2. Each poor vertex v gets 2/3 + e 

a) from each > 4*-face f incident to v under the assumption that  there axe no > 14-vertices z in 
O(f) not connected with v along i)(f)  by a chain of 2-vertices, and 

b) from each > 13*-face f incident to v. 
1%3. If a 3*-face f is incident to a >_ 14-vertex, then f gives 1/6 4- e/2 to each poor vertex incident 

t o f .  [=] 
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L e m m a  6. By rule R3, each poor vertex v gets the charge 1/6 + 6/2 from each of the two 3* -faces 
cyclically adjacent at v .  

P r o o f .  We prove first that  if a 3*-face f is incident to a 2-vertex u,  then the > 3-vertex opposite 
to u in O(f) is, in fact, a > 14-vertex. 

Let O(f)  = ;gXlX2 . . .xk(x)yyxy2 . . . y k ( y ) z z l z 2 . . . z k ( z ) ,  where all xi,  yi and zi are 2-vertices, and x, 
y and z are > 3-vertices. Suppose k(x) >_ 1, i.e., xl  exists. Denote by fxy the face neighboring f along 
the chain x x l x 2 . . ,  xk(~)xy (which can coincide with f ) .  The faces fyz and f~x are defined similarly. 

Contract  the edge xx l  and pull back a good coloring of the map thus obtained to P - x l .  Choosing 
for v the color not entering the face f and the faces incident to z we obtain a good coloring. This cannot 
be done only if d(z) > 14. 

In order to complete the proof of the lemma, recall that ,  by the second assertion of Lemma 1, one of the 
two 3*-faces f l  or f2 adjacent along the cycle at v is incident to a 2-vertex, z. Ifz is incident to both f l  
and f2, then the required statement follows from R3 and the statement proved just  now. Otherwise z 
is opposite to a > 3-vertex w, which is incident to both  f l  and f2, since by the statement above the 
vertex z cannot be opposite to a poor vertex v whose degree, by Lemma 5, is not greater than  6. Hence, 
d(w) >. 14, and we can apply R3 once again. [] 

L e m a n a  7. I f  d(v) = 3, then v is incident to at least two faces giving v the charge 2/3 -t- ~ according 
to the rule R2. 

P r o o f .  Suppose v is incident to chains v x l x 2 . . . x k ( x ) x ,  vy ly2 . . . yk (u )y  and v z l z 2 . . . z k ( z ) z ,  where 
all x~, yi and z~ are 2-vertices, while x,  y and z are > 2-vertices. Suppose that  

0 ( f l )  = . . .  XXk(x). . .  x 2 x l v y l y 2 . . .  Yk(y)Y, 0(f2) = . . .  YYk(y). . .  y2y l v z l z2 . . ,  zk(z)z, 

O(f3) = . . .  zzk(z) . . . Z~. Zl VXl X2 . . . xk(x)x. 

Suppose the converse, namely, that  neither f l ,  nor, by symmetry, f2 gives 2/3 + e to v. Then, by R2, 
both  f l  and f2 are < 12*-faces, and the degree of each vertex in O(fl) \ {x,  y}  and in 0(f2) \ {y, z} is 
at most  13. 

Contract  the chain v y l y 2 . . .  Yk(~)Y to the vertex v • y. Pull back a good coloring of the map  obtained 
in this way to P and note that  the vertices x and z have distinct Tcolors. Choose pairwise distinct colors 
for yl ,  y2, . . . ,  Yk(~) and v not entering the boundaries of the faces f l ,  f2, f3 and those not more than 
2 × 9 × (13 - 1) faces that  are incident to > 2-vertices from O(fl) \ {x,  y} U 0(f2) \ {y, z}. The number 
of restrictions is at most 3k + 2 × 9 × (13 - 1)k < c g k  + d N ,  and there arise neither one-colored nonloop 
edges, nor two-colored cycles of length greater than two. [:] 

L e m m a  8. I f  d(v) = 4, then v is incident to at least one face giving v the charge 2/3 + e according 
to the rule R2. 

P r o o f .  Suppose v is incident to chains vx~x 2 i  i . . .  xk(xoxi i following in the cyclic order, where 0 < i < 3, 

i 2-vertices, and all x i are > 2-vertices. all xj  are 
Let 

--" Z Z k ( x ~  ) . . . , ~ 2 . ~ l v . ~  1 ~ '2  " ' "  k ( x ~ + l )  " ' "  , 

for a face f i  with superscripts taken modulo 4. 
Suppose that  neither of the faces f~ gives 2/3 ÷ e to v. Then, by R2, each face f i  is a < 12*-face, 

and the  degree of each vertex from 0 ( f  ~) \ {x i , x i+l } is at most 13. 
Add the  edge x~x i+1 to f~ for all 0 <: i < 3 if there is no such edge in O(f  ~) yet. Erase v and pull 

back a good coloring of the map thus obtained to P .  Choose for v a color not  entering the boundaries 
of the faces incident to the vertices from O(f  i) \ {x i , x i+1 } for all 0 _< i < 3. The  number of restrictions 
is less than  4 x 9 x 13k < cNk + dlv, and it is easy to see that  neither one-colored edges, nor two-colored 
cycles arise. [] 

L e m m a  9. / f  v e V3+, then ch* (v) >_ O. 
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Proof .  Suppose first that v is poor i.e., ch(v) < 0. Then, by Lemma 5, d(v) < 7. If d(v) = 3, then 
ch(v) -- - 1 - ~ - ] ~ ( v ) / 3 ,  and we obtain the required statement by Lemma 7, since 2(2/3+6) > 1+~+1 /3 .  

If d(v) - 4, then ch(v) = -~ - f~(v)/3. By Lemma 8, the vertex v gets the charge 2/3 + e from 
at least one _> 4*-face incident to it. If v is incident to at most two 3*-faces, then ch*(v) _> e - ~ _> 0. 
Otherwise, by Lemma 6, v would get at least 2(1/6 + e/2) from three 3*-faces incident to v, whence 
ch*(v) > O. 

If d(v) = 5, then ch(v) = 1 - ~ - f~(v)/3 and we obtain the required statement if v is incident to 
at most two 3*-faces. If there are r such faces at v, 3 _< r _< 5, then, by Lemma 6, v gets at least 
2(1/6 + ~/2) if r = 3 and at least 4(1/6 + e/2) if r __ 4, whence ch*(v) >_ 0. 

If d(v) = 6, then ch(v) - 2 - ~ - f~(v)/3, and we obtain the required statement if v is incident to at 
most five 3*-faces. Otherwise, by Lemma 6, v gets 6 x (1/6 + e/2) from the six 3*-faces incident to v, 
whence ch*(v) -> 0. 

Now suppose v is not poor. If it gives nothing to neighboring vertices according to rules R1 and R2, 
then ch'(v) = ch(v) > 0. Otherwise, d(v) -> 14 and v makes not more than d(v) transfers according to 
rule R1. Therefore, 

ch* ( v ) = d ( v ) - 4 - , - d ( v ) ( 2 + e ) ,  

whence ch* (v) _> 0 since ~ < e. O 

Lemrna  10. If f e F, then ch*(f) > 0. 

Proof .  If the degree of any vertex incident to a 3* -face is at most 13, then this face does not affect the 
charge. Otherwise it gets at least 1/3 + e by rule R1 and it gives, by rule R3, not more than 2(1/6 + e/2) 
to the poor vertices incident to this face. In both cases ch* (f)  > 0. 

Now suppose f E F~*+. If at least two vertices of degree -> 14 are incident to f ,  then 

ch*( f )>_s*( f ) -4+2(  2 + e ) - ( s * ( ` ) - 2 ) (  2 + e ) = ( s * ( f ) - 4 ) (  3 - e ) > 0 .  

If f contains only one > 14-vertex z, then 

c h * ( f ) - > s * ( f ) - 4 + g + e - ( s * ( f ) - 3 )  + e  _>0, 

since f gives the charge 2/3 + e to not more than s* (f)  - 3 poor vertices by R3: neither z, nor the 
_> 3-vertices closest to z on the left and on the right along O(f) get anything from f .  

Now suppose there are no vertices of degree _> 14 in f .  If s* (f) _< 12, then 

ch* (f) = ch(/) = s* (f) - 4 > 0 

since f does not participate in the redistribution of charges. Finally, if s*(f) -> 13, then, by R2, 

c h * ( f ) _ > s * ( f ) - 4 - - s * ( f ) ( ~ + e ) - - s * ( f ) (  3 - ~ ) - 4 _ > 0 ,  

since e = 1/39. 
The lemmas above imply that  ch* (z) _> 0 for all z e Va+ O F .  This contradicts (6), which completes 

the proof of the theorem. [] 
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