Acyclic k-Strong Coloring of Maps on Surfaces

O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena

UDC 519.7

ABSTRACT. A coloring of graph vertices is called acyclic if the ends of each edge are colored in distinct colors and there are no two-colored cycles. Suppose each face of rank not greater than k, $k \geq 4$, on a surface S^N is replaced by the clique on the same set of vertices. Then the pseudograph obtained in this way can be colored acyclically in a set of colors whose cardinality depends linearly on N and on k. Results of this kind were known before only for $1 \leq N \leq 2$ and $3 \leq k \leq 4$.

KEY WORDS: embedded graphs, map coloring, acyclic coloring, acyclic graphs, cliques.

1. Introduction

Graph coloring problems for graphs embedded in surfaces play an important role in graph theory. The famous four-color problem is one of them.

Let V(G) denote the set of vertices of a graph G and let E(G) denote the set of its edges. A (regular) k-coloring of the graph G is a function $f: V(G) \to \{1, 2, ..., k\}$ such that $f(x) \neq f(y)$ for any pair of adjacent vertices x and y of G.

A vertex coloring of a graph is said to be a k-cyclic or a k-strong coloring if any two vertices on the boundary of any face of rank not greater than k have distinct colors. (Below we use both terms.) Such a coloring is equivalent to a regular coloring of the pseudograph obtained by replacing each face of rank not greater than k by the clique having the same number of vertices. Let $\chi_k(G)$ denote the minimal number of colors sufficient for a k-cyclic coloring of a graph G, and let $\chi_k(S^N)$ be the minimal number of colors sufficient for a k-cyclic coloring of each map on the surface S^N of Euler characteristic N. (Sometimes the arguments will be omitted.)

The case k=3 corresponds to the usual regular coloring; the four-color-map theorem due to Appel and Haken [1] and the Heawood Theorem [2] give the sharp upper bound for $\chi_k(S^N)$ for the plane (N=2) and for all other surfaces, respectively.

The case k=4 admits various formulations, in particular, in terms of combined vertex-face coloring and vertex coloring of so-called 1-embeddable graphs. For the plane, Borodin [3] proved the sharp estimate $\chi_4 \leq 6$, confirming Ringel's conjecture [4], Schumacher [5] proved the sharp estimate $\chi_4 \leq 7$ for the projective plane, and Ringel [6] proved that

$$\chi_4(S^N) \le 2H(N)/\sqrt{3}$$
, where $H(N) = [(7 + \sqrt{49 - 24N})/2]$

is the Heawood number.

In [7], Ore and Plummer proved that for any $k \geq 3$ each plane graph G has a k-cyclic 2k-coloring, and recently Borodin, Sanders, and Zhao [8] improved this estimate, proving that $\chi_k(G) \leq 9k/5$ for any $k \geq 3$.

A vertex coloring of a graph is called *acyclic* if it is regular, i.e., the ends of each edge are colored in distinct colors, and there are no two-colored cycles. Note that a loop is always a one-colored edge, and any double edge provides a two-colored cycle. We regard a coloring acyclic if the ends of any nonloop edge e are colored differently and there are no two-colored cycles of length greater than 2. Borodin [9] proved that each plane graph admits an acyclic 5-coloring. This estimate is sharp. In [10] Albertson and Berman proved that each graph embeddable in a surface S^N with N < 0 is acyclically (8-2N)-colorable. Alon, Mohar and Sanders [11] proved, using the acyclic 5-colorability of plane graphs, that any graph on the projective plane is acyclic 7-colorable and that this estimate is sharp. They showed as well that

each graph embeddable in arbitrary surface S^N is acyclic $\mathcal{O}(N^{4/7})$ -colorable and that this estimate is not more than $(\log N)^{1/7}$ times worse than the sharp one.

Acyclic colorings have a number of applications to other coloring problems [12–16]. Suppose $a(G) \leq a$. Then the star chromatic number of the graph G is not greater than $a2^{a-1}$ (Grünbaum [13]) and the oriented chromatic number also is not greater than $a2^{a-1}$ (Raspaud and Sopena [16]); any graph G with an edge m-coloring admits a homomorphic mapping on a graph with not more than am^{a-1} vertices (Alon and Marshall [12]); any composite graph with a vertex m-coloring and an edge n-coloring admits a homomorphic mapping on a graph with $a(2n+m)^{a-1}$ vertices (Nešhetřil and Raspaud [15]).

Besides, Hakimi, Mitchem and Schmeichel [14, pp. 38–39] proved that E(G) can be split into a(G) star (i.e., with star connected components) forests. As an immediate corollary, together with the results of [9] this confirms the Algor and Alon conjecture [17] that the set of edges of any planar graph is decomposable into five star forests.

In the present paper we study colorings that are both acyclic and k-cyclic. Namely, we consider acyclic colorings of the pseudograph obtained by replacing each face of the map of rank not greater than k by the k-clique. This means that each face of rank k is endowed with all "invisible diagonals." For k=3 such a coloring coincides with an acyclic coloring.

The following statement is the main result of the paper.

Theorem 1. Each map on the surface S^N admits an acyclic k-strong coloring in $c_N k + d_N$ colors for any $k \ge 4$ and $N \le 0$, where $c_N = \max\{999, 117 - 471N\}$ and $d_N = 39 - 156N$.

We deliberately use the simplest scheme of argument; a more sophisticated argument allows one to diminish c_N and d_N .

Corollary 1. Any map on the plane (N = 2) or on the projective plane (N = 1) admits an acyclic k-strong coloring in $c_0k + d_0$ colors for any $k \ge 4$.

Proof. Indeed, each map on the plane or on the projective plane is a map on the torus or on the Klein bottle, respectively. \Box

In [18] we proved that any projective-plane graph (and therefore, any plane graph) admits an acyclic 4-strong 20-coloring, i.e., that any graph 1-embeddable into the projective plane is acyclic 20-colorable. Thus, Theorem 1 and Corollary 1 extend the results of [9] (N=2, k=3), [11] $(N \le 1, k=3)$ and [18] $(1 \le N \le 2, k=4)$.

2. Proof of Theorem 1

The sets of vertices, edges and faces of the graph under consideration will be denoted by V, E and F respectively. The $rank \ s(f)$ of a face f is the number of edges in its boundary $\partial(f)$ taking the multiplicities into account. For example, a bridge enters the boundary of the face twice. For the sake of simplicity of the argument, we restrict ourselves to the case of a connected boundary $\partial(f)$ for any face $f \in F$. The degree of a vertex v, i.e., the number of edges incident to this vertex (loops counted twice), is denoted by d(v). A $\geq k$ -vertex is a vertex of degree at least k, and so on.

For given S^N and k, let P''' be a counterexample with the minimal number of vertices. An acyclic k-strong coloring in $c_N k + d_N$ colors we are looking for will be called good, for brevity.

Erasing in P''' each loop e forming a 1-face we diminish the rank of the other face incident to e by 1. Similarly, erasing one of the two boundary edges, say e_1 , from each 2-face $f = e_1 e_2$ in P''', we obtain a face of the same rank as the one incident to e_1 and different from f.

Whenever the pseudograph P'' thus obtained admits a good coloring, restoring the erased loops and double edges preserves the coloring. Hence, P'' also is a minimal counterexample.

Triangulating all > k-faces P'' by adding diagonals we obtain one more counterexample P' with the minimal number of vertices. (A good coloring of P' would be a good coloring for P'' as well.)

Now erase in P' the common edge of two adjacent 3-faces, whenever the two exist, and repeat this operation until we obtain a counterexample P without adjacent 3-faces. Hence, we have proved the following statement.

Lemma 1. If f is a face in P, then $3 \le s(f) \le k$; there are no adjacent 3-faces in P.

Speaking unprecisely, only adding nontrivial adjacency represented by "visible" edges and "invisible diagonals" can spoil a good coloring. Therefore, we shall take care of adjacencies when transforming the pseudograph P into a smaller pseudograph admitting a good coloring.

Below, the following two remarks will be useful.

Remark 1. Contracting an edge e = vz into the vertex v * z diminishes the rank of each face f in P by 0, 1 or 2 depending on the multiplicity with which e occurs in $\partial(f)$.

The map R obtained in this way admits a good coloring since P is minimal. Let us pull back this coloring to P assigning the color of the vertex v*z to z and leaving v uncolored. Then, in order to obtain a good coloring of the map P, it is sufficient to find a color for v so that no one-colored edges that are not loops and no two-colored cycles that are not 2-cycles appear.

Remark 2. Suppose a vertex v is incident to the edges $e_i = vz_i$ enumerated in cyclic order, where $0 \le i \le d(v) \le k-1$. (Of course, the vertices z_i must not all be distinct.) Let us split each nontriangular face $f_i = \dots z_i vz_{i+1}$ (indices taken modulo d(v)) into the triangle $z_i vz_{i+1}$ and the face f'_i . Then $s(f'_i) < s(f_i)$. Erasing v and all the e_i , we obtain a face of rank $d(v) \le k$, whence the map obtained in this way admits a good coloring. Here all distinct vertices z_i have distinct colors. Choosing the color α not contained in the set $\bigcup_{0 \le i \le k-1} \partial(f_i)$ for the vertex v, we obtain a two-colored α , β -cycle (i.e., a cycle consisting of vertices colored alternately in α and β) passing through v and a vertex v such that the color of v is v and v and v are v such that the color of v is v and v and v and v are v such that the color of v is v and v and v and v are v such that the color of v is v and v and v are v such that the color of v is v and v and v are v such that the color of v is v and v and v are v such that the color of v is v and v and v are v such that the color of v is v and v and v are v and v are v and v and v are v are v and v are v and v are v are v and v are v are v and v are v and v are v and v are v are v and v are v and v are

Lemma 2. If $v \in V(P)$, then d(v) > 2.

Proof. If d(v) = 1, then contract the edge vz, pull back the good coloring of the pseudograph thus obtained to P and for v choose a color distinct from that of the vertices that belong to the same faces as v does (there is not more than k of them). \square

Lemma 3. Any face in P is incident to not more than three vertices (not necessarily distinct) of degree at least three.

Proof. If the boundary $\partial(f)$ of a face f in P contains precisely two (not necessarily distinct) vertices u, w of degree greater than two, then erase the longer of the two chains constituting $\partial(f)$. Then we obtain a face f' of rank $\leq k$. A good coloring of the resulting pseudograph can be easily extended to a good coloring of P since vertices of $\partial(f')$ have pairwise distinct colors.

The case with $\partial(f)$ having only one vertex of degree greater than two can be easily reduced to the previous one. And if the degree of all vertices of $\partial(f)$ is two, then P is a cycle, and this is a contradiction:

If each face in P is homeomorphic to an open 2-disk, then the Euler formula for P gives |V| - |E| + |F| = N; otherwise $|V| - |E| + |F| \ge N$.

Then the obvious relations $2|E| = \sum_{v \in V} d(v) = \sum_{f \in F} s(f)$ give

$$\sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (s(f) - 4) \le -4N, \tag{1}$$

or

$$-2n_2 + \sum_{v \in V_{3+}} (d(v) - 4) + \sum_{f \in F} (s(f) - 4) < -4N + 1, \tag{2}$$

where n_i is the number of *i*-vertices in P, and V_{i+} is the set of $\geq i$ -vertices in P.

Denote by $n_2(f)$ the number of 2-vertices on the boundary of a face f (taking multiplicities into account). The reduced rank s(f) of f is the difference $s(f) - n_2(f)$. Essentially, $s^*(f)$ is the number of > 2-vertices in $\partial(f)$ taking multiplicities into account. Then (2) reads

$$\sum_{v \in V_{3+}} (d(v) - 4) + \sum_{f \in F} (s^*(f) - 4) < -4N + 1.$$
(3)

By Lemma 3, $s^*(f) \ge 3$ for all $f \in F$. Let $f_i^*(v)$ be the number of i^* -faces at v, i.e., faces with $s^*(f) = i$. Then

$$\sum_{v \in V_{3+}} \left(d(v) - 4 - \frac{f_3^*(v)}{3} \right) + \sum_{f \in F_{4+}^*} (s^*(f) - 4) < -4N + 1, \tag{4}$$

where F_{i+}^* is the set of all $\geq i^*$ -faces in P, or

$$\sum_{v \in V_{3^+}} \left(d(v) - 4 - \frac{f_3^*(v)}{3} + \frac{4N - 1}{n^*} \right) + \sum_{f \in F_{4^+}^*} (s^*(f) - 4) < 0, \tag{5}$$

where $n^* = |V_{3+}| = |V| - n_2$.

We set $ch(v) = d(v) - 4 - f_3^*(v)/3 + (4N - 1)/n^*$ if $v \in V_{3+}$; ch(f) = 0 if f is a 3*-face, and $ch(f) = s^*(f) - 4$ if $f \in F_{4+}^*$. Then (5) gives

$$\sum_{v \in V_{q+}} \operatorname{ch}(v) + \sum_{f \in F} \operatorname{ch}(f) < 0.$$
 (6)

The remaining part of the proof consists in redistributing the charge ch(x) on $x \in V_{3+} \cup F$ preserving the sum of charges in such a way that the new charge $ch^*(x)$ becomes positive for any $x \in V_{3+} \cup F$. The contradiction with (6) will complete the proof.

We start by proving the following statement.

Lemma 4. We have $n^* > 39(-4N+1)$.

Proof. The Euler formula (2) for the map P^* obtained from P by contacting each chain $uv_1 \ldots v_s w$, where $d(u) \geq 3$, $d(v_1) = \cdots = d(v_s) = 2$, $d(w) \geq 3$, to the edge uw can be easily rewritten in the form

$$\sum_{v \in V(P^*)} (d_{P^*}(v) - 6) + \sum_{f \in F(P^*)} (2s_{P^*}(f) - 6) \le -6N,$$

whence $\sum_{v \in V(P^*)} (d_{P^*}(v) - 6) \le -6N$ or $|E(P^*)| \le 3n^* - 3N$.

By Lemma 1, $n \leq n^* + k|E(P^*)|$.

But $n > c_N k + d_N$ since otherwise P would admit a trivial good coloring (with all vertices colored distinctly), and therefore,

$$n^*(1+3k) - 3kN > c_N k + d_N \ge (117 - 471N)k + 39 - 156N$$

= $39(-4N+1)(1+3k) - 3kN$,

and the required assertion (compare the left most and the right most expressions).

Lemma 5. If $d(v) \geq 7$, then $ch(v) \geq 0$.

Proof. Indeed.

$$\operatorname{ch}(v) \ge d(v) - 4 - \frac{f_3^*(v)}{3} + \frac{4N - 1}{n^*} \ge d(v) - 4 - \frac{d(v)}{3} + \frac{4N - 1}{n^*} \ge \frac{2}{3} + \frac{4N - 1}{n^*},$$

and we apply Lemma 4.

If $v \in V$ and $\operatorname{ch}(v) < 0$, then we call the vertex v poor. Let us set $\xi = (-4N+1)/n^*$ and $\varepsilon = \frac{1}{39}$. By Lemmas 4 and 5, $\xi \le \varepsilon$ and for each poor vertex v we have $3 \le d(v) \le 6$.

The charge redistribution rules are as follows.

- R1. Each ≥ 14 -vertex gives $2/3 + \varepsilon$ to each $\geq 4^*$ -face and $1/3 + \varepsilon$ to each 3^* -face incident to it.
- R2. Each poor vertex v gets $2/3 + \varepsilon$
- a) from each $\geq 4^*$ -face f incident to v under the assumption that there are no ≥ 14 -vertices z in $\partial(f)$ not connected with v along $\partial(f)$ by a chain of 2-vertices, and
 - b) from each $\geq 13^*$ -face f incident to v.
- R3. If a 3*-face f is incident to a ≥ 14 -vertex, then f gives $1/6 + \varepsilon/2$ to each poor vertex incident to f. \square

Lemma 6. By rule R3, each poor vertex v gets the charge $1/6 + \varepsilon/2$ from each of the two 3^* -faces cyclically adjacent at v.

Proof. We prove first that if a 3^* -face f is incident to a 2-vertex u, then the ≥ 3 -vertex opposite to u in $\partial(f)$ is, in fact, a ≥ 14 -vertex.

Let $\partial(f) = xx_1x_2 \dots x_{k(x)}yy_1y_2 \dots y_{k(y)}zz_1z_2 \dots z_{k(z)}$, where all x_i , y_i and z_i are 2-vertices, and x, y and z are ≥ 3 -vertices. Suppose $k(x) \geq 1$, i.e., x_1 exists. Denote by f_{xy} the face neighboring f along the chain $xx_1x_2 \dots x_{k(x)}xy$ (which can coincide with f). The faces f_{yz} and f_{zx} are defined similarly.

Contract the edge xx_1 and pull back a good coloring of the map thus obtained to $P-x_1$. Choosing for v the color not entering the face f and the faces incident to z we obtain a good coloring. This cannot be done only if $d(z) \ge 14$.

In order to complete the proof of the lemma, recall that, by the second assertion of Lemma 1, one of the two 3*-faces f_1 or f_2 adjacent along the cycle at v is incident to a 2-vertex, z. If z is incident to both f_1 and f_2 , then the required statement follows from R3 and the statement proved just now. Otherwise z is opposite to a \geq 3-vertex w, which is incident to both f_1 and f_2 , since by the statement above the vertex z cannot be opposite to a poor vertex v whose degree, by Lemma 5, is not greater than 6. Hence, $d(w) \geq 14$, and we can apply R3 once again. \square

Lemma 7. If d(v) = 3, then v is incident to at least two faces giving v the charge $2/3 + \varepsilon$ according to the rule R2.

Proof. Suppose v is incident to chains $vx_1x_2...x_{k(x)}x$, $vy_1y_2...y_{k(y)}y$ and $vz_1z_2...z_{k(z)}z$, where all x_i , y_i and z_i are 2-vertices, while x, y and z are z-vertices. Suppose that

$$\partial(f_1) = \dots x x_{k(x)} \dots x_2 x_1 v y_1 y_2 \dots y_{k(y)} y, \qquad \partial(f_2) = \dots y y_{k(y)} \dots y_2 y_1 v z_1 z_2 \dots z_{k(z)} z, \\ \partial(f_3) = \dots z z_{k(z)} \dots z_2 z_1 v x_1 x_2 \dots x_{k(x)} x.$$

Suppose the converse, namely, that neither f_1 , nor, by symmetry, f_2 gives $2/3 + \varepsilon$ to v. Then, by R2, both f_1 and f_2 are $\leq 12^*$ -faces, and the degree of each vertex in $\partial(f_1) \setminus \{x, y\}$ and in $\partial(f_2) \setminus \{y, z\}$ is at most 13.

Contract the chain $vy_1y_2\dots y_{k(y)}y$ to the vertex v*y. Pull back a good coloring of the map obtained in this way to P and note that the vertices x and z have distinct colors. Choose pairwise distinct colors for $y_1, y_2, \dots, y_{k(y)}$ and v not entering the boundaries of the faces f_1, f_2, f_3 and those not more than $2\times 9\times (13-1)$ faces that are incident to > 2-vertices from $\partial(f_1)\setminus\{x,y\}\cup\partial(f_2)\setminus\{y,z\}$. The number of restrictions is at most $3k+2\times 9\times (13-1)k < c_Nk+d_N$, and there arise neither one-colored nonloop edges, nor two-colored cycles of length greater than two. \square

Lemma 8. If d(v) = 4, then v is incident to at least one face giving v the charge $2/3 + \varepsilon$ according to the rule R2.

Proof. Suppose v is incident to chains $vx_i^ix_2^i\dots x_{k(x^i)}^ix^i$ following in the cyclic order, where $0\leq i\leq 3$, all x_j^i are 2-vertices, and all x^i are > 2-vertices. Let

$$\partial(f^{i}) = x^{i}x_{k(x^{i})}^{i} \dots x_{2}^{i}x_{1}^{i}vx_{1}^{i+1}x_{2}^{i+1} \dots x_{k(x^{i+1})}^{i+1}x^{i+1} \dots,$$

for a face f^i with superscripts taken modulo 4.

Suppose that neither of the faces f^i gives $2/3 + \varepsilon$ to v. Then, by R2, each face f^i is a $\leq 12^*$ -face, and the degree of each vertex from $\partial(f^i) \setminus \{x^i, x^{i+1}\}$ is at most 13.

Add the edge x^ix^{i+1} to f^i for all $0 \le i \le 3$ if there is no such edge in $\partial(f^i)$ yet. Erase v and pull back a good coloring of the map thus obtained to P. Choose for v a color not entering the boundaries of the faces incident to the vertices from $\partial(f^i) \setminus \{x^i, x^{i+1}\}$ for all $0 \le i \le 3$. The number of restrictions is less than $4 \times 9 \times 13k \le c_N k + d_N$, and it is easy to see that neither one-colored edges, nor two-colored cycles arise. \square

Lemma 9. If $v \in V_{3+}$, then $\operatorname{ch}^*(v) \geq 0$.

Proof. Suppose first that v is poor i.e., $\operatorname{ch}(v) < 0$. Then, by Lemma 5, d(v) < 7. If d(v) = 3, then $\operatorname{ch}(v) = -1 - \xi - f_3^*(v)/3$, and we obtain the required statement by Lemma 7, since $2(2/3 + \varepsilon) > 1 + \xi + 1/3$.

If d(v) = 4, then $\operatorname{ch}(v) = -\xi - f_3^*(v)/3$. By Lemma 8, the vertex v gets the charge $2/3 + \varepsilon$ from at least one $\geq 4^*$ -face incident to it. If v is incident to at most two 3^* -faces, then $\operatorname{ch}^*(v) \geq \varepsilon - \xi \geq 0$. Otherwise, by Lemma 6, v would get at least $2(1/6 + \varepsilon/2)$ from three 3^* -faces incident to v, whence $\operatorname{ch}^*(v) \geq 0$.

If d(v) = 5, then $ch(v) = 1 - \xi - f_3^*(v)/3$ and we obtain the required statement if v is incident to at most two 3^* -faces. If there are r such faces at v, $3 \le r \le 5$, then, by Lemma 6, v gets at least $2(1/6 + \varepsilon/2)$ if r = 3 and at least $4(1/6 + \varepsilon/2)$ if $r \ge 4$, whence $ch^*(v) \ge 0$.

If d(v) = 6, then $ch(v) = 2 - \xi - f_3^*(v)/3$, and we obtain the required statement if v is incident to at most five 3^* -faces. Otherwise, by Lemma 6, v gets $6 \times (1/6 + \varepsilon/2)$ from the six 3^* -faces incident to v, whence $ch^*(v) \ge 0$.

Now suppose v is not poor. If it gives nothing to neighboring vertices according to rules R1 and R2, then $\operatorname{ch}^*(v) = \operatorname{ch}(v) \geq 0$. Otherwise, $d(v) \geq 14$ and v makes not more than d(v) transfers according to rule R1. Therefore,

$$\operatorname{ch}^*(v) = d(v) - 4 - \xi - d(v) \left(\frac{2}{3} + \varepsilon\right),\,$$

whence $\operatorname{ch}^*(v) \geq 0$ since $\xi \leq \varepsilon$. \square

Lemma 10. If $f \in F$, then $ch^*(f) \ge 0$.

Proof. If the degree of any vertex incident to a 3*-face is at most 13, then this face does not affect the charge. Otherwise it gets at least $1/3 + \varepsilon$ by rule R1 and it gives, by rule R3, not more than $2(1/6 + \varepsilon/2)$ to the poor vertices incident to this face. In both cases $ch^*(f) \ge 0$.

Now suppose $f \in F_{4+}^*$. If at least two vertices of degree ≥ 14 are incident to f, then

$$\operatorname{ch}^*(f) \geq s^*(f) - 4 + 2\left(\frac{2}{3} + \varepsilon\right) - (s^*(f) - 2)\left(\frac{2}{3} + \varepsilon\right) = (s^*(f) - 4)\left(\frac{1}{3} - \varepsilon\right) \geq 0.$$

If f contains only one ≥ 14 -vertex z, then

$$\operatorname{ch}^*(f) \geq s^*(f) - 4 + \frac{2}{3} + \varepsilon - (s^*(f) - 3) \left(\frac{2}{3} + \varepsilon\right) \geq 0,$$

since f gives the charge $2/3 + \varepsilon$ to not more than $s^*(f) - 3$ poor vertices by R3: neither z, nor the ≥ 3 -vertices closest to z on the left and on the right along $\partial(f)$ get anything from f.

Now suppose there are no vertices of degree ≥ 14 in f. If $s^*(f) \leq 12$, then

$$ch^*(f) = ch(f) = s^*(f) - 4 \ge 0$$

since f does not participate in the redistribution of charges. Finally, if $s^*(f) \ge 13$, then, by R2,

$$\mathrm{ch}^*(f) \geq s^*(f) - 4 - s^*(f) \left(\frac{2}{3} + \varepsilon\right) = s^*(f) \left(\frac{1}{3} - \varepsilon\right) - 4 \geq 0,$$

since $\varepsilon = 1/39$.

The lemmas above imply that $\operatorname{ch}^*(x) \geq 0$ for all $x \in V_{3+} \cup F$. This contradicts (6), which completes the proof of the theorem. \square

The research of the first author was supported in part by the Russian Foundation for Basic Research under grant No. 97-01-01075 and by the Interuniversity scientific program "Universities of Russia-fundamental research" (project code 1792). The research of the second author was supported in part by the INTAS under grant No. 97-1001 and by the Russian Foundation for Basic Research under grant No. 97-01-00581. The research of the third and the fourth author was supported in part by the NATO Joint Research Foundation under grant No. 97-1519.

References

- 1. K. Appel and W. Haken, "The solution of the four-color-map problem," Scientific American, 237, No. 4, 108-121 (1977).
- 2. P. J. Heawood, "Map-color theorem," Quart. J. Math., 24, 332-338 (1890).
- O. V. Borodin, "Solution for Ringel's problems on vertex-face colorings of flat graphs and on colorings of 1-flat graphs," Discrete Analysis. Novosibirsk, 41, 12-26 (1984).
- 4. G. Ringel, "Ein Sechsfarbenproblem auf der Kugel," Abh. Math. Sem. Univ. Hamburg, 29, 107-117 (1965).
- 5. H. Schumacher, "Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene," Abh. Math. Sem. Univ. Hamburg, 54, 5-14 (1984).
- 6. G. Ringel, "A nine color theorem for the torus and the Klein bottle," in: The Theory and Applications of Graphs (Kalamazoo, Mich., 1980), Wiley, New York (1981), pp. 507-515.
- O. Ore and M. D. Plummer, "Cyclic coloration of plane graphs," in: Recent Progress in Combinatorics, Academic Press, New York (1969), pp. 287-293.
- 8. O. V. Borodin, D. Sanders, and Y. Zhao, "On cyclic colorings and their generalizations," Discrete Math. (to appear).
- 9. O. V. Borodin, "On acyclic coloring of planar graphs," Diskrete Math., 25, 198-223 (1979).
- 10. M. Albertson and D. Berman, "An acyclic analogue to Heawood's theorem," Glasgow Math. J., 19, 169-174 (1977).
- 11. N. Alon, B. Mohar, and D. P. Sanders, "On acyclic colorings of graphs on surfaces," Israel J. Math., 94, 273-283 (1996).
- N. Alon and T. H. Marshall, "Homomorphisms of edge-colored graphs and Coxeter groups," J. Algebraic Combinatorics, 2, 277-289 (1998).
- 13. B. Grünbaum, "Acyclic colorings of planar graphs," Israel J. Math., 14, No. 3, 390-408 (1973).
- 14. T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York (1995).
- J. Nešetřil and A. Raspaud, Colored Homomorphisms of Colored Mixed Graphs, KAM Series NO. 98-376. Dept. of Applied Math, Charles University, Prague (1998).
- 16. A. Raspaud and E. Sopena, "Good and semi-strong colorings of oriented planar graphs," Inform. Processing Letters, 51, 171-174 (1994).
- 17. I. Algor and N. Alon, "The star arboricity of graphs," Discrete Math., 75, 11-22 (1989).
- 18. O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena, "On acyclic 20-colorability of 1-flat graphs," Discrete Analysis and Operations Research. Ser. I, Novosibirsk, 6, No. 4, 20-36 (1999).
 - (O. V. BORODIN) INSTITUTE OF MATHEMATICS, SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES, NOVOSIBIRSK
 - (A. V. KOSTOCHKA) NOVOSIBIRSK STATE UNIVERSITY
 - (A. RASPAUD, E. SOPENA) UNIVERSITÉ DE BORDEAUX, I