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Abstract .  We consider the order dimension of suborders of the Boolean lattice/~n. In particular we 
show that the suborder consisting of the middle two levels of l~n has dimension at most 6 log 3 n. More 
generally, we show that the suborder consisting of levels s and s + k of l~. has dimension O(k e log n). 
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1. I n t r o d u c t i o n  

For any positive integer n, let [n] = {1, 2 , . , . ,  n}, let B,~ be the collection of  subsets 
of [n], and let/~,~ = (B,~, _C) denote the Boolean lattice, where the subsets of  [n] 
are ordered by inclusion. For a finite set A, let C(A, k) denote the collection of 
k-element subsets of  A. For integers n, s and t with 0 ~< s < t ~< n, let B,~(s, t) 

The research of the second author was supported by Office of Naval Research Grant N00014-90-J- 
1206. 
The research of the third author was supported by Grant 93-011-1486 of the Russian Fundamental 
Research Foundation. 



128 G. R. BRIGH~INCELL ET AL. 

denote the restriction of 13n to C([n], s) U C([n], t). Finally, let dim(s, t; n) denote the 
(order) dimension of 13n(s, t). We refer the reader to the monograph [7] for additional 
background material on dimension theory. 

The function dim(s,t;  n) was first studied by Dushnlk [1] in 1950, but estimates 
for the function are surprisingly poor, except in the case s = 1. In this case, Dustmik 
noted the following useful reformulation of the problem. 

PROPOSITION 1.1. For allpositive integers t and n, 1 < t < n, dim(1, t ;n)  is the 
least positive integer d for which there exists a set Y~ o f  d linear orderings of  [n] 
such that for all X E C([n], t) and all y E [n] - X ,  there exists L E E such that in 
L, y is greater than every element o f  X .  

With the aid of Proposition 1.1, Dushnik [1] proved the following result, establishing 
the exact value for dim(1,t; n) when t t> 2v"f f -  2. 

THEOREM 1.2 [1]. Let n and t be positive integers with n >/4 and 2VFff - 2 <~ t <~ 
n -- 1. Then let j be the unique integer with 2 <<. j <~ v ~  for which 

) . 

Then 

dim(l, t; n) = n - j + 1. 

In the remainder of this paper, we will discuss estimates for the dimension of ordered 
sets. For this reason, we will omit "floors" and "ceilings" from expressiolts which 
only have meaning for integers. 

For fixed t, Spencer [6] established the asymptotic behavior of dim(l,  t; n). 

THEOREM 1.2 [6]. For fixed t, 

dim(l, t; n) = ®(log log n). 

The following elementary result is an exercise in [7] and follows easily from Dush- 
nik's proof of Theorem 1.2. 

PROPOSITION 1.4. For all positive integers t and n with 7~ 2 ~ n, 

t2/4 < dim(l, t; n). 

In view of Proposition 1.4, the following result of Ftiredi and Kahn [4] establishes 
the value of dim(1, t ;n)  within a multiplicative factor of order log t, if t = ff2(n*). 
The proof is simply a matter of taking d linear orderings of In], uniformly at random 
from the set of all possible linear orderings, and noting that the probability that these 
do not form a family Z as in Proposition 1.t tends to 0. 
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PROPOSITION 1.5 [4]. For  all posit ive integers t, n, with t < n, i f  d is a posit ive 
integer satisfying 

( n - - X ) ( t - ~ ) d  
n t < 1, 

then dim(l ,  t; n) <x d. In particular, 

dim(1,t; n) (t + 1)Zlog n. 

Determining d im( l ,  t; n) for  t a small growing function of  n remains an intriguing 
open problem. Moreover ,  until recently, very little was known for the case s > 1. 
Here are two well known trivial bounds. 

PROPOSITION 1.6. For  all posit ive integers s <~ st < t' ~ t <<. n' <~ n, 

dim(s ' ,  t ' ;  n ' )  x< dim(s, t; n). 

PROPOSITION 1.7. For  all posit ive integers r < s < t < n, 

dim(s - r , t  - r; n - r )  ~< dim(s, t; n). 

The  next  two results are given by Hurlbert,  Kostochka and Talysheva in [5]. 

T H E O R E M  1.8 [5]. For  each positive integer n with n >1 5, 

dim(2, n - 2; n) = n - 1. 

T H E O R E M  1.9 [5]. For  each positive integer n with n >>. 6, 

dim(2, n - 3; n) = n - 2. 

In fact, it is shown in [5] that if 2v/-ff < t < n -  2 and t is not an integer of  the form 
j - 2 + (n - 1) / j ,  for  some positive integer j ,  then dim(2, t; n) = d im( l ,  t - 1; n - 1). 

While preparing this manuscript,  we have just learned that Ftiredi [2] has proven 
the fol lowing result. 

T H E O R E M  1.10 [2]. For  each integer k >7 3, there exists no so that i f  n > no, then 

dim(k, n - k; n) = n - 2. 

In this note, we provide the following upper  bound on dim(s , t ;  n) in terms o f  the 
parameters d im( l ,  2(t - s); n)  and t - s. 
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THEOREM 1.11. For all positive integers k, n with 2k << n, there exists a collection 
Z of at most dim(l,  2k; n) + 18klog n linear extensions of 15~ such that for any 
incomparable pair (S ,T )  E B~ x B,~ with ISI < [TI ~< k +  ISI, there exists L E Z 
such that T < S in L. In particular, 

dim(s, s + k; n) ~< dim(l,  2k; n) + lSk log n, 

for every positive integer s, with s + k <~ n. 

Using Theorem 1.5, we have the following corollary. 

COROLLARY 1.12. For all positive integers s, k and n, with s + k <~ n, 

dim(s, s + k; n) = O(k 2 log n). 

When k = 1, we can do a little better. 

THEOREM 1.13. For every positive integer n, there exists a collection Y of  6 log 3 n 
linear extensions of  15~ such that for any incomparable pair (S, T) E 13n x B~ with 
ITI = 1 + ISI, there exists L E Z such that T < S in L. In particular, 

dim(s, s + 1; n) ~< 6log 3 n, 

for every positive integer s with s + 1 <~ n. 

For some values of s and k, we know that the inequalities in Theorems 1.11 and 
1.13 are far from tight. For example, the following asymptotic formula is proved 
in [7], based on work [3], and following earlier results of Spencer [6]. 

THEOREM 1.14. 

dim(l, 2; n) = lg lg n + (1 /2  + o(1)) lg lg lg n. 

For the middle two levels of the Boolean lattice, our upper and lower bounds are 

lg lg n + ( 1 / 2 4  o(1)) lg lg lg n < dim(s, s + 1; 2s + 1) ~< 6log 3 n. 

However, we should comment that when k ~> log n, but k and s are both o(n), 
the inequality in Theorem 1.11 is relatively tight. This follows from the observation 
that 

dim(s, s + k; n)/> dim(l,  k + 1; n - s + 1). 



DIMENSION OF SUBORDERS OF BOOLEAN LATYICE 131 

Our upper bound is not too far this lower bound whenever dim(l, k; n) and dim(l, 2k; 
n) are relatively close (see Problem 4.2). 

2. S o m e  C o m b i n a t o r i a l  L e m m a s  

To prove Theorem 1.11, we need to provide an appropriate family Z of linear exten- 
sions of/~,~. This family will be made up of two sets of extensions; the first set is 
designed to deal with those pairs (S, T) where T -  S is small, and the second set is 
designed to handle the remaining pairs. Our first lemma concerns the first of these 
sets; in the next section, we shall apply it with e = 2k. 

LEMMA 2.1. For all positive integers c and n with 1 < c <~ n, there exist d = 
dim(l, c; n) linear extensions M1, M2, . . ., Ma of  13~ with the property that for all 
incomparable pairs ( S , T )  E 13n x B~ with I T -  S I ~ c, there exists i E [d] such that 

T < S in Mi. 
Proof. For any linear ordering ~r of In], define the lexicographical ordering L(~r) 

on/~,~ with respect to c~ as follows. For two sets S , T  E B~, T < S in L(~r) if and 
only if  the ~r-largest element of S A T  = (S  - T )  U (T  - S)  is in S. Clearly, any such 
L(o') is a linear extension of B,~. 

Let d = dim(l,  e; n); choose d linear orderings o-i, or2,... , ~rd on [n] such that for 
all X E B,~ with 1 ~< lXl .< e and all Y E [n] - X, there exists i E [d] such that y is 
greater than every element of X in ¢i- Let Mi = L(cri), for all i E [d]. 

Consider an incomparable pair (S, T) E B,~ x Bn such that IT -  SI .< c. Choose 
y E S - T and let X = T - S. Then there exists i E [d] such that y is greater than 
every element of X in ~i. Thus T < S in Mi. [] 

For positive integers a, b, k, t and n with k < b ~< n and k < a, we define a sequence 
{fi: i E [n]} of functions from [~] to [a] to be (a, b, k, t, n)-good if, for each X E 
C([n],b), there exists r E [~] with t{fi(r): i E X)I > k. 

LEMMA 2.2. For positive integers a, b, k, t, n with k < b <~ n and k < a, if 

(b)ekt(k/a)(~-~:)~ < 1, 

then there exists an (a, b, k, ~, n)-good sequence. 

Proof  Let S be the set of all functions from [t] to [a], and choose functions 
f l , - . . ,  f,~ independently uniformly at random from S. We estimate the probability 
that this sequence is not (a, b, k, t, n)-good. For each r E It] and each X E C([n], b), 
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and so 

Prob [3X EC([n],b)  w i x}l k] 

(:)ek¢(k/a)(b-k)t < l. 

The lemma follows. [] 

LEMMA 2.3. Let a, b, k, t and n be positive integers with k < b <~ n and k < a. I f  
there exists an (a, b, k, t, n)-good sequence, then there exists a set 

Z = {L(a ,v , j ) :  a E [a], v E [t] a n d j  E [2]} 

of  2at linear extensions o f  13~ such that for all incomparable pairs (S ,T)  E B,~ x B,~ 
with both [SI < tTt ~< k + ISI and IT/XSI >1 b, there exists L E Z such that T < S in 
L. 

Proof. Let {fi: i E [n]} be an (a, b, k, t, n)-good sequence. Let M1 and M2 
be two linear extensions of /3,~ such that if S , T  E B~ satisfy 181 -- ITI, then 
T < S i n M 1  if and only i f S  < T i n  M2. For S E Bn, a E [a], and r E [t], 
let S(a ,  ~') = {i ~ S: f & ' )  = a}.  For all ~ a [a], ~" e [t], and j E [2], define 
partial extensions M ( a , r , j )  on /3n by T < S in M(~,~' , j )  if and only if either 
[T(c~, r)] < [S(a, r)[ or both [T(a, r)[ = [S(a, ~')1 and T(o~, r)  < S(a,  7-) in Ms. It is 
easy to check that each M(a,  r, j), is a partial order which extends B,~. Finally, let 
L(a,  % j )  be any linear extension of M(a ,  v, j )  for all ~ E [a], ~- E [t], and j E [2]. 

We claim that 

Z = {L(o~,r,j): a E [a],~" E [t] and j E [2]} 

satisfies our requirement. Consider an incomparable pair (S, T) E B,~ x B,~ with both 
IS I < IT[ ~< k +  IS[ and ITASI >/b. Then there exists X C_ T A S  with IXI = b. Since 
{fi: i E [n]} is (a,b,k,t ,n)-good, there exists r E It] such that t{fi(r): i E X)[  > k. 
Since IT[ ~ k + ISl, there exists a E [a] such that either IT(a, r)[ < IS(a, r)[ or both 
a E {fi(v): i E X )  and IT(a, r)l = IS(a, r)t. In the first case, T < S in L(a,  r , j )  for 
any j E [2]. In the second case, there exists i E X C_ T A S  such that f i (r)  = a. Thus 
i E T(a,  r),'XS(a, 7"), so that T(a,  r)  ¢ S(o~, r). It follows that there exists j E [2] 
such that T < S in L(a,  7-, j).  [] 

3. Proofs o f  Theorems 1.11 and 1.13 

We first prove Theorem 1.11. The result is trivial if 18klog n >~ n, so we may 
assume that 18klog n < n. We now set a = 3k, b = 3k and t = 3log n, and use 
the lemmas of  the previous section. By Lemma 2.1, there is a collection Yl of  
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dim(l, 2k; n) linear extensions of Bn such that, whenever S and T are incomparable 
elements of B,~ with IT - SI ~< 2k, we have T < S in some extension in Yl. 

Next we note that 

(;k)e3kl°gn(k/3k) (3k-~)3t°gn <<. n3ke3kl°gn3 -6kl°gn <~ (e/3) 6kl°gn < 1, 

so by Lenuna 2.2, there is a (3k, 3k, k, 3 log n, n)-good sequence. Now Lemma 2.3 
tells us that there is a set E2 of 18k log n linear extensions of/3,~ such that, whenever 
5' and T are incomparable sets with ISt < PTI ~< k + ISl and IT - SI/> 2k, we have 
ITASI >t 3k = b, and so T < S in some extension in Z2. The combined family 
E = E1UE2 then has the desired property. This completes the proof of Theorem 1.11. 

For the proof of Theorem 1.13, we need only apply Lemma 2.3 with a = 3, 
b = 2, k = 1, and t = rlg hi.  Observe first that any sequence {fi: i E [n]} of 
distinct functions from It] to [3] is (3, 2, 1, t, n)-good: the condition states exactly 
that any pair of functions differ for some argument. The collection 37 of 6 log 3 n 
linear extensions of 13n provided by Lemma 2.3 now satisfies the requirements of the 
theorem, since if S and T are incomparable sets with ITI = ISI + 1, then ITASI >/2. 

4. C o n c l u d i n g  R e m a r k s  

In stating the principal results (Theorems 1.11 and 1.13) of this paper, we have chosen 
to express our upper bounds in a form which makes the analysis straightforward. This 
approach seems justified by the fact that for most of our inequalities, our upper and 
lower bounds differ by a multiplicative factor which is at least as large as tog log n. 

Our results suggest several new problems and reinforce the importance of some 
older ones, beginning of course with improvements to the various inequalities cited 
or derived in this paper. Here are two new problems which we consider to be 
particularly appealing. 

PROBLEM 4.1. For a fixed positive integer t, find (or estimate) the least number 
c, so that dim(l,  t; n) ~< c¢ log log n. 

PROBLEM 4.2. For a fixed positive integer k, investigate the behavior of the ratio 

dim(l, ks; n)/dim(l,  s; n). 

For fixed values of k and n, what value ors makes this ratio maximum? 

Note that Problem 4.2 is already interesting for small values of k, as the value k = 2 
is featured in Theorem 1.11. 
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Note added in proof 

After this manuscript was submitted, Kostochka improved the upper bound on di re(s, s + 1; n) by showing 

that dim(s, s + 1; n) = O(log n/log log n). Kierstead showed that dim(l, k; n)/>(1 - o(1))2 k-2 lg lg n, 

when k < lg lg n - lg lg lg n. Kierstead also showed that k 2 Ig n/33 Ig k < dim(l, k; n), when 

2 lgl/2 n<~k<~2x/'n- 2. Proofs will appear elsewhere. 
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