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Let H=(V,E) be a hypergraph. A panchromatic t-colouring of H is a t-colouring of its ver-
tices such that each edge has at least one vertex of each colour; and H is panchromatically
t-choosable if, whenever each vertex is given a list of t colours, the vertices can be coloured
from their lists in such a way that each edge receives at least t different colours. The Hall
ratio of H is h(H) =min

{∣∣⋃F
∣∣/|F| :∅ �=F⊆E

}
. Among other results, it is proved here

that if every edge has at least t vertices and
∣∣⋃F

∣∣�(t−1)|F|− t+3 whenever ∅ �=F⊆E ,
then H is panchromatically t-choosable, and this condition is sharp; the minimum ct such
that every t-uniform hypergraph with h(H)>ct is panchromatically t-choosable satisfies
t−2+3/(t+1) � ct � t−2+4/(t+2); and except possibly when t= 3 or 5, a t-uniform
hypergraph is panchromatically t-colourable if

∣∣⋃F
∣∣ � ((t2 − 2t+2)|F|+ t− 1)/t when-

ever ∅ �=F ⊆E , and this condition is sharp. This last result dualizes to a sharp sufficient
condition for the chromatic index of a hypergraph to equal its maximum degree.

1. Introduction

Let H = (V,E) be a hypergraph with vertex-set V (H) = V and edge-set
E(H)=E . A panchromatic t-colouring of H is a function f :V →C, where C
is a set of t colours, such that each edge contains at least one vertex of each
colour. If each vertex of H is assigned a list of t colours, then a panchromatic
t-list-colouring of H is a colouring in which each vertex is given a colour from
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its own list and each edge contains vertices with at least t different colours.
We say that H is panchromatically t-choosable or, equivalently, panchromat-
ically t-list-colourable, if it has a panchromatic t-list-colouring whenever a
list of t colours is assigned to each vertex of H; clearly this implies that
H is panchromatically t-colourable. The connection between panchromatic
colourings and edge-colourings of the dual hypergraph is illustrated in The-
orem 3 below.
The Hall ratio of H is h(H) :=min{|⋃F|/|F| :∅ �=F ⊆E}, where we write⋃F as a shorthand for

⋃
F∈F F . The Hall ratio is so called because Hall’s

theorem [4] says that H has a system of distinct representatives if and only if
h(H)�1. For a graph G, the Hall ratio h(G) is related to the maximum av-
erage degree mad(G) over all subgraphs of G by mad(G)=2/h(G); thus the
obvious inequality mad(G)�χ(G)−1 can be rewritten as h(G)�2/(χ(G)−1),
and results of, for example, Gallai [3] and Krivelevich [5] giving lower bounds
on mad(G) for a k-critical graph G, can be reformulated similarly in terms of
h(G). For hypergraphs in general, it is well known [6,8,7,1] that if h(H)>1
then H is (panchromatically) 2-colourable, and Lovász [6] proved the more
general result that if h(H)>t−1 then H is panchromatically t-colourable.
In Section 2, we generalize this result from colourability to choosability.

For t�3, we shall see in Theorem 5 that if h(H)>t−1, or if h(H)� t−1 and
every edge has at least t vertices, then H is panchromatically t-choosable.
In Theorem 7 we prove the marginally stronger result that if every edge has
at least t vertices and |⋃F|�(t−1)|F|−t+3 whenever ∅ �=F⊆E , then H is
panchromatically t-choosable, and this condition on |⋃F| is sharp even for
panchromatic t-colourability.
In Section 3 we consider the panchromatic choosability of t-uniform hy-

pergraphs. If H is t-uniform (that is, every edge contains exactly t vertices)
then the above condition can be weakened somewhat, as we described in the
Abstract and as we shall see in Theorem 9.
In Section 4 we consider the analogous problem for colourability rather

than choosability. Here we can do better, and we prove the following result.

Theorem 1. Let t� 2, t /∈{3,5}, and let H=(V,E) be a t-uniform hyper-
graph such that

|⋃F| � (t2 − 2t+ 2)|F| + t− 1
t

whenever ∅ �= F ⊆ E .(1.1)

Then H is panchromatically t-colourable. For t∈{3,5}, the same conclusion
follows if the final −1 in (1.1) is omitted.
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This bound is sharp if t /∈{3,5}. We conjecture that these exceptions in
Theorem 1 are unnecessary, and that the condition even suffices to ensure
choosability rather than colourability:

Conjecture 2. Let t � 2. If a t-uniform hypergraph H = (V,E) satisfies
(1.1), then it is panchromatically t-choosable.

The only value of t for which we know this conjecture to be true is t=2,
for which the result follows from Theorem 5.
Duchet [2] defines a hypergraph to have the edge-colouring property if its

chromatic index is equal to its maximum degree, and he quotes some suffi-
cient conditions for a hypergraph to have this property. Theorem 1 can be
reformulated so as to give a different type of condition for this property. Note
first that, by Theorem 1, (1.1) suffices to ensure that every hypergraph H
(not necessarily t-uniform) with maximum edge size t is strictly t-colourable;
that is, its vertices can be coloured with t colours in such a way that no two
vertices in the same edge have the same colour. This is because if there is an
edge containing s<t vertices, then adding t−s vertices of degree 1 into this
edge will not cause (1.1) to fail, nor create a strict t-colouring if one did not
exist already; thus the result for t-uniform hypergraphs implies the more
general result. But a strict colouring of H corresponds to a proper edge-
colouring of the dual hypergraph H∗, and the maximum edge size of H is
the maximum degree of H∗. Thus Theorem 1 is equivalent to the following.

Theorem 3. Let t � 2, t /∈ {3,5}, and let H∗ = (V ∗,E∗) be a hypergraph
with maximum degree at most t. Suppose that, for every k (1� k� |V ∗|),
every set of k vertices is incident with at least ((t2−2t+2)k+t−1)/t edges.
Then H∗ is edge-t-colourable.

This bound, which is sharp since the bound in Theorem 1 is sharp, seems
somewhat unusual.
Throughout the paper, N denotes the set of positive integers. As usual,

the degree of a vertex in a hypergraph is the number of edges containing it,
and two vertices are adjacent if there is an edge containing both of them.
A d-vertex is a vertex with degree d. A vertex is essential if its degree is at
least 2, and inessential otherwise.

2. Panchromatic choosability of hypergraphs

In this section we consider general (not necessarily uniform) hypergraphs.
We begin with the extremal example.
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Example 4. Let H = H(s,t) be the hypergraph with vertices v0 and vi,j

(1 � i � s, 2 � j � t) and edges Ai := {v0,vi,2, . . . ,vi,t} (1 � i � s) and
A0 :={v1,t,v2,t, . . . ,vs,t}. Then H has no panchromatic t-colouring, since no
element of A0 can be given the same colour as v0. But H has s+1 edges and
s(t−1)+1 vertices, and |⋃F|�(t−1)|F|−t+2 for all F⊆E(H), with strict
inequality unless F = E(H). And h(H) = (s(t−1)+1)/(s+1), which tends
to t−1 from below as s→∞, so that to require h(H)>t−1− ε would not
suffice to ensure panchromatic t-colourability.

We now prove the best possible result involving the Hall ratio. The suf-
ficiency of the conditions follows from Theorem 7, but we include a direct
proof here since it is relatively short and so that we can cite it as part of
the proof of Theorem 7.

Theorem 5. Let H be a hypergraph and t∈ N. If (i) h(H)> t−1, or (ii)
t� 3, every edge of H has at least t vertices and h(H) � t− 1, then H is
panchromatically t-choosable; moreover, these conditions on h(H) are sharp,
even for panchromatic t-colourability.

Proof. Condition (i) is clearly sharp, since h(H) � t− 1 is not enough to
ensure that every edge has at least t vertices, which is necessary for the
existence of a panchromatic t-colouring. Example 4 shows that condition
(ii) is sharp. The odd cycles show that condition (ii) would not suffice to
ensure panchromatic t-colourability if t=2 (although it does suffice, rather
trivially, if t=1).
We now prove that the conditions are sufficient. Let E(H)={A1, . . . ,Am}.

A well-known generalization of Hall’s theorem (the harem theorem) says
that the condition h(H)� t−1 is necessary and sufficient for the existence
of disjoint sets B1, . . . ,Bm such that Bi ⊆Ai and |Bi|= t−1 for each i. So
suppose that such sets Bi exist. Suppose that every vertex is given a list of
t colours. Colour first every vertex that is in no set Bi, giving each vertex
an arbitrary colour from its list. If possible, choose a set Ai that contains a
coloured vertex but such that all vertices in Bi are uncoloured, and colour
all vertices of Bi from their lists in such a way that Ai contains vertices
of t different colours; clearly this is possible. Repeat until no such set Ai

remains. Now let K be the set of indices i such that Bi is uncoloured. Then
|⋃i∈KAi|= |⋃i∈KBi|=(t−1)|K|, and so if h(H)>t−1 then K=∅ and the
colouring is complete.
Now suppose K �=∅, t�3, every edge has at least t vertices, and h(H)=

t−1. For each i∈K, choose a vertex vi ∈Ai \Bi and consider the digraph
D with the vi as vertices in which there is an arc from vi to vj whenever
vi∈Bj . (Note that D may have fewer than |K| vertices, since it is possible
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that vj=vk when j �=k. In this case, the above definition implies that there
is an arc from vi to vj = vk whenever vi ∈ Bj ∪Bk.) Then each vertex of
D has outdegree 1. Since t � 3, it is possible to colour the vertices of D
from their lists in such a way that not only do adjacent vertices get different
colours, but no set Bi contains two vertices of the same colour. (Colour first
the vertices of directed cycles in D, then go back up the branches of any
trees rooted at such vertices, colouring as you go.) Note that each set Ai

(i∈K) now has at least one coloured vertex vi, and may have other coloured
vertices in Bi, but it does not contain two vertices of the same colour. So we
may colour the remaining vertices in Bi from their lists so that Ai contains
vertices of t different colours. All vertices of H are now coloured, and we
have a panchromatic t-colouring.

Although Theorem 5 is sharp, we can improve it by changing the nature
of the condition slightly. We do this first for t-uniform hypergraphs, although
we should note that for such hypergraphs the result stated here is not sharp;
the question of how much it can be improved forms the subject of the next
section.

Lemma 6. Let t ∈ N and let H = (V,E) be a t-uniform hypergraph such
that |⋃F|� (t−1)|F|− t+3 whenever ∅ �=F ⊆E . Let each vertex of H be
assigned a list of t colours, let A be any edge of H, and let each vertex of
A be coloured from its list in such a way that no two vertices of A have the
same colour. Then this colouring of A can be extended to a panchromatic
t-list-colouring of H.

Proof. We prove the result by induction on t, noting that it is true if t=1
even without the condition on |⋃F|. So suppose t�2, and let H if possible
be a counterexample with as few edges as possible, and with lists of colours
assigned so that the required colouring cannot be obtained. Clearly H is
connected.
Suppose first there is a proper subset J ⊂E such that |⋃J |=(t−1)|J |−

t+3. Choose J to be a largest proper subset of E with this property. Since
H is connected, there is an edge E in E \ J that intersects

⋃J , and if
F := J ∪{E} then |⋃F| = (t− 1)|F|− t+3 (since � holds by hypothesis,
and > is clearly impossible). Since F cannot therefore be a proper subset
of E , by the choice of J , it follows that F=E . If A∈J , we can extend the
colouring of A to a panchromatic t-list-colouring of (

⋃J ,J ) by the choice
of H, since J has fewer edges than H, and this colouring is then easily
extended panchromatically to the remaining t−1 vertices of E. If however
A=E, then choose an edge F ∈J such that A∩F �=∅, extend the colouring
of A∩F panchromatically to the remaining t− 1 vertices of F , and then
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extend this colouring of F to a panchromatic t-list-colouring of J . In either
case, we have extended the colouring of A to a panchromatic t-list-colouring
of H, and this contradiction shows that in fact |⋃J |> (t−1)|J |− t+3 for
every proper subset J ⊂E .
Suppose now that some edge E is contained in the union of all the other

edges. If F :=E \{E}, then |⋃F|�(t−1)(|F|+1)−t+3=(t−1)|F|+2. This
means that H−E is not connected; that is, one can write E={E}∪E1∪E2 in
such a way that no edge of E1 has any vertices in common with any edge of
E2. Without loss of generality, A∈{E}∪E1. Since H was a counterexample
with as few edges as possible, we can extend the given colouring of A to
a panchromatic t-list-colouring of {E}∪E1, and then extend the resulting
colouring of E to a panchromatic t-list-colouring of {E}∪E2. This gives a
panchromatic t-list-colouring of H, which is a contradiction. Thus each edge
E contains a vertex that is in no other edge; choose such a vertex vE for
each edge E.
Finally, let w be a vertex in A that is contained in at least one other edge

(which must exist, since H is connected). For each edge E, let E′ :=E\{w}
if w ∈ E and let E′ := E \ {vE} otherwise. Let c be a colour in the list of
w. Consider the (t−1)-uniform hypergraph H′ with edge-set {E′ :E ∈ E},
with colour c removed from all lists. Then H′ satisfies the hypotheses of the
theorem with t− 1 in place of t, because |⋃E∈F F ′| � |⋃F|− |F| for each
F⊆E , with strict inequality when F=E , so that |⋃E∈F F ′|�(t−2)|F|−t+4
for all F ⊆ E . Now the given colouring of A′ can first be extended to a
panchromatic (t− 1)-list-colouring of H′ by the induction hypothesis, and
then we can colour w with c and colour each removed vertex vE with a
colour from its list so as to obtain a panchromatic t-list-colouring of H. This
contradiction completes the proof.

We now extend Lemma 6 to nonuniform hypergraphs, and simultaneously
prove a result about the critical hypergraphs. A hypergraph H is critically
panchromatically non-t-colourable if H has no isolated vertices and H is not
panchromatically t-colourable, but every hypergraph obtained from H by
deleting an edge is panchromatically t-colourable. A critical panchromati-
cally non-t-choosable hypergraph is defined analogously.

Theorem 7. Let t∈N and let H= (V,E) be a hypergraph in which every
edge has at least t vertices.
(a) If |⋃F|�(t−1)|F|−t+3 whenever ∅ �=F⊆E , then H is panchromatically
t-choosable, and this condition on |⋃F| is sharp even for panchromatic t-
colourability (except when t=1).
(b) If t�3 andH is critically panchromatically non-t-colourable, or critically
panchromatically non-t-choosable, then |⋃E|�(t−1)|E|− t+2.
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Proof. Example 4 shows that the condition in (a) is sharp when t�2. The
rest of (a) follows from Theorem 5 if t� 2 and from (b) if t� 3, and so it
would suffice to prove (b). However, it is more convenient to show first that
(b) follows from (a), and then prove (a).
Suppose if possible that H is a counterexample to (b), and suppose that,

if H is critically panchromatically non-t-choosable, then each vertex of H is
given a list of t colours for which H is not panchromatically t-list-colourable.
Choose s maximal such that

|⋃F| � (t− 1)|F| − t+ s whenever ∅ �= F ⊆ E ,(2.1)

and let J be any subset of E for which
|⋃J | = (t− 1)|J | − t+ s.(2.2)

Suppose J �= E . Then (⋃J ,J ) is panchromatically t-colourable or t-
choosable, as appropriate, by the criticality of H. If F ′⊆E \J then, taking
F :=F ′∪J in (2.1), and using (2.2), we find that |⋃F ′ \⋃J |� (t−1)|F ′|.
Since this holds for all F ′ ⊆ E \J , the argument in the last paragraph of
the proof of Theorem 5 shows that any panchromatic t-colouring of (

⋃J ,J )
can be extended to a panchromatic t-colouring of H in which, if appropriate,
each vertex of V \⋃J receives a colour from its list. This contradiction shows
that J =E .
It remains to prove that s�2. This will follow from (a), which says that

if s�3 then H is panchromatically t-choosable.
So let H now be a counterexample to (a) with t�3 for which ∑

E∈E |E|
is as small as possible, and assume that each vertex of H is given a list of
t colours. Clearly H is connected. Define s to be maximal such that (2.1)
holds, so that s�3 by hypothesis, and note that if (2.2) holds then the above
argument shows that J =E . Suppose some edge E∈E contains more than t
vertices. Since H is connected, E contains a vertex v that belongs to another
edge as well. Since we have just seen that strict inequality holds in (2.1)
except when F=E , removing v from E will not violate any of the hypotheses
of (a), nor will it make the hypergraph panchromatically t-choosable, and
so the resulting hypergraph will violate the choice of H as a counterexample
for which

∑
E∈E |E| is as small as possible. This contradiction shows that H

is t-uniform, and the result now follows from Lemma 6.

3. Panchromatic choosability of t-uniform hypergraphs

Theorems 5 and 7 are not sharp for t-uniform hypergraphs, as we shall see
in Theorem 9. We first give what we conjecture to be the extremal example.
(If t=2 then this example is an odd cycle, and it is certainly extremal.)
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Example 8. For t� 2, let H(t) be the t-uniform hypergraph with vertices
v0, v and vi,j (1 � i � t− 1, 2 � j � t), whose edges are {v0,vi,2, . . . ,vi,t}
(1� i� t−1) and {v1,t,v2,t, . . . ,vt−1,t,v}. Then H(t) has t2 −2t+3 vertices
and t edges; and in any panchromatic t-colouring of H(t), v must be given
the same colour as v0. Call H(t) a superlink joining v0 and v.
Now, for s � 1, form a t-uniform hypergraph H(t)

s by taking vertices
v0,v1, . . . ,vs and adding superlinks joining vi−1 and vi (1 � i � s) and an
ordinary edge (set of t vertices) containing vs and v0, these s superlinks and
one edge having no vertices in common except for v0,v1, . . . ,vs. Then H(t)

s is
not panchromatically t-colourable, and it has s(t2−2t+2)+(t−1) vertices
and st+1 edges. So if its edge-set is E then

|⋃ E| = s(t2 − 2t+ 2) + (t− 1) = (t2 − 2t+ 2)|E| + t− 2
t

and

|⋃F| > (t2 − 2t+ 2)|F| + t− 2
t

whenever ∅ �= F � E .

In particular, H(t)
1 is a t-uniform hypergraph that is not panchromatically

t-colourable and for which

h(H(t)
1 ) =

t2 − t+ 1
t+ 1

= t− 2 + 3
t+ 1

,

the lower bound for ct stated in the Abstract.

We now prove a simple upper bound for ct. Recall that a d-vertex is a
vertex with degree d, and a vertex is essential if its degree is at least 2.

Theorem 9. If t�2 and H=(V,E) is a t-uniform hypergraph with h(H)>
t−2+4/(t+2), then H is panchromatically t-choosable.

Proof. There is no loss of generality in supposing that H has no isolated
vertices. Suppose that H, with a list of t colours on each vertex, is a coun-
terexample to the theorem with no isolated vertices, with as few edges as
possible, and, subject to these conditions, with as many vertices as possible.
We first prove two claims.

Claim 1. No edge can contain t−1 or more inessential vertices.

Proof. If E is such an edge, then the hypergraph H′ obtained from H
by deleting E and all its 1-vertices is panchromatically t-choosable, by the
minimality of H as a counterexample, and a panchromatic t-colouring of H′

can clearly be extended to H by colouring each 1-vertex of E in turn from
its own list. This contradiction proves Claim 1.
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Claim 2. Every essential vertex is adjacent to at least t other essential
vertices.

Proof. If v is an essential vertex that is adjacent to at most t−1 other essen-
tial vertices, let H′′ be a hypergraph obtained from H by splitting v into two
vertices v′,v′′, one of which is contained in one edge ofH that contained v and
the other of which is contained in all the other edges that contained v. Let
v′ and v′′ be given arbitrary lists of t colours. Since H′′ has the same number
of edges as H but more vertices, it is panchromatically t-choosable. Given
a panchromatic t-colouring of H′′, we obtain a panchromatic t-colouring of
H as follows. Give every essential vertex of H that occurs in H′′ the same
colour as in H′′. Give v a colour from its list that is different from the colours
of all the essential vertices adjacent to it, which is possible since there are at
most t−1 such essential vertices. Finally, give each 1-vertex in turn a colour
from its list that is different from the colours of all already-coloured vertices
in its one edge. This shows that H is panchromatically t-choosable, and this
contradiction completes the proof of Claim 2.

Now suppose that each vertex of H is allocated a charge equal to its
degree, and that each essential vertex then redistributes 1/t units of its
charge to each 1-vertex adjacent to it. Since every edge contains at least two
essential vertices by Claim 1, every 1-vertex ends up with at least 1+2/t
units of charge. A vertex with degree d�2 is adjacent to at most d(t−1)−t
inessential vertices by Claim 2, and so ends up with at least d−d(1−1/t)+1=
1+d/t�1+2/t units of charge. Note that the total charge allocated was t|E|,
the total charge after the redistribution is at least (1+2/t)|V |, and no charge
was created or destroyed in the redistribution. Therefore (t+2)|V | � t2|E|
and

|⋃ E|
|E| =

|V |
|E| � t2

t+ 2
= t− 2 + 4

t+ 2
,

contrary to the hypothesis of the theorem. This contradiction completes the
proof.

4. Panchromatic colourings of t-uniform hypergraphs

In this section we consider the colourability, rather than the choosability, of
t-uniform hypergraphs. Let H=(V,E) be such a hypergraph. If W ⊆V , let
E(W ) = EH(W ) be the set, and e(W ) = eH(W ) be the number, of edges of
H contained in W . Define the surplus of W to be

sur(W ) = surH(W ) = t|W | − (t2 − 2t+ 2)eH(W )− t+ 2.(4.1)
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Then the following two conditions are equivalent:

surH(W ) � 1 whenever ∅ �=W ⊆ V ;(4.2)

|⋃F| � (t2 − 2t+ 2)|F| + t− 1
t

whenever ∅ �= F ⊆ E .(4.3)

For, if (4.2) holds then (4.3) follows on setting W =
⋃F (so that eH(W )�

|F|); and if (4.3) holds then (4.2) follows on setting F = EH(W ) (so that
|W |� |⋃F|). We shall say that a t-uniform hypergraph H= (V,E) is well
spread if it satisfies (4.2) (or, equivalently, (4.3)).
The rest of this paper is devoted to the proof of the following theorem.

Theorem 10. Let t � 2, t /∈ {3,5}, and let H = (V,E) be a well-spread
t-uniform hypergraph. Then H is panchromatically t-colourable.

Note that (4.3) is the same as (1.1). Thus Theorem 10 contains all but
the last sentence of Theorem 1, and is best possible by Example 8, except
for the annoying fact that we have been unable to prove the result if t=3
or 5: the lemmas all hold for these values of t, but they seem inadequate to
prove the result (although the conclusion holds under the stronger hypoth-
esis surH(W )�2). We conjecture that the result holds for these values too.
Note that if t= 2 then (4.3) says that h(H)> 1, and so the result follows
from Theorem 5. Thus from now on we shall assume t�3.
The following property is straightforward.

Lemma 11. For each two subsets U,W ⊆V (H),

surH(U ∪W ) + surH(U ∩W ) � surH(U) + surH(W ).

Proof. Since |U ∪W |+ |U∩W |= |U |+ |W |, this is equivalent to saying that

eH(U ∪W ) + eH(U ∩W ) � eH(U) + eH(W ).

This holds because eH(U ∪W )−eH(U) is the number of edges contained in
U ∪W and intersecting W \U , whereas eH(W )−eH(U ∩W ) is the number
of edges contained in W and intersecting W \U .
We now need some further definitions. Let H be a t-uniform hypergraph.

The skeleton Skel(H) of H is the graph whose vertices are the essential
vertices of H, in which xy is an edge if and only if {x,y} is contained in
some edge of H. A hollow edge of H is an edge containing two essential and
t− 2 inessential vertices, and a full edge is an edge containing t essential
vertices. A t-polished hypergraph is a t-uniform hypergraph in which every
edge is either hollow or full.
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The polishing of a t-uniform hypergraph H is the following procedure.
For each edge A with exactly s essential vertices, where s /∈{2, t}, delete A
and add

(s
2

)
hollow edges, each containing exactly two of these s essential

vertices, in such a way that all pairs are covered. Let Pol(H) denote the
result of polishing H. Then H is polished if and only if Pol(H)=H.

Lemma 12. Let H be a t-uniform hypergraph. Then:
(a) Skel(Pol(H))=Skel(H).
(b) The following statements are all equivalent:

(i) Skel(H) is properly t-colourable (as a graph);
(ii) H is panchromatically t-colourable;
(iii) Pol(H) is panchromatically t-colourable.

(c) If H is well spread then so is Pol(H).

Proof. It is easy to see that (a) holds and that (i) and (ii) are equivalent in
(b). The rest of (b) follows from (a).
To prove (c), assume H is well spread. It suffices to consider the result of

replacing a single edge A of H by
(s
2

)
hollow edges to form a new t-uniform

hypergraph H′. Suppose if possible that W ′ is a largest subset of V (H′) for
which surH′(W ′)� 0, and suppose that W ′ contains exactly r� s essential
vertices of A. Then EH′(W ′) contains exactly

(r
2

)
of the

(s
2

)
new hollow edges,

since otherwise we could add the inessential vertices of such an edge to W ′,
which would increase |W ′| by at most t−2 and eH′(W ′) by exactly 1 and so
give a larger set than W ′ with nonpositive surplus, by (4.1).
If r�1 then W ′⊆V (H) and EH′(W ′)⊆E(H), a contradiction. So we may

suppose that 2�r�s� t−1. Let W :=(W ′∩V (H))∪A. Then

|W | = |W ′| − (t− 2)
(r
2

)
+ (t− r) and eH(W ) � eH′(W ′)−

(r
2

)
+ 1,

so that

surH(W ) � surH′(W ′)− t(t− 2)
(r
2

)
+ t(t− r) + (t2 − 2t+ 2)

[(r
2

)
− 1

]
= surH′(W ′) + t(t− r) + r(r − 1)− (t2 − 2t+ 2)
= surH′(W ′) + (r + 1− t)(r − 2)
� 0 + 0 = 0.

This contradiction completes the proof.

In view of Lemma 12, it suffices to prove Theorem 10 for t-polished
hypergraphs. For the rest of the proof, therefore, we shall assume that H=
(V,E) is a t-polished counterexample to Theorem 10 such that Skel(H) has
as few edges as possible and, subject to this condition, such that the sum
of squares of degrees of vertices in H is as large as possible. Then H is well
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spread but Skel(H) is not t-colourable. In view of Lemma 12, if H′ is a t-
uniform hypergraph such that Skel(H′) has fewer edges than Skel(H), then
H′ is not a counterexample to Theorem 10, regardless of whether or not H′

is t-polished. We seek a contradiction.
The next lemma is the analogue of Claim 2 in the proof of Theorem 9.

Lemma 13. Every vertex in Skel(H) has degree at least t.

Proof. Suppose Skel(H) contains a vertex v with degree d < t. Construct
a hypergraph H′ from H by splitting v into d vertices of degree 1. It is
easy to see that H′ satisfies (4.3) (since H does) and so H′ is well spread.
Since Skel(H′) has fewer edges than Skel(H), H′ is not a counterexample to
Theorem 10 and so Skel(H′) has a t-colouring. Now we obtain a t-colouring of
Skel(H) by colouring v differently from its neighbours, and this contradicts
the choice of H.

Lemma 14. If A∈E and u∈V \A, then at least two vertices of A are not
adjacent to u.

Proof. Suppose first that every vertex of A is adjacent to u. Then, for some
r� t, there are r edges of H containing u that cover A. The union R of these
r edges contains at most 1+r(t−1) vertices and at least r+1 edges, and so

sur(R) � t(1 + r(t− 1)) − (t2 − 2t+ 2)(r + 1)− t+ 2
= (r − t)(t− 2) � 0,

a contradiction.
Now suppose that A has vertices y1, . . . ,yt−1,z, where z is the only vertex

not adjacent to u. We construct a t-uniform hypergraph Ĥ fromH as follows:
delete the edge A (but not its vertices), merge u and z into a new vertex
(uz), and then, for each pair (i,j) with 1� i < j � t−1, add a new hollow
edge Bi,j whose essential vertices are yi and yj. Since Skel(Ĥ) has fewer
edges than Skel(H), Ĥ is not a counterexample to Theorem 10. But Skel(Ĥ)
cannot have a t-colouring, since such a colouring would immediately yield
a t-colouring of Skel(H) (giving u and z the colour of (uz)). Therefore Ĥ is
not well spread. Let Z be a subset of V (Ĥ) with surĤ(Z)�0. Then (uz)∈Z,
since Ĥ−(uz) is a subhypergraph of Pol(H′), where H′ is obtained from H
by splitting z into two vertices z′ (contained in A only) and z′′ (contained
in all other edges that contained z), and Pol(H′) is well spread (since H
is). Suppose Z contains exactly s vertices yi, say y1, . . . ,ys. Then there are
r� t−1−s edges A1, . . . ,Ar containing u that cover the remaining vertices
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ys+1, . . . ,yt−1. Let X := (Z∩V )∪{z}∪⋃r
i=1Ai. If Z contains b of the edges

Bi,j, then b�
(s
2

)
, and

|X| � |Z| − b(t− 2) + 1 + r(t− 1) and eH(X) � eĤ(Z)− b+ 1 + r,

so that

surH(X) � surĤ(Z)− bt(t− 2) + t+ rt(t− 1) + (t2 − 2t+ 2)(b− 1− r)
= surĤ(Z) + 2b− (t

2 − 3t+ 2) + r(t− 2)
� 0 + s(s− 1)− (t2 − 3t+ 2) + (t− 1− s)(t− 2)
= s(s− t+ 1) � 0.

This contradiction completes the proof.

In view of Lemma 13, each d-vertex in H with 2� d� t− 1 is incident
with at least one full edge. A 2-vertex incident with one full edge and one
hollow edge will be called a weak vertex.
We will say that a full edge A is special or, more precisely, (u,w,z)-special,

if t is odd and there exist vertices z∈A and u,w /∈A such that

(s1) all t−1 vertices in A−z are weak;
(s2) u is adjacent to t−2 vertices in A−z and w is adjacent to the remaining

vertex in A−z (necessarily by hollow edges, in each case);
(s3) the degree of u in Skel(H) is at least 2t−3;
(s4) there exists a set Y ⊆V such that u∈Y , A �⊆Y and surH(Y )=1.

Lemma 15. Let A be a full edge and let u and w be distinct essential
vertices in V \A that are adjacent to weak vertices u1, . . . ,ur and w1, . . . ,ws

respectively in A (r,s>0). Suppose that dH(u)�dH(w), where dH denotes
degree in H. Then
(i) t is odd;
(ii) s=1;
(iii) no other essential vertex x∈V \A (x �=u,w) is adjacent to weak vertices

in A;
(iv) if r� t−2 then r= t−2 and A is special.

Proof. Let Ai (respectively, Bi) denote the hollow edge containing ui (re-
spectively, wi). Note that, by Lemma 13, u belongs to some edge other than
A1, . . . ,Ar, and similarly for w. Let H0 be the hypergraph obtained from
H by deleting the edges A1, . . . ,Ar,B1, . . . ,Bs and their inessential vertices,
and adding a new hollow edge D with essential vertices u and w. Then
Skel(H0) has fewer edges then Skel(H), and so H0 is not a counterexample
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to Theorem 10. But it is easy to see that a t-colouring of Skel(H0) could
be extended to Skel(H) by giving suitable colours to u1, . . . ,ur,w1, . . . ,ws,
and it follows that H0 cannot be well spread. Therefore V (H0) contains
a set Y0 with nonpositive surplus. Since H is well spread, D ⊆ Y0. Let
X0 :=Y0 \(D\{u,w})⊂V (H), so that, by (4.1),

surH(X0) = surH0(Y0)− t(t− 2) + (t2 − 2t+ 2) � 2.

Note that X0 contains u and w but no inessential vertices of any edges
A1, . . . ,Ar,B1, . . . ,Bs. If ui∈X0 for some i then

surH(X0 ∪Ai) = surH(X0) + t(t− 2)− (t2 − 2t+ 2) � 0,

a contradiction. So X0 contains no vertex ui and, similarly, no vertex wi.
Let A′

r+1 :=Bs −w+u and let H1 be the hypergraph with V (H1) = V
and E(H1)= E −Bs+A′

r+1. Intuitively, H1 is formed from H by detaching
Bs from w and reattaching it at u. Skel(H1) has fewer edges than Skel(H)
if w is inessential in H1 and the same number otherwise, and H1 has larger
sum of squares of degrees than H. Thus H1 is not a counterexample to
Theorem 10. So if H1 is well spread then Skel(H1) has a t-colouring φ.
If φ(u) = φ(w) then φ is a t-colouring of Skel(H), otherwise it gives a t-
colouring of Skel(H0) and can be extended to Skel(H) as in the previous
paragraph. This contradiction shows that H1 cannot be well spread. Choose
a set Y1⊆V (H1) with nonpositive surplus. Since H is well spread, A′

r+1⊂Y1.
Let X1 :=Y1 \(A′

r+1 \{u,ws}), so that, by (4.1),

surH(X1) = surH1(Y1)− t(t− 2) + (t2 − 2t+ 2) � 2.

If A �⊂X1 then we can delete ws from X1 without deleting any edges from
EH(X1), and so

surH(X1 − ws) = surH(X1)− t < 0,(4.4)

a contradiction; hence A⊂X1. If w∈X1 then

surH(X1 ∪Bs) = surH(X1) + t(t− 2)− (t2 − 2t+ 2) � 0,

a contradiction; so w /∈X1. Now the same argument as in (4.4) shows that
X1 contains no inessential vertex of any set Bi.
Since u∈X0∩X1, (4.2) gives surH(X0∩X1)�1, and Lemma 11 implies

surH(X0 ∪X1) � surH(X0) + surH(X1)− surH(X0 ∩X1)(4.5)
� 2 + 2− 1 = 3.
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Let X :=X0∪X1∪
⋃s

i=1Bi. By the final sentence of the previous paragraph,

surH(X) = surH(X0 ∪X1) + t(t− 2)s − (t2 − 2t+ 2)s � 3− 2s.(4.6)

By (4.2), (4.5) and (4.6), s=1, surH(X)=surH(X0∩X1)=1, and surH(X0)=
surH(X1) = 2. But by (4.1), surH(X) is even if t is even, and so t is odd.
Hence (i) and (ii) hold.
It is convenient next to prove (iv). If r� t−2, then r= t−2 by Lemma 14.

Let z be the vertex in A\{u1, . . . ,ur,w1}, and let Y :=X0∩X1. Then u∈Y ,
and (s1), (s2) and (s4) (in the definition of a special vertex) all hold. If (s3)
does not hold, then u has degree at most t− 2 in Skel(H2), where H2 is
obtained from H by deleting A1, . . . ,Ar and their inessential vertices. By the
minimality of H, Skel(H2) has a t-colouring, in which u can be recoloured
if necessary with a different colour from w. This colouring can easily be
extended to Skel(H), and this contradiction proves (s3) and hence (iv).
Finally, we must prove (iii). Suppose there is a vertex x∈V \A, different

from u and w, that is adjacent to a weak vertex x1 ∈ A. W.l.o.g. we may
assume that dH(u)� dH(w)� dH(x). Let C1 be the hollow edge containing
x and x1. Recall that the sets X0 and X1 satisfy

A1 ∩X0 = {u}, B1 ∩X0 = {w}, u ∈ X1, A ⊂ X1 and B1 ∩X1 = {w1}.

By the same argument, there exist subsets U0,U1,W0,W1 of V , all with
surplus 2, such that

A1 ∩W0 = {u}, C1 ∩W0 = {x}, u ∈W1, A ⊂W1 and C1 ∩W1 = {x1},

B1 ∩ U0 = {w}, C1 ∩ U0 = {x}, w ∈ U1, A ⊂ U1 and C1 ∩ U1 = {x1}.
Possibly, two sets among X0,W0,U0 or among X1,W1,U1 may coincide.
If C1⊂X0, let X ′

0 :=X0 \(C1−x). Then

sur(X ′
0) = sur(X0)− t(t− 1) + (t2 − 2t+ 2) < sur(X0),

and using X ′
0 instead of X0 in the definition of X would give sur(X) �

2− 2s = 0 in place of (4.6), a contradiction. Therefore C1 �⊂ X0. Now the
same argument as in (4.4) shows that X0 contains no vertex of C1 except
possibly for x. By an exactly similar argument, W0 contains no vertex of B1

except possibly for w. Thus
none of U0, W0 and X0 contain any vertices of B1 or C1

except for w and x.(4.7)

Note that W1∩(W0∪X0) �=∅ since u is in all three sets. So, by (4.2), two
applications of Lemma 11 give

sur(W0 ∪X0) � sur(W0) + sur(X0)− sur(W0 ∩X0) � 2 + 2− 1 = 3
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and

sur(W1 ∪W0 ∪X0) � sur(W1) + sur(W0 ∪X0)
−sur(W1 ∩ (W0 ∪X0)) � 2 + 3− 1 = 4.

If w /∈W1 then, by the argument of (4.4), W1 contains no inessential vertices
of B1, and we already know that it contains no inessential vertices of C1.
Therefore, by (4.7) and since A⊂W1,

sur(W1 ∪W0 ∪X0 ∪B1 ∪ C1)
= sur(W1 ∪W0 ∪X0) + 2t(t− 2)− 2(t2 − 2t+ 2) � 4− 4 = 0.

This contradiction shows that w∈W1. An exactly similar argument shows
that x∈X1. Thus

w ∈W1 ∩ U0 and x ∈ X1 ∩ U0.(4.8)

Let Z :=W1∩X1. Note that u∈Z and Z contains no vertices of B1 or C1

except for w1 and x1. So if sur(Z)�2 then we can argue with Z as we did
above with W1 (starting in the line after (4.7)) to get a contradiction, since
w /∈Z. On the other hand,

sur(Z) � sur(W1) + sur(X1)− sur(W1 ∪X1) � 2 + 2− 1 = 3.

So sur(Z)=3. If Z∩U0 �=∅ then

sur(Z ∪ U0) � sur(Z) + sur(U0)− sur(Z ∩ U0) � 3 + 2− 1 = 4

and, by (4.7),

sur(Z ∪U0 ∪B1 ∪C1) � sur(Z ∪U0)+ 2t(t− 2)− 2(t2 − 2t+2) � 4− 4 = 0,

a contradiction. So Z∩U0=∅. Let Y :=(W1∪X1)∩U0. Then |Y |= |W1∩U0|+
|X1∩U0| and e(Y )=e(W1∩U0)+e(X1∩U0) and so, by (4.1) and (4.8),

sur(Y ) = sur(W1 ∩ U0) + sur(X1 ∩ U0) + t− 2 � 1 + 1 + t− 2 = t,

sur(W1 ∪X1) � sur(W1) + sur(X1)− sur(Z) = 2 + 2− 3 = 1,
and

sur(W1 ∪X1 ∪ U0) � sur(W1 ∪X1) + sur(U0)− sur(Y ) � 1 + 2− t � 0,

a contradiction. This completes the proof of Lemma 15.

Suppose that some edge A contains three or more weak vertices. By
Lemmas 14 and 15, t � 5 and there is a unique vertex u ∈ V \A that is
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adjacent to at least two weak vertices of A; we define u(A) := u. We will
say that a vertex u=u(A) is A-special if the edge A is (u,w,z)-special for
some w and z, and that u is very special if it is A-special for some A and
dH(u) = t− 1; in this last case, by (s3), u is incident with exactly one full
edge B �=A and exactly t−2 hollow edges intersecting A.
For a positive integer k, we will say that a vertex v is k-full if it belongs

to at least two full edges or to one full edge and at least k hollow edges.
Much of the rest of the proof of Theorem 10 is contained in the following
long lemma, the hypotheses of which imply t�5.

Lemma 16. Let A be a full edge containing exactly m� 3 weak vertices.
Then one of the following alternatives holds:
(i) there are two m-full vertices in A that are not very special;
(ii) for some j (3� j� t−m) there are j (t− j+1)-full vertices in A that
are not very special;
(iii) A is special and the nonweak vertex in A is (t−1)-full.

Proof. Suppose that the result is false. Suppose that A contains weak ver-
tices u1, . . . ,um and nonweak vertices v1 . . . ,vt−m. Then A=Aw∪An, where
Aw :={u1, . . . ,um} and An :={v1 . . . ,vt−m}. Suppose u=u(A) is adjacent to
exactly r weak vertices u1, . . . ,ur. By Lemmas 14 and 15, 2�r� t−2, r=m
or m−1 (so m� t−1), and A is special if and only if m= t−1, when r= t−2.
If r =m− 1 let w be the essential vertex in V \A that is adjacent to um.
If m� t−2 then it is possible that some vertices vi ∈An are adjacent to u
(but not if vi is very special). If vi is very special, we will assume that vi is
Di-special, where Di is (vi,wi,zi)-special.
Let F :=H−A; that is, F is obtained from H by deleting the edge A (but

not its vertices). Let F be the graph whose vertices are the essential vertices
of F together with all of v1, . . . ,vt−m (which may or may not be essential in
F) and also um if r=m−1, and in which xy is an edge if and only if {x,y} is
contained in some edge of F ; thus Skel(F)⊆F . Note that F includes every
vertex of A that is not adjacent to u. Also, for k < t, a vertex vi ∈ An is
necessarily k-full if it has degree at least k in F . The proof proceeds by a
sequence of seven claims.

Claim 1. There cannot exist a t-colouring φ of F in which φ(y)=φ(u) for
some y∈A.

Proof. Suppose there exists such a φ. Clearly y is not adjacent to u, and
so either y=um and r=m−1, or else y= vi ∈An for some i. If there is no
i such that φ(vi)= φ(u), then set i := 0. Uncolour all vertices of A∩V (F ).
We shall show that, by recolouring v1, . . . ,vt−m, we can ensure that they all
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have different colours and, if i �=0, then one of them has the same colour as
u; it is then easy to colour u1, . . . ,um so as to give a t-colouring of Skel(H),
a contradiction.
If m = t− 1 then v1 can keep its old colour, since if φ(v1) �= φ(u) then

φ(um)=φ(u). Hence we may suppose that m� t−2, so that A is not special.
We may suppose that the vertices v1, . . . ,vt−m are labelled so that those that
are not very special come first, in nonincreasing order of degree, followed by
those that are very special, in any order. It then follows that, for each j
(2�j� t−m),

either vj is very special or dF (vj) � t− j,(4.9)

where dF denotes degree in F ; for, if (4.9) fails, then v1, . . . ,vj are not very
special and all have degree at least t−j+1 in F , which means that they are
(t−j+1)-full (hence, if j=2, they are more than m-full). We now recolour
v1, . . . ,vt−m in order, ensuring that they all have different colours and that
at least one has colour φ(u). Give v1 colour φ(v1); then, for j=2, . . . , t−m
in turn, do the following:
(a) if j = i: if none of v1, . . . ,vi−1 has been given colour φ(u), then give vi

colour φ(vi)=φ(u); otherwise, colour vi exactly as in (b) or (c) below (that
is, like vj where j �= i);
(b) if j �= i and vj is not very special, then vj is adjacent to at most t− j
vertices of F by (4.9), so colour it differently from all of these and from
v1, . . . ,vj−1;
(c) if j �= i and vj is very special, then colour vj differently from v1, . . . ,vj−1

and from wj , and recolour the weak vertices of Dj if necessary.
It is now easy to obtain a t-colouring of Skel(H), a contradiction.

Claim 2. Every vertex vi∈An that is adjacent to u is t-full.

Proof. Suppose that vi belongs only to A and to some q� t−1 hollow edges,
one of which contains u. Let B be a hollow edge containing vi but not u,
which must exist since vi is not weak. (It is clear that our minimal counterex-
ample H cannot contain two hollow edges joining the same pair of essential
vertices.) By the minimality of H, there is a t-colouring of Skel(H−B), in
which some vertex y �=vi of A has the same colour as u. Recolouring vi dif-
ferently from its q essential neighbours outside A, we obtain a t-colouring of
F violating Claim 1. This contradiction proves Claim 2.

Claim 3. For each y ∈ A not adjacent to u, there exists a set Uy ⊆ V
containing u and y such that surF (Uy)� t.
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Proof. Let Fy be obtained from F by merging u and y into a new vertex
(uy). Fy has smaller skeleton than H, and so it is not a counterexample to
Theorem 10. But a panchromatic t-colouring of Fy would give a t-colouring
of F violating Claim 1. Thus Fy is not well spread; that is, there exists a
set U ′

y ⊆V (Fy) with surFy(U ′
y)�0. Since H is well spread, (uy)∈U ′

y. Then
Uy :=U ′

y −(uy)+u+y satisfies the Claim.

Claim 4. For each vertex vi∈An that is not very special and not adjacent
to u and for which dF (vi)�r, there exists a set Zi⊆V containing u and vi

such that surF (Zi)� t+1−dF (vi).

Proof. Let q :=dF (vi), so that 2�q�r (since vi is not weak). Let B1, . . . ,Bq

be the hollow edges containing vi and let b1, . . . , bq be the other essential
vertices in these edges. For j = 1, . . . ,q, let B′

j :=Bj − vi+u and let Hj be
the hypergraph with V (Hj)=V and E(Hj)=E−Bj+B′

j. Then Skel(H) and
Skel(Hj) have the same number of edges, but the sum of squares of degrees
in Hj is greater, since q�r. (Note that, by Lemma 13, there must be at least
one edge in H containing u, in addition to the r hollow edges containing u
and u1, . . . ,ur.) Thus Theorem 10 holds for Hj.
Suppose that Hj has a panchromatic t-colouring φ. If φ(vi) �= φ(bj),

then φ gives a t-colouring of Skel(H). If φ(vi) = φ(bj) (�= φ(u)), then
some y ∈ A− vi has the same colour as u, and recolouring vi differently
from b1, . . . , bq gives a t-colouring of F violating Claim 1. Thus Hj has no
panchromatic t-colouring and so is not well spread; that is, there exists
Y ′

j ⊆ V (Hj) with nonpositive surplus. Since H is well spread, B′
j ⊆ Y ′

j . If
vi ∈ Y ′

j then surH(Y
′
j ) = surHj (Y

′
j ) � 0, a contradiction; so vi /∈ Y ′

j . Let
Yj :=Y ′

j \(B′
j \{u,bj}). Then

surF (Yj) � surHj (Y
′
j )− t(t− 2) + (t2 − 2t+ 2) � 2.

Since u∈Y1∩ . . .∩Yq, we can make q−1 applications of Lemma 11 to get
surF (Y1 ∪ . . . ∪ Yq) � surF (Y1 ∪ . . . ∪ Yq−1) + surF (Y1)− 1

� ∑q
j=1 surF (Yj)− (q − 1) � q + 1.(4.10)

Let Zi :=
⋃q

j=1(Yj∪Bj). Since {b1, . . . , bq}⊂Y1∪ . . .∪Yq and vi /∈Y1∪ . . .∪Yq,
therefore

|Zi| � |Y1 ∪ . . . ∪ Yq|+ q(t− 2) + 1 and eF (Zi) � eF (Y1 ∪ . . . ∪ Yq) + q,

so that

surF (Zi) � surF (Y1 ∪ . . . ∪ Yq) + qt(t− 2) + t− q(t2 − 2t+ 2)
� q + 1 + t− 2q = t+ 1− q,

as claimed.
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Claim 5. For each vertex vi ∈An that is very special and not adjacent to
u, there exists a set Zi⊆V containing u and vi such that surF (Zi)� t−2.

Proof. Let B1, . . . ,Bt−2 be the hollow edges containing vi and let b1, . . . , bt−2

be the other essential vertices in these edges. Recall that b1, . . . , bt−2 are weak
vertices contained in Di. Let h := t−r−1. For j=1, . . . ,h, let B′

j :=Bj−vi+u.
Let H′ be the hypergraph with V (H′)= V and E(H′)= E −B1− . . .−Bh+
B′

1+. . .+B
′
h. Skel(H′) and Skel(H) have the same number of edges, but the

sum of squares of degrees of vertices is larger in H′ than in H; hence H′ is
not a counterexample to Theorem 10.
Suppose that H′ has a panchromatic t-colouring φ. If φ(u)=φ(vi), then

φ is a panchromatic t-colouring of H. If φ(u) �=φ(vi), then some y∈A−vi has
the same colour as u, and after recolouring vi differently from wi and the
nonweak vertices in A−vi, we can then recolour the weak vertices in A∪Di

so as to get a t-colouring of Skel(H). In both cases we have a contradiction.
Thus H′ has no panchromatic t-colouring and so is not well spread; that
is, there exists Y ′ ⊆ V (H′) with nonpositive surplus. Choose Y ′ to have
minimum possible surplus. Since H is well spread, some B′

j (1 � j � h)
is contained in Y ′ and vi /∈ Y ′. By the minimality of surH′(Y ′), Di ⊂ Y ′

(otherwise we could reduce surH′(Y ′) by deleting all vertices of B′
j−u from

Y ′). Let Zi :=Y ′∪⋃t−2
s=h+1Bs. Then, since t−2−h=r−1,

|Zi| � |Y ′|+ 1 + (t− 2)(r − 1) and eF (Zi) � eH′(Y ′) + (r − 1),

so that

surF (Zi) � surH′(Y ′) + t+ t(t− 2)(r − 1)− (t2 − 2t+ 2)(r − 1)
� 0 + t− 2(r − 1) � t− 2,

as required.

We now introduce an alternative labelling of the vertices of A. Let
x1, . . . ,xt−k be those that are adjacent to u and let y1, . . . ,yk be those that
are not adjacent to u. The former include u1, . . . ,ur, and the latter include
um if r=m−1. Note that k�2 by Lemma 14, and so 2�k� t−r. For each
j (1�j�k), choose Wj containing u and yj so that surF (Wj) is as small as
possible, and let sj :=surF (Wj).

Claim 6. There exists Z ⊂ V such that A ⊂ Z and surH(Z) �∑k
j=1(sj − t+1)−1.
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Proof. Let Y :=
⋃k

j=1Wj. Since u ∈ Wj for each j, we can make k− 1
applications of Lemma 11 exactly as in (4.10) to deduce that

surF (Y ) �
k∑

j=1

sj − (k − 1).(4.11)

Since A\Y ⊆{x1, . . . ,xt−k}, for some h� t−k there exist edges A1, . . . ,Ah

such that u∈Ai �⊆Y for each i and, if we define Z :=Y ∪⋃t−k
i=1Ai, then A⊂Z.

Thus
|Z| � |Y |+ (t− 1)h and eF (Z) � eF (Y ) + h,

and so

surF (Z) � surF (Y ) + t(t− 1)h− (t2 − 2t+ 2)h
= surF (Y ) + (t− 2)h
� surF (Y ) + (t− 2)(t− k).(4.12)

Since eH(Z)=eF (Z)+1, (4.11) and (4.12) give

surH(Z) �
k∑

j=1

sj − (k − 1) + (t− 2)(t− k)− (t2 − 2t+ 2)

=
k∑

j=1

sj − kt+ k − 1,

as required.

By Claim 3, sj � t for all j. There is at most one value of j for which
yj is weak, which occurs if yj = um and r =m− 1. If yj is not weak, then
by Claims 4 and 5, sj � t− 1 unless yj is not very special and dF (yj)> r,
which means that yj is (r+1)-full and hence m-full. Since alternative (i)
does not hold in the statement of the Lemma, there is at most one vertex yj

of this last type. Thus in order for Claim 6 not to lead to the contradiction
surH(Z)�0, the following must all hold:

(a) sj � t−1 for each j;
(b) r=m−1 (we will assume y1=um) and s1= t;
(c) exactly one yj, say yk, is m-full, and yk is not very special and sk= t;
(d) (by (a) and Claims 4 and 5) for 2� j�k−1, yj is not very special and

dF (yj)=dF (yj)=2;
(e) (by (b) and Lemma 15) t is odd.
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If m= t−1, then by (b), (c) and Lemma 15, alternative (iii) holds in the
statement of the Lemma. So we may suppose that m� t−2. Since a nonweak
vertex in A adjacent to u is clearly not very special, and is t-full and hence
m-full by Claim 2, and since alternative (i) does not hold, by (c) there are no
such vertices; hence k= t−m+1�3. By (d) there is a vertex y2 with degree
2 in F . We will prove that there exists a set W ′

2 ⊆ V containing u, y1 and
y2 such that surF (W ′

2)�2t−3= s1+s2−2. Then the argument of Claim 6
would give surF (Y )�

∑k
j=1 sj −k and so surH(Z)�

∑k
j=1(sj − t+1)−2, a

contradiction. Thus the proof of the following claim will complete the proof
of Lemma 16.

Claim 7. There exists W ⊂V containing u, y1 and y2 such that surF (W )�
2t−3.

Proof. Let B0 be the hollow edge containing y1, with essential vertices w
and y1= um. Let B1 and B2 be the hollow edges containing y2, and let b1
and b2 be the other essential vertices in these edges. It suffices to prove the
existence of a set X such that

{u,w, b1, b2} ⊂ X and surF (X) � 3.(4.13)

For, let

X ′ :=



X if y1 ∈ X,
X ∪B0 if y1 /∈ X,

and W :=



X ′ if y2 ∈ X,
X ′ ∪B1 ∪B2 if y2 /∈ X.

Then W contains u, y1 and y2, and since t > 4 by the hypotheses of
Lemma 16,

surF (X ′)− surF (X) � t(t− 1)− (t2 − 2t+ 2) = t− 2,

surF (W )− surF (X ′) � t(2t− 3)− 2(t2 − 2t+ 2) = t− 4,
and

surF (W ) � 3 + (t− 2) + (t− 4) = 2t− 3.
As in the proof of Claim 4, with y2 playing the role of vi, for j ∈ {1,2}

there exists a set Yj such that surF (Yj)� 2, {u,bj}⊂Yj and y2 /∈ Yj. Since
Y1∩Y2 �=∅,

surF (Y1∪Y2) � surF (Y1)+surF (Y2)−surF (Y1∩Y2) � 2+2−1 = 3.(4.14)

If w ∈ Y1 ∪ Y2 then X := Y1 ∪ Y2 will satisfy (4.13). So we may suppose
w /∈Y1∩Y2: in particular, b1 �=w �=b2.
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Let j ∈{1,2}. Let B′′
j :=Bj −y2+w and let H′′

j be the hypergraph with
V (H′′

j ) = V and E(H′′
j ) = E −Bj +B′′

j . Then Skel(H′′
j ) and Skel(H) have

the same number of edges, and the sum of squares of degrees of vertices
is at least as large in H′′

j as in H (with equality if w is weak), but the
weak vertices in A have three different essential neighbours outside A in H′′

j
(namely, u, w and b3−j), which is impossible in a minimal counterexample
to Theorem 10 by Lemma 15. Thus the Theorem holds for H′′

j . Suppose
that H′′

j has a panchromatic t-colouring φ. If φ(y2) �= φ(bj), then φ gives a
t-colouring of Skel(H). If φ(y2) = φ(bj) then we obtain a t-colouring of F
violating Claim 1 by recolouring y2 differently from b1 and b2; if φ(y2) was
equal to φ(u) then we must also recolour y1 with φ(u), which is possible
since φ(u)=φ(y2)=φ(bj) �=φ(w). Thus H′′

j has no panchromatic t-colouring
and so is not well spread; that is, there exists R′′

j ⊆V (H′′
j ) with nonpositive

surplus. Since H is well spread, B′′
j ⊆R′′

j . Let Rj :=R′′
j \(B′′

j \{w,bj}). Then,
as in the proof of Claim 4, surF (Rj)�2 and {w,bj}⊂Rj .
If R1∩Y2 �=∅, then surF (R1∩Y2)=surH(R1∩Y2)�1 (since y2 /∈R1∩Y2)

and so

surF (R1 ∪ Y2) � surF (R1) + surF (Y2)− surF (R1 ∩ Y2) � 2 + 2− 1 = 3.

Since {u,w,b1, b2}⊂R1∪Y2, we can take X :=R1∪Y2 in (4.13). The result
holds similarly if R2 ∩ Y1 �= ∅. We may therefore suppose that R1 ∩ Y2 =
R2 ∩ Y1 = ∅. Let T := R2 ∪ Y1 ∪ Y2. Then R1 ∩ T is the disjoint union of
nonempty sets R1∩Y1 (containing b1) and R1∩R2 (containing w), so that

surF (R1 ∩T ) = surF (R1 ∩Y1) + surF (R1 ∩R2)+ (t− 2) � 1+ 1+ t− 2 = t.

By (4.14) and since b2∈R2∩Y2,

surF (T ) � surF (R2)+ surF (Y1 ∪Y2)− surF (R2 ∩ (Y1 ∪Y2)) � 2+3− 1 = 4,

and

surF (R1 ∪ T ) � surF (R1) + surF (T )− surF (R1 ∩ T ) � 2 + 4− t � 3.

Since {u,w,b1, b2}⊂R1∪T , we can take X :=R1∪T in (4.13). This completes
the proof of Claim 7 and of Lemma 16.

We will now show that

t|V | � (t2 − 2t+ 2)|E|,(4.15)

which by (4.1) will imply that surH(V ) < 0, and this contradiction will
complete the proof of Theorem 10.
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Give each vertex of H a “charge” equal to (t2−2t+2) times its degree.
Then the total charge assigned to all vertices is t(t2 − 2t+2)|E|. We shall
now redistribute the charge, without creating or destroying any, and we shall
show that after the redistribution every vertex has charge at least t2 and
every edge has nonnegative charge; this will prove (4.15).
The rules for redistribution are as follows.

Rule 1. Each essential vertex sends t−1 to each adjacent 1-vertex.
Rule 2. Each vertex that is incident with two or more full edges sends
1
2 t

2−2t+2 to each such edge.
Rule 3. Each vertex v that is incident with exactly one full edge and k
hollow edges sends to the full edge 1

2 t
2−2t+2 if v is special and kt−2t+2

otherwise. (Note that this is at least 1
2t

2−2t+2 if k� 1
2t.)

Rule 4. For odd t, each special edge A receives 1
2t(t−2) from the A-special

vertex u(A).
Rule 5. Each full edge A gives t−2 to every weak vertex in A and (for odd
t) gives t to every very special vertex in A.
We now check that, after this redistribution of charge, every vertex has

charge at least t2 and every edge has nonnegative charge.

1. Inessential vertices. Each 1-vertex v starts with t2−2t+2 and gains
2(t−1) by Rule 1 from the two essential vertices in the hollow edge containing
v. It is not affected by Rules 2–5, and so it ends up with charge t2.

2. Weak vertices. Each weak vertex gives (t−2)(t−1) by Rule 1 and gains
t−2 by Rule 5, thereby ending up with 2(t2−2t+2)−(t−2)2= t2.
3. Vertices incident with at least two full edges. Let v be a vertex
incident with r�2 full edges and k�0 hollow edges. Then v gives k(t−2)(t−1)
by Rule 1, r(12t

2−2t+2) by Rule 2 and at most �k/(t−2)�1
2 t(t−2)�

1
2kt by

Rule 4. Thus v is left with at least

(r + k)(t2 − 2t+ 2)− k(t− 2)(t − 1)− r

(
1
2
t2 − 2t+ 2

)
− 1
2
kt

=
1
2
(rt2 + kt) � t2.(4.16)

4. Vertices incident with exactly one full edge. We have dealt with
weak vertices already, so let v be a vertex incident with one full edge and
k�2 hollow edges. There are three cases.
Case 1. v is not special. Then v gives k(t−2)(t−1) by Rule 1 and kt−2t+2
by Rule 3 and is left with

(1 + k)(t2 − 2t+ 2)− k(t− 2)(t− 1)− (kt− 2t+ 2) = t2.
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Case 2. k� t−2 and v is special. Then, by the definition of a special vertex,
k= t−2 and v is very special. Hence v gives (t−2)2(t−1) by Rule 1, 1

2t
2−2t+2

by Rule 3 and 1
2t(t−2) by Rule 4, and receives t by Rule 5, ending up with

(t− 1)(t2 − 2t+ 2)− (t− 2)2(t− 1)− (12 t2 − 2t+ 2)−
1
2t(t− 2) + t = t2.

Case 3. k � t− 1 and v is special. Then v gives k(t− 2)(t− 1) by Rule 1,
1
2 t

2−2t+2 by Rule 3 and at most �k/(t−2)�1
2 t(t−2)�

1
2kt by Rule 4. If

k� t then v is left with at least t2 by (4.16) with r=1. If k= t−1 then v
ends up with at least

t(t2 − 2t+ 2)− (t− 1)2(t− 2)− (12t2 − 2t+ 2)−
1
2t(t− 2) = t2.

5. Vertices not incident with full edges. We have dealt with inessential
vertices already, so let v be an essential vertex incident with no full edges
and k hollow edges. By Lemma 13, k� t. There are three cases.
Case 1. v is not special. Then v gives only k(t−2)(t−1) by Rule 1 and is
left with

k(t2 − 2t+ 2)− k(t− 2)(t− 1) = kt � t2.

Case 2. k�2t−2 and v is special. Then v gives k(t−2)(t−1) by Rule 1 and
at most �k/(t−2)�1

2 t(t−2)�
1
2kt by Rule 4. If k� 2t then v is left with at

least
k(t2 − 2t+ 2)− k(t− 2)(t− 1)− 1

2kt =
1
2kt � t2.

If k=2t−1 or 2t−2 then v is left with at least

k(t2 − 2t+ 2)− k(t− 2)(t− 1)− t(t− 2) = t(k − t+ 2) � t2.

Case 3. k� 2t−3 and v is special. Since v is special, t is odd and so t� 7.
(In fact, it is enough here that t> 3.) By (s3) in the definition of a special
vertex, k=2t−3. If v is special for only one edge A then v is left with at
least

k(t2 − 2t+ 2)− k(t− 2)(t− 1)− 1
2 t(t− 2) =

3
2t

2 − 2t > t2.

So suppose that there exist distinct edges A and B that are (v,w1,z1)-special
and (v,w2,z2)-special respectively. Let H′ be the hypergraph obtained from
H by deleting v and all inessential vertices adjacent to v. By the minimality
of H, there is a panchromatic t-colouring of H′. Give v a colour different
from the colours of w1, w2 and w3, where w3 is the essential vertex adjacent
to v and not in A∪B. Now the colouring can easily be extended to the rest
of H, a contradiction.
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6. Special edges. Let A be (u,w,z)-special. By Lemma 16, z is (t−1)-full
(and hence (12t)-full), and so A receives at least

1
2t

2−2t+2 from z by Rule 2
or Rule 3 and 1

2t(t−2) from u by Rule 4. It also gives (t−1)(t−2) to its
t−1 weak vertices by Rule 5, and so ends up with at least 0. (Observe that
z is not very special, since a very special vertex is not (t−1)-full; so A gives
nothing to z by Rule 5.)

7. Nonspecial full edges Let A be a full edge containing exactly m weak
vertices and k very special vertices, where m+k� t. The net effect of Rules
3 and 5 is that every very special vertex gives A the amount

(12t
2 − 2t+ 2)− t = 1

2(t
2 − 6t+ 4) � 51

2 ,

since if there exist special vertices then t is odd and so t�7. A vertex that is
neither weak nor very special gives A either 1

2t
2−2t+2�2 or kt−2t+2�2 by

Rule 3, since in this case t�4. Thus every nonweak vertex gives A at least
2. By Rule 5, the weak vertices collectively take from A exactly m(t− 2).
So if m�2 then A ends up with nonnegative charge. Since A is not special,
m� t−2. So we may suppose that 3�m� t−2. There are three cases.
Case 1. There are two vertices in A that are (12 t)-full and not very special.
Together they give A at least t2−4t+4�m(t−2) by Rule 2 or Rule 3, which
is enough.

Case 2. At most one vertex in A that is not very special is (12 t)-full, and
alternative (i) in Lemma 16 holds. Then m< 1

2t and the two m-full vertices
from (i) give A at least 2(mt−2t+2). Since every other nonweak vertex gives
A at least 2, A ends up with at least

2(mt− 2t+ 2) + 2(t−m− 2)−m(t− 2) = t(m− 2) > 0.
Case 3. At most one vertex in A that is not very special is (12 t)-full, and
alternative (ii) in Lemma 16 holds. Then for some j (3� j � t−m) there
exist j vertices in A that are not very special and are (t−j+1)-full. It follows
that t− j+1< 1

2t, and these vertices give A at least j((t− j+1)t−2t+2).
Since m� t−j, A ends up with at least

j((t− j + 1)t− 2t+ 2)−m(t− 2) � j((t− j)t− (t− 2))− (t− j)(t − 2)
= (j(t− j) − (t− 2))t
= ((j − 1)(t− 1− j) + 1)t > t > 0.

8. Hollow edges Hollow edges never have any charge, and so we do not
need to consider them.
The proof of Theorem 10 is finally complete.
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