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There exists a constant C such that for every d-degenerate graphs G1 and G2 on n vertices,
Ramsey number R(G1,G2) is at most Cn∆, where ∆ is the minimum of the maximum
degrees of G1 and G2.

1. Introduction

For arbitrary graphs G1 and G2, define the Ramsey number R(G1,G2) to
be the minimum positive integer N such that in every bicoloring of edges of
the complete graph KN with, say, red and blue colors, there is either a red
copy of G1 or a blue copy of G2. The classical Ramsey number r(k, l) is in
our terminology R(Kk,Kl).

Call a family F of graphs linear Ramsey if there exists a constant C =
C(F) such that for every G∈F ,

R(G,G) ≤ C|V (G)|.

Burr and Erdős [3] conjectured that for every ∆ and d,
(a) the family of graphs with maximum degree at most ∆ is linear Ramsey;
(b) the family Dd of d-degenerate graphs is linear Ramsey.
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Recall that a graph is d-degenerate if every its subgraph has a vertex of
degree (in this subgraph) at most d. Equivalently, a graph G is d-degenerate
if for some linear ordering of the vertex set of G every vertex of G is adjacent
to at most d vertices of G that precede it in the ordering.

The first conjecture was proved by Chvátal, Rödl, Szemerédi, and Trot-
ter [5]. The C(∆) in their proof grows with ∆ very rapidly. Recently,
Eaton [6] improved the upper bound for C(∆) to a function of the form
22c∆

and Graham, Rödl and Ruciński [7] reduced it to c∆ log2 ∆. Moreover,
they proved in [8] that for every bipartite graph G on n vertices with max-
imum degree ∆≥1,

R(G,G) ≤ 8(8∆)∆n.(1)

On the other hand, they showed in [7] and [8] that C(∆) grows exponentially.
The second conjecture (which is much stronger) is still wide open. In

recent years, some subfamilies of the family Dd were shown to be linear
Ramsey.

Let Wd denote the family of graphs in which the vertices of degree greater
than d form an independent set. Alon [1] proved that W2 is linear Ramsey.

A graph G is called p-arrangeable, if there exists an ordering v1, . . . ,vn of
its vertices with the following property: for every i, 1<i<n, the number of
vj with j<i having a common neighbor vs for some s>i with vi is less than
p. Let Ad denote the family of d-arrangeable graphs. Observe that Ad⊂Dd

for d≥2. On the other hand, A10 contains all planar graphs and Ap8 contains
all graphs with no Kp-subdivisions (see [10]). Chen and Schelp [4] proved
that Ad is linear Ramsey for every d.

In [9] and this paper, we attack the second Burr–Erdős conjecture from
another angle. In [9], it is proved that the family Wd is “almost” linear
Ramsey: for every ε> 0, there exists C =C(d,ε) such that for every graph
G∈Wd,

R(G,G) ≤ C|V (G)|1+ε.

Our main result yields that even if Dd were not linear Ramsey, anyway,
it is ‘polynomially Ramsey’.

Theorem 1. Let C=C(d)=(8d)4d2+d. Then for every d-degenerate graphs
G1 and G2 on n vertices,

R(G1, G2) ≤ Cn∆(G1),

where ∆(G1) is the maximum degree of G1.
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Corollary 1. Let C=C(d)=(8d)4d2+d. Then for every d-degenerate graph
G,

R(G,G) ≤ C|V (G)|∆(G) ≤ C|V (G)|2.

We also improve the constant factor in the statement of Theorem 1 for
d-degenerate graphs with chromatic number less than d.

Theorem 2. Let G1 be an arbitrary d-degenerate graph on n vertices
with maximum degree ∆ and let G2 be an arbitrary d-degenerate graph
on n vertices with chromatic number χ. Let m = 4(d + 1)(χ − 1) and
C=md+1(4md−1)χ−2. Then

R(G1, G2) ≤ Cn∆.

In particular, if G2 is bipartite, then

R(G1, G2) ≤ (4(d + 1))d+1n∆.(2)

For large d, (2) is a bit better than (1) even if d=∆.

For n>d, we say that a graph H possesses (d,n)-property if

∀v1, . . . , vd ∈ V (H), |NH(v1) ∩ . . . ∩NH(vd)| ≥ n− d.(3)

It is easy to observe (see Lemma 2 in the next section) that each graph with
(d,n)-property contains every d-degenerate graph on n vertices. In view of
this, Frieze and Reed asked the following question:

Is it true that for every positive integer d, there exists a constant C=C(d)
such that for every graph H on Cn vertices, either H or H contains a
subgraph with (d,n)-property?

Answering the question in the positive would imply the Burr–Erdős con-
jecture. The following is a weaker (‘polynomial’) result in this spirit.

Theorem 3. For every positive integer d, there exists a positive constant
C = C(d) such that for every graph H on (Cn)d vertices, either H or H
contains a subgraph H1 possessing (d,n)-property.

To derive Theorems 1 and 3, we prove statements on graphs in which
every ‘big’ subgraph has ‘many’ edges. To be exact, a graph H will be called
(d,s)-thick, if for every s≤k≤|V (H)| and every induced subgraph H ′ of H
on k vertices,

|E(H ′)| ≥ 1
2d

(
k

2

)
.
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Since for every graph H on at least 4n vertices which is not (d,4n)-
thick, the complement H of H contains a subgraph with (d,n)-property (see
Lemma 3 in the next section), the following two theorems imply Theorems 1
and 3, respectively.

Theorem 1′. Let M ≥ (8d)4d2+d∆n and G be a d-degenerate graph on n
vertices with maximum degree ∆. Then every (d,4dn)-thick graph H on M
vertices contains G.

Theorem 3′. Let d ≥ 2, n ≥ (8d)d+1 and M ≥
(
8(8d)5dn

)d
. Then every

(d,4dn)-thick graph on M vertices contains a subgraph H1 possessing (d,n)-
property.

In the next section, we prove simple statements used above to motivate
results of the paper. In Section 3 we discuss a useful notion of reducing pairs.
Sections 4, 5, and 6 are devoted to the proofs of Theorems 1′ (and 1), 3′

(and 3), and 2, respectively.

2. Preliminaries

Lemma 1. Let |V (H)|=n and |E(H)|≥ (c+λ)
(n
2

)
, where c≥0 and λ≥0.

Then there exists H ′⊆H such that

∀v ∈ V (H ′), degH′(v) ≥ c(|V (H ′)| − 1) +
λn

2
.(4)

Proof. If the lemma is false, then we can order the vertices of H: v1, . . . ,vn

in such a way that denoting Hi=H \{v1, . . . ,vi−1} (i=1, . . . ,n−1), we have

degHi
(vi) < c(n− i) +

λn

2
.(5)

Since Hn=K1, (5) yields

|E(H)| <
n−1∑
i=1

(
c(n− i) +

λn

2

)
= c

n−1∑
i=1

(n− i) +
λn(n− 1)

2

= (c+ λ)

(
n

2

)
≤ |E(H)| .

This contradiction proves the lemma.

Lemma 2. Suppose that a graph H possesses the (d,n)-property. Then H
contains every d-degenerate graph on n vertices.
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Proof. Let G be a d-degenerate graph on n vertices, and let x1, . . . ,xn be its
vertices ordered so that for every i=1, . . . ,n, at most d neighbors of xi have
indices less than i. We construct an embedding φ of G into H as follows. On
Step i we will find φ(xi).

Step 1. Let φ(x1) be an arbitrary vertex v1 in H.
Step i (i > 1). Suppose that vk =φ(xk) for k=1, . . . , i−1 and that xi is

adjacent only to xj1 , . . . ,xjh
among embedded vertices (where h≤d). If h<d,

then take as vjh+1
, . . . ,vjd

arbitrary vertices with indices less than i (distinct,
if possible). By (3), there are at least n−d vertices in NH(vj1)∩. . .∩NH(vjd

).
We choose as φ(xi) any of them different from v1, . . . ,vi−1.

Lemma 3. If |V (H)|>4n and for some s, 4n≤s≤|V (H)|, H is not (d,s)-
thick, then H contains a subgraph with (d,n)-property.

Proof. Suppose that H is not (d,s)-thick for some s, 4n≤s≤|V (H)|. By the
definition, this means that for some k≥s there exists an induced subgraph
H ′ of H on k vertices such that |E(H ′)|> (1− 1

2d )
(k
2

)
. Then by Lemma 1,

(with c=1−1/d and λ=1/2d), there exists a subgraph H1 of H ′ such that

∀v ∈ V (H1), degH1
(v) ≥ d− 1

d
(|V (H1)| − 1) +

k

4d
.

It follows that for all v1, . . . ,vd∈V (H1),

|NH1
(v1)∩. . .∩NH1

(vd)| ≥ (|V (H1)|−d)−d
1
d
(|V (H1)|−1)+d

k

4d
=

k

4
−d+1.

Since n≤k/4, we are done.

3. Reducing pairs

Let H1 be a graph with |V (H1)| = M1. Define NH1(∅) = V (H1), and for
∅ �=A⊆V (H1), let

NH1(A) =
⋂

v∈A

NH1(v).

An a-tuple A ⊂ V (H1) is (H1,m)-good if |NH1(A)| ≥ M1m
−a, and is

(H1,m)-bad otherwise.

In this section we prove two lemmas which later let us reduce the proofs
of the theorems to the cases when in ‘big’ subgraphs of H every ‘good’ a-
tuple is contained in ‘few’ ‘bad’ (a+1)-tuples. We will need the notion of
reducing pairs.
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Definition. For a graph H1 with |V (H1)| = M1, an (H1,r,m,d)-reducing
pair is a pair of disjoint subsets R and S of V (H1) such that

|R| = r, |S| ≥ 3M1

4md−1
and |NH1(v) ∩ S| ≤ 4|S|

3m
∀v ∈ R.

Lemma 4. Let m ≥ 2. Let H1 be a graph with |V (H1)| = M1 ≥ 2rmd. If
for some 0≤a≤ d−1, an (H1,m)-good a-tuple A is contained in at least r
(H1,m)-bad (a+1)-tuples, then H1 contains an (H1,r,m,d)-reducing pair.

Proof. Suppose that R is any set of vertices having fewer than M1m
−a−1

neighbors in NH1(A) with |R|=r. Let S=NH1(A)−R. Since A is (H1,m)-
good, we have

|S| ≥ |NH1(A)| − r ≥ M1

ma
− M1

2md
≥ M1

ma

(
1 − 1

2md−a

)
≥ 3M1

4ma
.

By the choice of R, every x∈R has less than M1
ma+1 ≤ 4|S|

3m neighbors in S.

Lemma 5. Let d ≥ 2, r ≥ 2, and m ≥ 8d. Let |V (H)| = M ≥ 2rm4d2+d. If

every subgraph H1 of H with |V (H1)|≥M ·m−4d2
contains an (H1,r,m,d)-

reducing pair, then H contains a subgraph H ′ on 4dr vertices with |E(H ′)|<
1
2d

(4dr
2

)
. In particular, then H is not (d,4dr)-thick.

Proof. Let H0=H. For k=1, . . . ,4d−1 we proceed as follows:
(a) Choose an (Hk−1,r,m,d)-reducing pair (Rk,Sk);
(b) Since |EH(Rk,Sk)|≤ 4|Rk|·|Sk|

3m , there exists S′
k⊆Sk such that |S′

k|≥|Sk|/3
and

|NH(v) ∩Rk| ≤
2
m
|Rk| ∀v ∈ S′

k.(6)

(c) Let Hk be the subgraph of H induced by S′
k and note that by the

definitions of S′
k and reducing pairs,

|V (Hk)| ≥
1
3
|Sk| ≥

1
3
3|V (Hk−1)|

4md−1
>

|V (Hk−1)|
md

> . . . >
|V (H0)|
mkd

.

Denote by R4d any subset of S′
4d−1 of cardinality r.

Consider R̃=
⋃4d

k=1Rk and H̃=H(R̃). We have |R̃|=4dr. By (6),

|EH(Ri, Rj)| ≤
2r2

m
∀i �= j.

Thus,

|E(H̃)| ≤ 4d

(
r

2

)
+

(
4d
2

)
2r2

m
< 2dr(4dr−1)

(
1
4d

+
2
m

)
≤
(
4dr
2

)(
1
4d

+
2
8d

)
.

This proves the lemma.
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4. Proof of Theorem 1′

Lemma 6. Let n>∆≥ d≥ 2, m≥ d, α≥ 1, and M0 =md∆αn. If a graph
H1 on M1>M0 vertices has no (H1,αn,m,d)-reducing pairs, then every d-
degenerate graph G on n vertices with maximum degree ∆ can be embedded
into H1.

Proof. Let x1, . . . ,xn be the vertices of G ordered so that for every i =
1, . . . ,n, at most d neighbors of xi have indices less than i. Let X(i) denote
the set of neighbors of xi having indices less than i. We will construct an
embedding f of V (G) into V (H1). On Step k we will map xk and we will
maintain property

∀j = k + 1, . . . , n, f (X(j) ∩ {x1, . . . , xk}) is (H1,m)-good.(7)

STEP 1. Since we assume that H1 has no (H1,αn,m,d)-reducing pairs,
Lemma 4 (applied with a=0 and r=nα) yields that there are fewer than n
(H1,m)-bad vertices. Thus, we can choose a vertex v1 which is not (H1,m)-
bad and let v1 =f(x1).

STEP k. Suppose that X(k) = {xi1 , . . . ,xia} (where a ≤ d). Let A =
f(X(k)). Due to (7),

|NH1(A)| ≥ N1

ma
.(8)

Let h1, . . . ,hs (where s≤∆) be the indices greater than k of the neigh-
bors of xk, and X̃k(hi) = f(X(hi) ∩ {x1, . . . ,xk−1}). Assume that taking
f(xk) = v ∈ NH1(A) \ {f(x1), . . . ,f(xk−1)} creates an (H1,m)-bad l-tuple
L = {f(xj1), . . . ,f(xjl−1

),v} for some l ∈ {1, . . . ,d} and the (l − 1)-tuple
L′ = L− v is some X̃k−1(hi). By (7), L′ is (H1,m)-good. Then in view
of our assumptions on H1, by Lemma 4, L′ participates in at most αn−1
such (H1,m)-bad l-tuples. Therefore, at most αn− 1 vertices v can create
an (H1,m)-bad l-tuple with this L′. The total number of such L′ is at most
∆. Moreover, if it equals ∆, then a=0.

If a>0, then

|NH1(A)| − (k − 1) − (αn − 1)(∆ − 1) ≥ M1

ma
− αn∆ >

M0

md
− αn∆ ≥ 0.

If a=0, then

|NH1(A)| − (k − 1)− (αn− 1)∆ ≥ M1 − αn(∆+ 1) > M0 − αn(∆+ 1) > 0.

In both cases we can choose f(xk) so that (7) still holds.
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Proof of Theorem 1′. Let M ≥ (8d)4d2+d∆n and H be a (d,4dn)-thick
graph on M vertices. Assume that H does not contain G. Then by Lemma 6
(with α= 1 and m= 8d), every subgraph H1 of H on at least M(8d)−4d2

vertices has an (H1,n,8d,d)-reducing pair. But in this case, by Lemma 5
(with r=n),H is not (d,4dn)-thick. This contradiction proves the theorem.

Proof of Theorem 1. Let H be an arbitrary graph on M ≥ (8d)4d2+d∆n
vertices. If H is (d,4dn)-thick, then by Theorem 1′, it contains G1. If H is
not (d,4dn)-thick, then by Lemmas 3 and 2, H contains G2. This proves the
theorem.

5. Proof of Theorem 3′

We shall use the following form of Chernoff-Hoeffding type inequality (cf.
[2], Appendix A).

Lemma 7. Let Y be the sum of mutually independent indicator random
variables, µ=E(Y ). For each 0<ε<1,

P{Y < µ(1 − ε)} < exp{−ε2µ/2}.(9)

Lemma 8. Let M ≥Cdnd where C=4(8d)5d. Let H1 be a graph on M1 ≥
M(8d)−4d2

vertices. Let r ≤ M1/2md. If H1 has no (H1,r,8d,d)-reducing
pairs, then for every 1 ≤ a ≤ d, the number of (H1,8d)-bad a-tuples is at
most

Ma−1
1 r

a∑
i=1

1
i!
.

In particular, the number of (H1,8d)-bad d-tuples is at most 2Md−1
1 r.

Proof. We prove the lemma by induction on a. By Lemma 4, there are at
most r−1 (H1,8d)-bad 1-tuples (i.e., vertices). Thus, the lemma holds for
a=1.

Suppose that the lemma is proved for every a < a0. We say that an
(H1,8d)-bad a0-tuple is of type 1 if it contains an (H1,8d)-bad (a0−1)-tuple
and that it is of type 2 otherwise. By the induction assumption, the number
of (H1,8d)-bad a0-tuples of type 1 is at most

M1 ·Ma0−2
1 r

a0−1∑
i=1

1
i!
.
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If A is an (H1,8d)-bad a0-tuple of type 2, then it contains a0 (H1,8d)-
good (a0−1)-tuples, and by Lemma 4, every (H1,8d)-good (a0−1)-tuple is
contained in less than r (H1,8d)-bad a0-tuples. Therefore by the induction
assumption, the number of (H1,8d)-bad a0-tuples of type 2 is less than(

M1

a0 − 1

)
r · 1

a0
≤ Ma0−1

1 r

a0!
,

and the total number of (H1,8d)-bad a0-tuples is less than

Ma0−1
1 r

a0−1∑
i=1

1
i!

+
Ma0−1

1 r

a0!
.

This proves the lemma.

Lemma 9. Let d≥ 2, n≥ (8d)d+1 and M ≥ (Cn)d where C =8(8d)5d. If a

graph H1 on M1 ≥M(8d)−4d2
vertices has no (H1,n,8d,d)-reducing pairs,

then it contains a subgraph G possessing (d,n)-property.

Proof. Let p= cn
M1

(where c=4(8d)d) and G=Gp(H1) be the random variable
whose values are induced subgraphs of H1, and every vertex of H1 belongs
to Gp(H1) with probability p independently of all other vertices.

Call a d-tuple D of vertices of G spoiled if it is (H1,8d)-good but the
number of common neighbors of D in G is less than 0.5cn(8d)−d.

The probability that a d-tuple D is contained in V (G) is pd. Since by
Lemma 8, the total number of (H1,8d)-bad d-tuples is at most 2Md−1

1 r,
we conclude that for the expected number f1(G) of (H1,8d)-bad d-tuples
contained in G the following holds:

f1(G) ≤
(
cn

M1

)d

2Md−1
1 n =

nd+1

M1
· 2cd.(10)

The fact that a d-tuple D is (H1,8d)-good means that NH1(D) ≥
M1(8d)−d. So, the expected number µ of vertices in NH1(D) belonging to
V (G) is at least pM1(8d)−d = cn(8d)−d. By Lemma 7 (with ε = 0.5), the
probability that a fixed (H1,8d)-good d-tuple D is contained in V (G) and
the number of common neighbors of D in V (G) is less than 0.5µ is at most
pd ·exp{−µ/8}. Thus, (remembering that c=4(8d)d and n≥(8d)d+1) for the
expected number f2(G) of spoiled d-tuples contained in G we have

f2(G) ≤
(
M1

d

)(
cn

M1

)d

exp
{
− cn

8(8d)d
}

(11)

<
(cn)d

d!
exp

{
−n

2

}
≤
(
en2

2d2

)d

exp
{
−n

2

}
≤ 0.2 .
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Also by Lemma 7 (with ε = 0.5), with probability greater than 1 −
exp{−pM1/8}=1− exp{−cn/8}> 0.8, we have |V (G)|> 0.5pM1. Together
with (10) and (11), this implies that there exists a subgraph H ′ of H1 such
that
(i) |V (H ′)|>0.5pM1,
(ii) the number of (H1,8d)-bad d-tuples contained in H ′ is at most nd+1

M1
·4cd,

(iii) there are no spoiled d-tuples in H ′.
Let H0 be obtained from H ′ by deleting a vertex from each (H1,8d)-bad

d-tuple contained in V (H ′). By (ii), we deleted at most nd+1

M1
·4cd vertices.

Since H ′ has no spoiled d-tuples, every d-tuple of vertices in H0 has at least

cn

2(8d)d
− nd+1

M1
4cd =

cn

2(8d)d

(
1− nd

M1
8cd−1(8d)d

)
(12)

≥ cn

2(8d)d

(
1− (8d)4d2+d

Cd
8cd−1

)

common neighbors. Since c = 4(8d)d and C = 8(8d)5d = 2(8d)4dc, the last
expression in (12) is at least

cn

2(8d)d

(
1 − 8(8d)d

2dc

)
= 2n

(
1 − 2

2d

)
≥ 2n

(
1 − 1

2

)
= n.

This proves the lemma.

Proof of Theorem 3′. Let d≥2, n≥(8d)d+1, M≥
(
8(8d)5dn

)d
and let H

be a (d,4dn)-thick graph on M vertices. Assume that H does not contain a
subgraph G possessing (d,n)-property. Then by Lemma 9, every subgraph
H1 of H on at least M(8d)−4d2

vertices has an (H1,n,8d,d)-reducing pair.
But in this case, by Lemma 5 (with r = n), H is not (d,4dn)-thick. This
contradiction proves the theorem.

Proof of Theorem 3. Let n ≥ (8d)d+1 and H be an arbitrary graph on
M≥(8(8d)5dn)d vertices. The statement of Theorem 3 for d=1 means that
either H or H contains a subgraph with minimum degree at least n− 1,
which is true, since M>4n.

Let d ≥ 2. If H is (d,4dn)-thick, then by Theorem 3′, it contains a
subgraph H1 possessing (d,n)-property. If H is not (d,4dn)-thick, then by
Lemma 3, H contains contains a subgraph H2 possessing (d,n)-property.
This proves the theorem.
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6. Proof of Theorem 2

Say that a graph H possesses (k,d,n)-property if the vertex set of H can be
partitioned into k parts W1, . . . ,Wk such that

∀i ∈ {1, . . . , k}, ∀v1, . . . , vd ∈ V (H)−Wi,

|NH(v1) ∩ . . . ∩NH(vd) ∩Wi| ≥ n− 1.(13)

Lemma 10. Suppose that a graph H possesses the (k,d,n)-property. Then
H contains every k-colorable d-degenerate graph on n vertices.

Proof. Let (W1, . . . ,Wk) be a partition of V (H) satisfying (13). Let G be
an arbitrary k-colorable d-degenerate graph on n vertices. Fix a coloring f
of G with k colors 1, . . . ,k. Then we simply repeat the proof of Lemma 2
with the only change that the image φ(xi) of xi must belong to Wf(xi).

Proof of Theorem 2. Let G1 be an arbitrary d-degenerate graph on n
vertices with maximum degree ∆ and let G2 be an arbitrary d-degenerate
graph on n vertices with chromatic number χ. Let m = 4(d+ 1)(χ− 1),
C=md+1(4md−1)χ−2,M=Cn∆ andH be an arbitrary graph on M vertices.

If some H1 ⊆H with at least md∆2(d+1)n vertices has no (H1,2(d+
1)n,m,d)-reducing pair, then, by Lemma 6, H1 contains G1. Thus, we as-
sume below that every H1 ⊆H with at least md∆2(d+1)n vertices has an
(H1,2(d+1)n,m,d)-reducing pair.

Let H0=H and for k=1, . . . ,χ−1 we do the following:
(a) Choose an (Hk−1,2(d+1)n,m,d)-reducing pair (Rk,Sk);
(b) Since |NH(v)∩Sk)| ≤ 4|Sk|

3m ∀v ∈ Rk, there exists S′
k ⊆ Sk such that

|S′
k|≥

|Sk|
3 and

|NH(v) ∩Rk| ≤
2|Rk|
m

∀v ∈ S′
k.(14)

(c) Take Hk =H(S′
k) and note that by the definitions of S′

k and reducing
pairs,

|V (Hk)| ≥
1
3
|Sk| ≥

1
3
3|V (Hk−1)|

4md−1
=

|V (Hk−1)|
4md−1

≥ . . . ≥ |V (H0)|
(4md−1)k

.(15)

Observe that since M ≥ 4χ−1m(χ−2)(d−1)+d∆(d+1)n, by (15), for k≤χ−2
we have |V (Hk)|≥md∆2(d+1)n and we can make Step k+1.

Denote by Rχ any subset of S′
χ−1 of cardinality 2(d+1)n.
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Observe that
(i) |R1|= . . .= |Rχ|=2(d+1)n;
(ii) by (14), for every i>k and every v∈Ri, |NH(v)∩Rk|≤ 2·2(d+1)n

m = n
χ−1 .

Now, we construct T1, . . . ,Tχ as follows. Let Tχ be any subset of Rχ of
size (d+1)n. Suppose that sets Tχ−1 ⊂Rχ−1,Tχ−1 ⊂Rχ, . . . ,Tk+1 ⊂Rk+1 of
size (d+1)n are chosen. By (ii), |EH(Ti,Rk)|≤ (d+1)n n

χ−1 for every i>k.
Hence the number of vertices in Rk having more than n neighbors in Ti is
at most (d+1)n

χ−1 . It follows that there are at least

|Rk| − (χ− k)
(d+ 1)n
χ− 1

≥ |Rk| − (d+ 1)n = (d+ 1)n

vertices in Rk with at most n neighbors in each of Tχ,Tχ−1, . . . ,Tk+1. Take
as Tk any set of (d+1)n such vertices.

Now we have
(i’) |T1|= . . .= |Tχ|=(d+1)n;
(ii’) for every i �=k and every v∈Ri, |NH(v)∩Rk|≤n.

Denote by F the complement of the subgraph of H induced by
⋃χ

k=1Tk.
By (i’) and (ii’), F possesses the (χ,d,n)-property. Hence by Lemma 10, G2

is embeddable in F . This proves the theorem.

Acknowledgement. We thank the referees for helpful remarks.

References

[1] N. Alon: Subdivided graphs have linear Ramsey numbers, J. Graph Theory 18
(1984), 343–347.

[2] N. Alon and J. H. Spencer: The Probabilistic Method, Wiley, 1992.
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