ON GRAPHS WITH SMALL RAMSEY NUMBERS, II

A. V. KOSTOCHKA*, V. RÖDL[†]

Received February 1, 2001

There exists a constant C such that for every d-degenerate graphs G_1 and G_2 on n vertices, Ramsey number $R(G_1, G_2)$ is at most $Cn\Delta$, where Δ is the minimum of the maximum degrees of G_1 and G_2 .

1. Introduction

For arbitrary graphs G_1 and G_2 , define the Ramsey number $R(G_1, G_2)$ to be the minimum positive integer N such that in every bicoloring of edges of the complete graph K_N with, say, red and blue colors, there is either a red copy of G_1 or a blue copy of G_2 . The classical Ramsey number r(k,l) is in our terminology $R(K_k, K_l)$.

Call a family \mathcal{F} of graphs linear Ramsey if there exists a constant $C = C(\mathcal{F})$ such that for every $G \in \mathcal{F}$,

$$R(G,G) \le C|V(G)|.$$

Burr and Erdős [3] conjectured that for every Δ and d,

- (a) the family of graphs with maximum degree at most Δ is linear Ramsey;
- (b) the family \mathcal{D}_d of d-degenerate graphs is linear Ramsey.

Mathematics Subject Classification (2000): 05C55, 05C35

 $^{^*}$ The work of this author was supported by the grants 99-01-00581 and 00-01-00916 of the Russian Foundation for Fundamental Research and the Dutch-Russian Grant NWO-047-008-006.

 $^{^\}dagger$ The work of this author was supported by the NSF grant DMS-9704114.

Recall that a graph is d-degenerate if every its subgraph has a vertex of degree (in this subgraph) at most d. Equivalently, a graph G is d-degenerate if for some linear ordering of the vertex set of G every vertex of G is adjacent to at most d vertices of G that precede it in the ordering.

The first conjecture was proved by Chvátal, Rödl, Szemerédi, and Trotter [5]. The $C(\Delta)$ in their proof grows with Δ very rapidly. Recently, Eaton [6] improved the upper bound for $C(\Delta)$ to a function of the form $2^{2^{c\Delta}}$ and Graham, Rödl and Ruciński [7] reduced it to $c^{\Delta \log^2 \Delta}$. Moreover, they proved in [8] that for every bipartite graph G on n vertices with maximum degree $\Delta \geq 1$,

(1)
$$R(G,G) \le 8(8\Delta)^{\Delta} n.$$

On the other hand, they showed in [7] and [8] that $C(\Delta)$ grows exponentially. The second conjecture (which is much stronger) is still wide open. In recent years, some subfamilies of the family \mathcal{D}_d were shown to be linear Ramsey.

Let W_d denote the family of graphs in which the vertices of degree greater than d form an independent set. Alon [1] proved that W_2 is linear Ramsey.

A graph G is called p-arrangeable, if there exists an ordering v_1, \ldots, v_n of its vertices with the following property: for every i, 1 < i < n, the number of v_j with j < i having a common neighbor v_s for some s > i with v_i is less than p. Let \mathcal{A}_d denote the family of d-arrangeable graphs. Observe that $\mathcal{A}_d \subset \mathcal{D}_d$ for $d \geq 2$. On the other hand, \mathcal{A}_{10} contains all planar graphs and \mathcal{A}_{p^8} contains all graphs with no K_p -subdivisions (see [10]). Chen and Schelp [4] proved that \mathcal{A}_d is linear Ramsey for every d.

In [9] and this paper, we attack the second Burr–Erdős conjecture from another angle. In [9], it is proved that the family W_d is "almost" linear Ramsey: for every $\epsilon > 0$, there exists $C = C(d, \epsilon)$ such that for every graph $G \in \mathcal{W}_d$,

$$R(G,G) \le C|V(G)|^{1+\epsilon}$$
.

Our main result yields that even if \mathcal{D}_d were not linear Ramsey, anyway, it is 'polynomially Ramsey'.

Theorem 1. Let $C = C(d) = (8d)^{4d^2+d}$. Then for every d-degenerate graphs G_1 and G_2 on n vertices,

$$R(G_1, G_2) \le Cn\Delta(G_1),$$

where $\Delta(G_1)$ is the maximum degree of G_1 .

Corollary 1. Let $C = C(d) = (8d)^{4d^2+d}$. Then for every d-degenerate graph G,

$$R(G,G) \le C|V(G)|\Delta(G) \le C|V(G)|^2.$$

We also improve the constant factor in the statement of Theorem 1 for d-degenerate graphs with chromatic number less than d.

Theorem 2. Let G_1 be an arbitrary d-degenerate graph on n vertices with maximum degree Δ and let G_2 be an arbitrary d-degenerate graph on n vertices with chromatic number χ . Let $m = 4(d+1)(\chi-1)$ and $C = m^{d+1}(4m^{d-1})^{\chi-2}$. Then

$$R(G_1, G_2) \leq Cn\Delta$$
.

In particular, if G_2 is bipartite, then

(2)
$$R(G_1, G_2) \le (4(d+1))^{d+1} n\Delta.$$

For large d, (2) is a bit better than (1) even if $d = \Delta$.

For n > d, we say that a graph H possesses (d, n)-property if

(3)
$$\forall v_1, \dots, v_d \in V(H), \quad |N_H(v_1) \cap \dots \cap N_H(v_d)| \ge n - d.$$

It is easy to observe (see Lemma 2 in the next section) that each graph with (d, n)-property contains every d-degenerate graph on n vertices. In view of this, Frieze and Reed asked the following question:

Is it true that for every positive integer d, there exists a constant C = C(d) such that for every graph H on Cn vertices, either H or \overline{H} contains a subgraph with (d,n)-property?

Answering the question in the positive would imply the Burr–Erdős conjecture. The following is a weaker ('polynomial') result in this spirit.

Theorem 3. For every positive integer d, there exists a positive constant C = C(d) such that for every graph H on $(Cn)^d$ vertices, either H or \overline{H} contains a subgraph H_1 possessing (d,n)-property.

To derive Theorems 1 and 3, we prove statements on graphs in which every 'big' subgraph has 'many' edges. To be exact, a graph H will be called (d,s)-thick, if for every $s \le k \le |V(H)|$ and every induced subgraph H' of H on k vertices,

$$|E(H')| \ge \frac{1}{2d} \binom{k}{2}.$$

Since for every graph H on at least 4n vertices which is not (d,4n)-thick, the complement \overline{H} of H contains a subgraph with (d,n)-property (see Lemma 3 in the next section), the following two theorems imply Theorems 1 and 3, respectively.

Theorem 1'. Let $M \ge (8d)^{4d^2+d} \Delta n$ and G be a d-degenerate graph on n vertices with maximum degree Δ . Then every (d,4dn)-thick graph H on M vertices contains G.

Theorem 3'. Let $d \ge 2$, $n \ge (8d)^{d+1}$ and $M \ge \left(8(8d)^{5d}n\right)^d$. Then every (d,4dn)-thick graph on M vertices contains a subgraph H_1 possessing (d,n)-property.

In the next section, we prove simple statements used above to motivate results of the paper. In Section 3 we discuss a useful notion of reducing pairs. Sections 4, 5, and 6 are devoted to the proofs of Theorems 1' (and 1), 3' (and 3), and 2, respectively.

2. Preliminaries

Lemma 1. Let |V(H)| = n and $|E(H)| \ge (c+\lambda)\binom{n}{2}$, where $c \ge 0$ and $\lambda \ge 0$. Then there exists $H' \subseteq H$ such that

(4)
$$\forall v \in V(H'), \quad \deg_{H'}(v) \ge c(|V(H')| - 1) + \frac{\lambda n}{2}.$$

Proof. If the lemma is false, then we can order the vertices of $H: v_1, \ldots, v_n$ in such a way that denoting $H_i = H \setminus \{v_1, \ldots, v_{i-1}\}$ $(i = 1, \ldots, n-1)$, we have

(5)
$$\deg_{H_i}(v_i) < c(n-i) + \frac{\lambda n}{2}.$$

Since $H_n = K_1$, (5) yields

$$|E(H)| < \sum_{i=1}^{n-1} \left(c(n-i) + \frac{\lambda n}{2} \right) = c \sum_{i=1}^{n-1} (n-i) + \frac{\lambda n(n-1)}{2}$$
$$= (c+\lambda) \binom{n}{2} \le |E(H)|.$$

This contradiction proves the lemma.

Lemma 2. Suppose that a graph H possesses the (d,n)-property. Then H contains every d-degenerate graph on n vertices.

Proof. Let G be a d-degenerate graph on n vertices, and let x_1, \ldots, x_n be its vertices ordered so that for every $i = 1, \ldots, n$, at most d neighbors of x_i have indices less than i. We construct an embedding ϕ of G into H as follows. On Step i we will find $\phi(x_i)$.

Step 1. Let $\phi(x_1)$ be an arbitrary vertex v_1 in H.

Step i (i>1). Suppose that $v_k=\phi(x_k)$ for $k=1,\ldots,i-1$ and that x_i is adjacent only to x_{j_1},\ldots,x_{j_h} among embedded vertices (where $h\leq d$). If h< d, then take as $v_{j_{h+1}},\ldots,v_{j_d}$ arbitrary vertices with indices less than i (distinct, if possible). By (3), there are at least n-d vertices in $N_H(v_{j_1})\cap\ldots\cap N_H(v_{j_d})$. We choose as $\phi(x_i)$ any of them different from v_1,\ldots,v_{i-1} .

Lemma 3. If |V(H)| > 4n and for some $s, 4n \le s \le |V(H)|$, H is not (d, s)-thick, then \overline{H} contains a subgraph with (d, n)-property.

Proof. Suppose that H is not (d, s)-thick for some $s, 4n \le s \le |V(H)|$. By the definition, this means that for some $k \ge s$ there exists an induced subgraph H' of H on k vertices such that $|E(\overline{H'})| > (1 - \frac{1}{2d})\binom{k}{2}$. Then by Lemma 1, (with c = 1 - 1/d and $\lambda = 1/2d$), there exists a subgraph H_1 of H' such that

$$\forall v \in V(H_1), \quad \deg_{\overline{H}_1}(v) \ge \frac{d-1}{d}(|V(H_1)|-1) + \frac{k}{4d}.$$

It follows that for all $v_1, \ldots, v_d \in V(H_1)$,

$$|N_{\overline{H}_1}(v_1)\cap\ldots\cap N_{\overline{H}_1}(v_d)| \geq (|V(H_1)|-d)-d\frac{1}{d}(|V(H_1)|-1)+d\frac{k}{4d} = \frac{k}{4}-d+1.$$

Since $n \le k/4$, we are done.

3. Reducing pairs

Let H_1 be a graph with $|V(H_1)| = M_1$. Define $N_{H_1}(\emptyset) = V(H_1)$, and for $\emptyset \neq A \subseteq V(H_1)$, let

$$N_{H_1}(A) = \bigcap_{v \in A} N_{H_1}(v).$$

An a-tuple $A \subset V(H_1)$ is (H_1, m) -good if $|N_{H_1}(A)| \geq M_1 m^{-a}$, and is (H_1, m) -bad otherwise.

In this section we prove two lemmas which later let us reduce the proofs of the theorems to the cases when in 'big' subgraphs of H every 'good' atuple is contained in 'few' 'bad' (a+1)-tuples. We will need the notion of reducing pairs.

Definition. For a graph H_1 with $|V(H_1)| = M_1$, an (H_1, r, m, d) -reducing pair is a pair of disjoint subsets R and S of $V(H_1)$ such that

$$|R| = r$$
, $|S| \ge \frac{3M_1}{4m^{d-1}}$ and $|N_{H_1}(v) \cap S| \le \frac{4|S|}{3m}$ $\forall v \in R$.

Lemma 4. Let $m \ge 2$. Let H_1 be a graph with $|V(H_1)| = M_1 \ge 2rm^d$. If for some $0 \le a \le d-1$, an (H_1, m) -good a-tuple A is contained in at least r (H_1, m) -bad (a+1)-tuples, then H_1 contains an (H_1, r, m, d) -reducing pair.

Proof. Suppose that R is any set of vertices having fewer than M_1m^{-a-1} neighbors in $N_{H_1}(A)$ with |R|=r. Let $S=N_{H_1}(A)-R$. Since A is (H_1,m) -good, we have

$$|S| \ge |N_{H_1}(A)| - r \ge \frac{M_1}{m^a} - \frac{M_1}{2m^d} \ge \frac{M_1}{m^a} \left(1 - \frac{1}{2m^{d-a}}\right) \ge \frac{3M_1}{4m^a}.$$

By the choice of R, every $x \in R$ has less than $\frac{M_1}{m^{a+1}} \le \frac{4|S|}{3m}$ neighbors in S.

Lemma 5. Let $d \ge 2, r \ge 2$, and $m \ge 8d$. Let $|V(H)| = M \ge 2rm^{4d^2+d}$. If every subgraph H_1 of H with $|V(H_1)| \ge M \cdot m^{-4d^2}$ contains an (H_1, r, m, d) -reducing pair, then H contains a subgraph H' on 4dr vertices with $|E(H')| < \frac{1}{2d} \binom{4dr}{2}$. In particular, then H is not (d, 4dr)-thick.

Proof. Let $H_0 = H$. For $k = 1, \dots, 4d-1$ we proceed as follows:

- (a) Choose an (H_{k-1}, r, m, d) -reducing pair (R_k, S_k) ;
- (b) Since $|E_H(R_k, S_k)| \le \frac{4|R_k| \cdot |S_k|}{3m}$, there exists $S_k' \subseteq S_k$ such that $|S_k'| \ge |S_k|/3$ and

(6)
$$|N_H(v) \cap R_k| \le \frac{2}{m} |R_k| \quad \forall v \in S_k'.$$

(c) Let H_k be the subgraph of H induced by S'_k and note that by the definitions of S'_k and reducing pairs,

$$|V(H_k)| \ge \frac{1}{3}|S_k| \ge \frac{1}{3}\frac{3|V(H_{k-1})|}{4m^{d-1}} > \frac{|V(H_{k-1})|}{m^d} > \dots > \frac{|V(H_0)|}{m^{kd}}.$$

Denote by R_{4d} any subset of S'_{4d-1} of cardinality r.

Consider $\widetilde{R} = \bigcup_{k=1}^{4d} R_k$ and $\widetilde{H} = H(\widetilde{R})$. We have $|\widetilde{R}| = 4dr$. By (6),

$$|E_H(R_i, R_j)| \le \frac{2r^2}{m} \quad \forall i \ne j.$$

Thus,

$$|E(\widetilde{H})| \leq 4d\binom{r}{2} + \binom{4d}{2}\frac{2r^2}{m} < 2dr(4dr-1)\left(\frac{1}{4d} + \frac{2}{m}\right) \leq \binom{4dr}{2}\left(\frac{1}{4d} + \frac{2}{8d}\right).$$

This proves the lemma.

4. Proof of Theorem 1'

Lemma 6. Let $n > \Delta \ge d \ge 2$, $m \ge d$, $\alpha \ge 1$, and $M_0 = m^d \Delta \alpha n$. If a graph H_1 on $M_1 > M_0$ vertices has no $(H_1, \alpha n, m, d)$ -reducing pairs, then every d-degenerate graph G on n vertices with maximum degree Δ can be embedded into H_1 .

Proof. Let $x_1, ..., x_n$ be the vertices of G ordered so that for every i = 1, ..., n, at most d neighbors of x_i have indices less than i. Let X(i) denote the set of neighbors of x_i having indices less than i. We will construct an embedding f of V(G) into $V(H_1)$. On Step k we will map x_k and we will maintain property

(7)
$$\forall j = k + 1, \dots, n, \quad f(X(j) \cap \{x_1, \dots, x_k\}) \text{ is } (H_1, m)\text{-good.}$$

STEP 1. Since we assume that H_1 has no $(H_1, \alpha n, m, d)$ -reducing pairs, Lemma 4 (applied with a=0 and $r=n\alpha$) yields that there are fewer than n (H_1, m) -bad vertices. Thus, we can choose a vertex v_1 which is not (H_1, m) -bad and let $v_1 = f(x_1)$.

STEP k. Suppose that $X(k) = \{x_{i_1}, \dots, x_{i_a}\}$ (where $a \leq d$). Let A = f(X(k)). Due to (7),

(8)
$$|N_{H_1}(A)| \ge \frac{N_1}{m^a}.$$

Let h_1, \ldots, h_s (where $s \leq \Delta$) be the indices greater than k of the neighbors of x_k , and $\widetilde{X}_k(h_i) = f(X(h_i) \cap \{x_1, \ldots, x_{k-1}\})$. Assume that taking $f(x_k) = v \in N_{H_1}(A) \setminus \{f(x_1), \ldots, f(x_{k-1})\}$ creates an (H_1, m) -bad l-tuple $L = \{f(x_{j_1}), \ldots, f(x_{j_{l-1}}), v\}$ for some $l \in \{1, \ldots, d\}$ and the (l-1)-tuple L' = L - v is some $\widetilde{X}_{k-1}(h_i)$. By (7), L' is (H_1, m) -good. Then in view of our assumptions on H_1 , by Lemma 4, L' participates in at most $\alpha n - 1$ such (H_1, m) -bad l-tuples. Therefore, at most $\alpha n - 1$ vertices v can create an (H_1, m) -bad l-tuple with this L'. The total number of such L' is at most Δ . Moreover, if it equals Δ , then a = 0.

If a > 0, then

$$|N_{H_1}(A)| - (k-1) - (\alpha n - 1)(\Delta - 1) \ge \frac{M_1}{m^a} - \alpha n \Delta > \frac{M_0}{m^d} - \alpha n \Delta \ge 0.$$

If a=0, then

$$|N_{H_1}(A)| - (k-1) - (\alpha n - 1)\Delta \ge M_1 - \alpha n(\Delta + 1) > M_0 - \alpha n(\Delta + 1) > 0.$$

In both cases we can choose $f(x_k)$ so that (7) still holds.

Proof of Theorem 1'. Let $M \ge (8d)^{4d^2+d} \Delta n$ and H be a (d,4dn)-thick graph on M vertices. Assume that H does not contain G. Then by Lemma 6 (with $\alpha = 1$ and m = 8d), every subgraph H_1 of H on at least $M(8d)^{-4d^2}$ vertices has an $(H_1, n, 8d, d)$ -reducing pair. But in this case, by Lemma 5 (with r = n), H is not (d,4dn)-thick. This contradiction proves the theorem.

Proof of Theorem 1. Let H be an arbitrary graph on $M \ge (8d)^{4d^2+d} \Delta n$ vertices. If H is (d,4dn)-thick, then by Theorem 1', it contains G_1 . If H is not (d,4dn)-thick, then by Lemmas 3 and 2, \overline{H} contains G_2 . This proves the theorem.

5. Proof of Theorem 3'

We shall use the following form of Chernoff-Hoeffding type inequality (cf. [2], Appendix A).

Lemma 7. Let Y be the sum of mutually independent indicator random variables, $\mu = \mathbf{E}(Y)$. For each $0 < \epsilon < 1$,

(9)
$$\mathbf{P}\{Y < \mu(1 - \epsilon)\} < \exp\{-\epsilon^2 \mu/2\}.$$

Lemma 8. Let $M \ge C^d n^d$ where $C = 4(8d)^{5d}$. Let H_1 be a graph on $M_1 \ge M(8d)^{-4d^2}$ vertices. Let $r \le M_1/2m^d$. If H_1 has no $(H_1, r, 8d, d)$ -reducing pairs, then for every $1 \le a \le d$, the number of $(H_1, 8d)$ -bad a-tuples is at most

$$M_1^{a-1}r\sum_{i=1}^a \frac{1}{i!}.$$

In particular, the number of $(H_1, 8d)$ -bad d-tuples is at most $2M_1^{d-1}r$.

Proof. We prove the lemma by induction on a. By Lemma 4, there are at most r-1 $(H_1,8d)$ -bad 1-tuples (i.e., vertices). Thus, the lemma holds for a=1.

Suppose that the lemma is proved for every $a < a_0$. We say that an $(H_1,8d)$ -bad a_0 -tuple is of type 1 if it contains an $(H_1,8d)$ -bad (a_0-1) -tuple and that it is of type 2 otherwise. By the induction assumption, the number of $(H_1,8d)$ -bad a_0 -tuples of type 1 is at most

$$M_1 \cdot M_1^{a_0 - 2} r \sum_{i=1}^{a_0 - 1} \frac{1}{i!}.$$

If A is an $(H_1,8d)$ -bad a_0 -tuple of type 2, then it contains a_0 $(H_1,8d)$ -good (a_0-1) -tuples, and by Lemma 4, every $(H_1,8d)$ -good (a_0-1) -tuple is contained in less than r $(H_1,8d)$ -bad a_0 -tuples. Therefore by the induction assumption, the number of $(H_1,8d)$ -bad a_0 -tuples of type 2 is less than

$$\binom{M_1}{a_0 - 1} r \cdot \frac{1}{a_0} \le \frac{M_1^{a_0 - 1} r}{a_0!},$$

and the total number of $(H_1, 8d)$ -bad a_0 -tuples is less than

$$M_1^{a_0-1}r\sum_{i=1}^{a_0-1}\frac{1}{i!}+\frac{M_1^{a_0-1}r}{a_0!}.$$

This proves the lemma.

Lemma 9. Let $d \ge 2$, $n \ge (8d)^{d+1}$ and $M \ge (Cn)^d$ where $C = 8(8d)^{5d}$. If a graph H_1 on $M_1 \ge M(8d)^{-4d^2}$ vertices has no $(H_1, n, 8d, d)$ -reducing pairs, then it contains a subgraph G possessing (d, n)-property.

Proof. Let $p = \frac{cn}{M_1}$ (where $c = 4(8d)^d$) and $\mathcal{G} = \mathcal{G}_p(H_1)$ be the random variable whose values are induced subgraphs of H_1 , and every vertex of H_1 belongs to $\mathcal{G}_p(H_1)$ with probability p independently of all other vertices.

Call a d-tuple D of vertices of \mathcal{G} spoiled if it is $(H_1, 8d)$ -good but the number of common neighbors of D in \mathcal{G} is less than $0.5cn(8d)^{-d}$.

The probability that a d-tuple D is contained in $V(\mathcal{G})$ is p^d . Since by Lemma 8, the total number of $(H_1, 8d)$ -bad d-tuples is at most $2M_1^{d-1}r$, we conclude that for the expected number $f_1(\mathcal{G})$ of $(H_1, 8d)$ -bad d-tuples contained in \mathcal{G} the following holds:

(10)
$$f_1(\mathcal{G}) \le \left(\frac{cn}{M_1}\right)^d 2M_1^{d-1}n = \frac{n^{d+1}}{M_1} \cdot 2c^d.$$

The fact that a d-tuple D is $(H_1,8d)$ -good means that $N_{H_1}(D) \ge M_1(8d)^{-d}$. So, the expected number μ of vertices in $N_{H_1}(D)$ belonging to $V(\mathcal{G})$ is at least $pM_1(8d)^{-d} = cn(8d)^{-d}$. By Lemma 7 (with $\epsilon = 0.5$), the probability that a fixed $(H_1,8d)$ -good d-tuple D is contained in $V(\mathcal{G})$ and the number of common neighbors of D in $V(\mathcal{G})$ is less than 0.5μ is at most $p^d \cdot \exp\{-\mu/8\}$. Thus, (remembering that $c = 4(8d)^d$ and $n \ge (8d)^{d+1}$) for the expected number $f_2(\mathcal{G})$ of spoiled d-tuples contained in \mathcal{G} we have

(11)
$$f_2(\mathcal{G}) \le \binom{M_1}{d} \left(\frac{cn}{M_1}\right)^d \exp\left\{-\frac{cn}{8(8d)^d}\right\}$$
$$< \frac{(cn)^d}{d!} \exp\left\{-\frac{n}{2}\right\} \le \left(\frac{en^2}{2d^2}\right)^d \exp\left\{-\frac{n}{2}\right\} \le 0.2.$$

Also by Lemma 7 (with $\epsilon = 0.5$), with probability greater than $1 - \exp\{-pM_1/8\} = 1 - \exp\{-cn/8\} > 0.8$, we have $|V(\mathcal{G})| > 0.5pM_1$. Together with (10) and (11), this implies that there exists a subgraph H' of H_1 such that

- (i) $|V(H')| > 0.5pM_1$,
- (ii) the number of $(H_1, 8d)$ -bad d-tuples contained in H' is at most $\frac{n^{d+1}}{M_1} \cdot 4c^d$, (iii) there are no spoiled d-tuples in H'.

Let H_0 be obtained from H' by deleting a vertex from each $(H_1, 8d)$ -bad d-tuple contained in V(H'). By (ii), we deleted at most $\frac{n^{d+1}}{M_1} \cdot 4c^d$ vertices. Since H' has no spoiled d-tuples, every d-tuple of vertices in H_0 has at least

(12)
$$\frac{cn}{2(8d)^d} - \frac{n^{d+1}}{M_1} 4c^d = \frac{cn}{2(8d)^d} \left(1 - \frac{n^d}{M_1} 8c^{d-1} (8d)^d \right)$$
$$\geq \frac{cn}{2(8d)^d} \left(1 - \frac{(8d)^{4d^2+d}}{C^d} 8c^{d-1} \right)$$

common neighbors. Since $c = 4(8d)^d$ and $C = 8(8d)^{5d} = 2(8d)^{4d}c$, the last expression in (12) is at least

$$\frac{cn}{2(8d)^d} \left(1 - \frac{8(8d)^d}{2^d c} \right) = 2n \left(1 - \frac{2}{2^d} \right) \ge 2n \left(1 - \frac{1}{2} \right) = n.$$

This proves the lemma.

Proof of Theorem 3'. Let $d \ge 2$, $n \ge (8d)^{d+1}$, $M \ge \left(8(8d)^{5d}n\right)^d$ and let H be a (d,4dn)-thick graph on M vertices. Assume that H does not contain a subgraph G possessing (d,n)-property. Then by Lemma 9, every subgraph H_1 of H on at least $M(8d)^{-4d^2}$ vertices has an $(H_1,n,8d,d)$ -reducing pair. But in this case, by Lemma 5 (with r=n), H is not (d,4dn)-thick. This contradiction proves the theorem.

Proof of Theorem 3. Let $n \ge (8d)^{d+1}$ and H be an arbitrary graph on $M \ge (8(8d)^{5d}n)^d$ vertices. The statement of Theorem 3 for d=1 means that either H or \overline{H} contains a subgraph with minimum degree at least n-1, which is true, since M > 4n.

Let $d \geq 2$. If H is (d,4dn)-thick, then by Theorem 3', it contains a subgraph H_1 possessing (d,n)-property. If H is not (d,4dn)-thick, then by Lemma 3, \overline{H} contains contains a subgraph H_2 possessing (d,n)-property. This proves the theorem.

6. Proof of Theorem 2

Say that a graph H possesses (k, d, n)-property if the vertex set of H can be partitioned into k parts W_1, \ldots, W_k such that

$$\forall i \in \{1, \dots, k\}, \ \forall v_1, \dots, v_d \in V(H) - W_i,$$

$$|N_H(v_1) \cap \dots \cap N_H(v_d) \cap W_i| \ge n - 1.$$

Lemma 10. Suppose that a graph H possesses the (k,d,n)-property. Then H contains every k-colorable d-degenerate graph on n vertices.

Proof. Let $(W_1, ..., W_k)$ be a partition of V(H) satisfying (13). Let G be an arbitrary k-colorable d-degenerate graph on n vertices. Fix a coloring f of G with k colors 1, ..., k. Then we simply repeat the proof of Lemma 2 with the only change that the image $\phi(x_i)$ of x_i must belong to $W_{f(x_i)}$.

Proof of Theorem 2. Let G_1 be an arbitrary d-degenerate graph on n vertices with maximum degree Δ and let G_2 be an arbitrary d-degenerate graph on n vertices with chromatic number χ . Let $m = 4(d+1)(\chi-1)$, $C = m^{d+1}(4m^{d-1})^{\chi-2}$, $M = Cn\Delta$ and H be an arbitrary graph on M vertices.

If some $H_1 \subseteq H$ with at least $m^d \Delta 2(d+1)n$ vertices has no $(H_1, 2(d+1)n, m, d)$ -reducing pair, then, by Lemma 6, H_1 contains G_1 . Thus, we assume below that every $H_1 \subseteq H$ with at least $m^d \Delta 2(d+1)n$ vertices has an $(H_1, 2(d+1)n, m, d)$ -reducing pair.

Let $H_0 = H$ and for $k = 1, ..., \chi - 1$ we do the following:

- (a) Choose an $(H_{k-1}, 2(d+1)n, m, d)$ -reducing pair (R_k, S_k) ;
- (b) Since $|N_H(v) \cap S_k| \le \frac{4|S_k|}{3m}$ $\forall v \in R_k$, there exists $S'_k \subseteq S_k$ such that $|S'_k| \ge \frac{|S_k|}{3}$ and

$$(14) |N_H(v) \cap R_k| \le \frac{2|R_k|}{m} \quad \forall v \in S_k'.$$

(c) Take $H_k = H(S'_k)$ and note that by the definitions of S'_k and reducing pairs,

$$(15) \quad |V(H_k)| \ge \frac{1}{3} |S_k| \ge \frac{1}{3} \frac{3|V(H_{k-1})|}{4m^{d-1}} = \frac{|V(H_{k-1})|}{4m^{d-1}} \ge \dots \ge \frac{|V(H_0)|}{(4m^{d-1})^k}.$$

Observe that since $M \ge 4^{\chi-1} m^{(\chi-2)(d-1)+d} \Delta(d+1)n$, by (15), for $k \le \chi-2$ we have $|V(H_k)| \ge m^d \Delta 2(d+1)n$ and we can make Step k+1.

Denote by R_{χ} any subset of $S'_{\chi-1}$ of cardinality 2(d+1)n.

Observe that

- (i) $|R_1| = \dots = |R_{\chi}| = 2(d+1)n$;
- (ii) by (14), for every i > k and every $v \in R_i$, $|N_H(v) \cap R_k| \le \frac{2 \cdot 2(d+1)n}{m} = \frac{n}{\chi 1}$.

Now, we construct T_1, \ldots, T_{χ} as follows. Let T_{χ} be any subset of R_{χ} of size (d+1)n. Suppose that sets $T_{\chi-1} \subset R_{\chi-1}, T_{\chi-1} \subset R_{\chi}, \ldots, T_{k+1} \subset R_{k+1}$ of size (d+1)n are chosen. By (ii), $|E_H(T_i, R_k)| \leq (d+1)n\frac{n}{\chi-1}$ for every i > k. Hence the number of vertices in R_k having more than n neighbors in T_i is at most $\frac{(d+1)n}{\chi-1}$. It follows that there are at least

$$|R_k| - (\chi - k)\frac{(d+1)n}{\chi - 1} \ge |R_k| - (d+1)n = (d+1)n$$

vertices in R_k with at most n neighbors in each of $T_{\chi}, T_{\chi-1}, \dots, T_{k+1}$. Take as T_k any set of (d+1)n such vertices.

Now we have

- (i') $|T_1| = \ldots = |T_{\chi}| = (d+1)n;$
- (ii') for every $i \neq k$ and every $v \in R_i$, $|N_H(v) \cap R_k| \leq n$.

Denote by F the complement of the subgraph of H induced by $\bigcup_{k=1}^{\chi} T_k$. By (i') and (ii'), F possesses the (χ, d, n) -property. Hence by Lemma 10, G_2 is embeddable in F. This proves the theorem.

Acknowledgement. We thank the referees for helpful remarks.

References

- N. Alon: Subdivided graphs have linear Ramsey numbers, J. Graph Theory 18 (1984), 343–347.
- [2] N. Alon and J. H. Spencer: The Probabilistic Method, Wiley, 1992.
- [3] S. A. Burr and P. Erdős: On the magnitude of generalized Ramsey numbers for graphs, in *Infinite and finite sets*, Vol. 1, Colloquia Mathematica Soc. Janos Bolyai, 10, North-Holland, Amsterdam-London, 1975, 214–240.
- [4] G. CHEN and R. H. SCHELP: Graphs with linearly bounded Ramsey numbers, J. Comb. Theory, Ser. B 57 (1993), 138–149.
- [5] C. CHVÁTAL, V. RÖDL, E. SZEMERÉDI and W. T. TROTTER: The Ramsey number of a graph with bounded maximum degree, J. Comb. Theory, Ser. B 34 (1983), 239–243.
- [6] N. EATON: Ramsey numbers for sparse graphs, Discrete Math. 185 (1998), 63–75.
- [7] R. L. GRAHAM, V. RÖDL and A. RUCIŃSKI: On graphs with linear Ramsey numbers, J. Graph Theory 35 (2000), 176–192.
- [8] R. L. GRAHAM, V. RÖDL and A. RUCIŃSKI: On bipartite graphs with linear Ramsey numbers, Combinatorica 21 (2001), 199–209.

- [9] A. V. KOSTOCHKA and V. RÖDL: On graphs with small Ramsey numbers, J. Graph Theory 37 (2001), 198–204.
- [10] V. RÖDL and R. THOMAS: Arrangeability and clique subdivisions, in *The Mathematics of Paul Erdős*, (R. Graham and J. Nešetřil, eds.), Springer, Berlin, 1997, Vol. 2, 236–239.

A. V. Kostochka

Dept of Mathematics University of Illinois Urbana, IL 61801 USA and Institute of Mathematics Novosibirsk-90, 630090

kostochk@math.uiuc.edu

Russia

V. Rödl

Dept of Mathematics and Computer Science Emory University Atlanta, GA 30322 USA

rodl@mathcs.emory.edu