
Combinatorics, Probability and Computing (2003) 12, 53–60. c© 2003 Cambridge University Press

DOI: 10.1017/S0963548302005485 Printed in the United Kingdom

Equitable Colourings

of d-degenerate Graphs

A. V. KOSTOCHKA1† and K. NAKPRASIT2

1,2 University of Illinois, Urbana, IL 61801, USA

1 Institute of Mathematics, Novosibirsk, Russia 630090

Received 17 December 2001; revised 22 July 2002

A proper vertex coloring of a graph is called equitable if the sizes of colour classes differ

by at most 1. In this paper, we find the minimum number l = l(d,∆) such that every

d -degenerate graph with maximum degree at most ∆ admits an equitable t-colouring for

every t � l when ∆ � 27d.

1. Introduction

In many applications of graph colouring the sizes of colour classes should not be too

large. For example, in scheduling jobs (some of which could be performed at the same

time), it is not good if the resulting schedule requires many jobs to occur at some specific

time. An application of this type is discussed in [8]. A possible formalization of this

restriction is the notion of equitable colouring. A proper vertex colouring of a graph is

called equitable if the sizes of colour classes differ by at most 1.

A graph may have an equitable k -colouring (i.e., an equitable colouring with k colours)

but have no equitable (k + 1)-colouring. For example, the complete bipartite graph K7,7

has an equitable k -colouring for k = 2, 4, 6 and 8, but has no equitable k -colouring for

k = 3, 5 and 7. Thus, it is natural to look for the minimum number, eq(G), such that, for

every k � eq(G), G has an equitable k -colouring. A good survey on equitable colourings

of graphs is given in [5]. Hajnal and Szemerédi [3], answering a question of Erdó́s,

proved that, for every graph G , eq(G) � ∆(G) + 1. Recently, Pemmaraju [7] used equitable

colourings to give new bounds on the tail of the distribution of the sum of random

variables. He applied different theorems on equitable colourings for different situations.

If the dependence graph of variables had a bounded maximum degree, he applied the

above-mentioned Hajnal–Szemerédi theorem [3]; for trees he used a bound of Bollobás
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and Guy [1]; and for outerplanar dependence graphs he derived his own bound using the

Bollobás–Guy result.

Meyer [6] proved that every tree with maximum degree ∆ has an equitable k -colouring

for k = 1 +
⌊

∆
2

⌋
and it was observed later that the result holds for every k � 1 +

⌊
∆
2

⌋
. The

example of the star K1,∆ shows that one cannot take k < 1 +
⌊

∆
2

⌋
.

Yap and Zhang [10] proved that every outerplanar graph with maximum degree ∆ � 3

has an equitable ∆-colouring, and conjectured that every outerplanar graph with maximum

degree ∆ � 3 is equitably k -colourable for every k � 1 + ∆/2. This conjecture was proved

in [4].

The aim of this paper is to find upper bounds on eq(G) for d -degenerate graphs with

given maximum degree. Recall that a graph G is d -degenerate if the minimum degree of

every subgraph of G is at most d (see, e.g., [9]). Thus we can destroy any d -degenerate

graph by consecutive deleting of vertices of degree at most d . Clearly, forests are exactly 1-

degenerate graphs. It is also well known that every outerplanar graph is 2-degenerate (see,

e.g., [9]), and every planar graph is 5-degenerate. Note that the above-mentioned conjecture

of Yap and Zhang [10] on outerplanar graphs does not extend to all 2-degenerate graphs.

To see this, consider the graph G(d,∆) = Kd +K∆−d+1, obtained from the complete

graph Kd by adding ∆ − d+ 1 vertices, so that each of them is adjacent to vertices

of our Kd and only to them. This graph is d -degenerate and has maximum degree ∆.

In every proper colouring of G(d,∆), d colour classes must be singletons containing the

d all-adjacent vertices. Therefore, every equitable colouring of G(d,∆) has at least

ν(d,∆) = d+

⌈
∆ − d+ 1

2

⌉
=

⌈
∆ + d+ 1

2

⌉

colour classes. In particular, G(2,∆) needs at least

ν(2,∆) =

⌈
∆ + 3

2

⌉

colours for an equitable colouring, which is greater than 1 +
⌊

∆
2

⌋
for even ∆.

We will show that ν(d,∆) colours is enough for an equitable colouring of an arbitrary

d -degenerate graph with maximum degree ∆ provided that ∆/d is large.

Theorem 1.1. Let d � 2, ∆ � 27d, k � (d+ ∆ + 1)/2. Then every d-degenerate graph with

maximum degree at most ∆ is equitably k-colourable.

The above example of G(d,∆) shows that the bound on k cannot be weakened. Since

every planar graph is 5-degenerate, we obtain the following consequence.

Corollary 1.2. Let ∆ � 135, k � 3 + ∆/2. Then every planar graph with maximum degree

at most ∆ is equitably k-colourable.

Note that, by the above-mentioned Hajnal and Szemerédi theorem, the statement of

Theorem 1.1 also holds for d = ∆. We conjecture that it holds for every d � ∆.

Chen, Lih and Wu [2] conjectured that, apart from K1+∆ and K∆,∆, every connected

graph with maximum degree ∆ � 3 has an equitable ∆-colouring. This conjecture is proved
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for graphs in some classes, such as interval graphs, trees, and so on (for a survey see [5]).

If k � 14d+ 1 and the maximum degree of a d -degenerate graph G is at most k , then G

satisfies the conditions of Theorem 1.1 for ∆ = 2k − 1 − d. Thus we get the following.

Corollary 1.3. Let d � 2 and k � 14d+ 1. Then every d-degenerate graph with maximum

degree at most k is equitably k-colourable.

In fact, we can prove the corollary under restrictions somewhat weaker than k � 14d+ 1,

along the lines of the proof of Theorem 1.1. But we do not present this here.

In the next section, we prove some auxiliary statements, and Section 3 is devoted to the

proof of the theorem.

2. Preliminaries

Claim 2.1. Let G = (V , E) be a d-degenerate graph (d � 2), V = {v1, . . . , vn} and

degG(v1) � degG(v2) � · · · � degG(vn). Then degG(vi) < d(1 + n
i
) for every i = 1, . . . , n.

Proof. Consider an arbitrary i . Let Vi = {v1, . . . , vi}. Then, since G(Vi) is d -degenerate,

|E| �
i∑

j=1

degG vj − |E(G(Vi))| > i degG vi − d · i = i(degG vi − d).

Since G itself is d -degenerate, we conclude that dn > i(degG vi − d). This yields the claim.

Claim 2.2. Let ∆ � d � 2 and

k >
d+ ∆

2
. (2.1)

Let G = (V , E) be a d-degenerate graph on 2k vertices with maximum degree at most ∆.

Then G is equitably k-colourable.

Proof. Assume that G is not equitably k -colourable. This means that the complement G

of G has no perfect matching. Then, by Tutte’s criterion of existence of a perfect matching

in a graph (taking into account that 2k is even), there exists some nonnegative integer p

and P ⊂ V (G) with |P | = p such that Ḡ− P is the union of some q � p+ 2 components

Gi. Let Wi = V (Gi) for i = 1, . . . , p+ 1 and Wp+2 =
⋃q
j=p+2 V (Gj). Then G contains the

complete (p+ 2)-partite graph with parts W1, . . . ,Wp+2. Let W =
⋃p+2
i=1 Wi. Clearly, |W | =

2k − p. We may assume that |Wi| = wi and that w1 � · · · � wp+2. Then ∆ � |W | − w1 and

d � |W | − wp+2. Therefore,

d+ ∆ � |W | + (|W | − w1 − wp+2) = 2k − p+

p+1∑
i=2

wi � 2k,

a contradiction to (2.1).
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Claim 2.3. Let ∆ � 22d, d � 2 and let k satisfy (2.1). Let G = (V , E) be a d-degenerate

graph on 3k vertices with maximum degree at most ∆. Then G is equitably k-colourable.

Proof. Let G0 = G. For i = 1, 2, . . . , consider the following procedure. If Gi−1 contains

three mutually non-adjacent vertices vi,1, vi,2, and vi,3 of degree at least 6d+ 1, then let

Mi = {vi,1, vi,2, vi,3}, Gi = Gi−1 −Mi, and go to step i+ 1. Otherwise, stop.

Suppose that we stop after step q . Let S be the set of vertices in Gq of degree (in Gq)

at least 6d+ 1 and s = |S |. Since G is d-degenerate,

|E(Gq)| �
∑
v∈S

degGq (v) − |E(G(S))| � (6d+ 1)s− ds = (5d+ 1)s

and |E(G)| < 3kd. Observe that |E(Gi)| � |E(Gi−1)| − 3(6d+ 1) for every i � q. Hence

3(6d+ 1)q + (5d+ 1)s < 3kd and hence q +
5

18
s <

k

6
. (2.2)

Since the independence number of G(S) is at most two, and G is d -degenerate,

s � 2(d+ 1). (2.3)

We will greedily construct s disjoint independent sets Mq+1, . . . ,Mq+s of size 3 in Gq so

that each of them contains exactly one vertex in S . At step j, 1 � j � s, take a vertex

wj ∈ S in Gq+j−1 and choose in V (Gq+j−1) two vertices so that, together with wj , they

form an independent set, say, Mq+j; then let Gq+j = Gq+j−1 −Mq+j .

To see that we will be able to make all s steps, let us count how many non-neighbours

wj has in Gq+j−1. This number is at least 3k − 3(q + j − 1) − ∆ − 1. If this number

is at least d+ 2, then we can choose two mutually non-adjacent non-neighbours of

wj . Thus, the bad situation might occur only when 3k − 3(q + s− 1) − ∆ − 1 � d+ 1.

Since k � (∆ + d+ 1)/2, this implies that k � 3q + 3s− 2. By (2.2), we then get that

k/2 < (3 − 5
6
)s− 2. Now, by (2.3),

∆ + d+ 1

4
<

13(d+ 1)

3
− 2 =

13d

3
+

7

3
,

and hence

∆ <
49d

3
+ 9.

But this contradicts the conditions 22d � ∆ and d � 2.

Since the maximum degree of Gq+s is at most 6d , by the Hajnal–Szemerédi theorem, it

has an equitable l -colouring for every l � 6d+ 1. Thus, if k − q − s � 6d+ 1, then we are

done. Assume that k − q − s � 6d. Then by (2.2) and (2.3), respectively,

5k

6
− 13s

18
< 6d and

5k

6
<

13(d+ 1)

9
+ 6d.

This again contradicts the conditions 22d � ∆ and d � 2.
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3. Proof of Theorem 1.1

For a given d , let G0 be a counterexample to the theorem with minimal number of vertices.

Let |V (G0)| = n0 and n0 = tk − r, where 0 � r < k.

Claim 3.1. r < d.

Proof. Assume r � d. Since G0 is d -degenerate, there exists v ∈ V (G0) with degG0
(v) � d.

By the minimality of G0, there exists an equitable k -colouring f of G′ = G0 − v. In this

colouring, exactly r + 1 colour classes are of size t− 1. Since r � d, at least one of these

classes does not contain neighbours of v . We can add v to any such class.

Let G = (V , E) be obtained from G0 by adding a copy of Kr disjoint from G0. Then

n = |V (G)| = tk and by Claim 3.1, G is d -degenerate. If t = 1 then the statement is trivial.

If t = 2 or t = 3, it follows from Claims 2.2 and 2.3. So below we assume t � 4.

Let

s = s(t) =

{
1, if 4 � t � 9;

� t
8
�, if t � 10,

and let λ = λ(t) = 1 + t
s(t)

. Observe that λ(4) = 5, λ(9) = 10, and 6 � λ(t) � 9 for every

other t > 3. Order the vertices of G so that degG(v1) � degG(v2) � · · · � degG(vn). Let

V ′ = {v1, . . . , vµ}, where degG(vµ) � λd and degG(vµ+1) < λd.

By Claim 2.1, µ � n
λ− 1

. Since |V ′| = µ � n/4 < n0, the minimality of G0 implies that

there exists an equitable k -colouring f′ of G(V ′). (If t � 9 then all vertices in V ′ get

different colours.)

Let Gi be the subgraph of G induced by vertices v1, . . . , vi. We will now complete f′ to

obtain a colouring of G by colouring consecutively vertices vi for i = 1 + µ, 2 + µ, . . . , n,

in such a way that:

(i) after step i , vertices of Gi will be coloured;

(ii) at every step, every colour class is of size at most t;

(iii) no vertex in V ′ will be recoloured at any step.

Case 1: 1 + µ � i < 3n/4.

In the current colouring fi−1, there are at least k − degG(vi) colour classes not containing

neighbours of vi. If the size of at least one of them is less than t , we can move

vi into that class. Otherwise, i > t(k − degG(vi)). Since degG(vµ+1) < λd � 10d, we have

i > t(k − 10d) � 2n/15.

By Claim 2.1, degG(vi) < d(1 + n
i
). It follows that

n− i < td
n+ i

i
=
nd(n+ i)

ik
.

Thus,

∆

d
<

2k

d
− 1 � 2n(n+ i)

i(n− i)
− 1. (3.1)
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Denoting α = i
n
, we have 2

15
� α < 3

4
and (3.1) yields

∆

d
< g(α) = 2

1 + α

α(1 − α)
− 1.

We will show that g(α) < 27 when 2
15

� α < 3
4
.

Since

g′(α) = 2
(1 + α)2 − 2

α2(1 − α)2
,

g(α) decreases when α <
√

2 − 1 and increases when α >
√

2 − 1. Thus, it is enough to

check the inequality g(α) < 27 only for α = 2
15

and α = 3
4
. Clearly,

g

(
2

15

)
= 2

17/15

(2/15)(13/15)
− 1 =

255

13
− 1 < 19

and

g

(
3

4

)
= 2

7/4

(3/4)(1/4)
− 1 =

56

3
− 1 < 18.

This proves the case.

Case 2: 3n/4 � i � n.

In this case, by Claim 2.1,

degG(vi) < d

(
1 +

n

3n/4

)
= 7d/3. (3.2)

Let M1, . . . ,Mk be the current colour classes. Let Y0 denote the set of colour classes

of cardinality less than t . If some Mj ∈ Y0 contains no neighbours of vi, then we colour

vi with Mj and go to the next step. Otherwise, let Y0-candidate be a vertex w ∈ V − V ′

such that there exists a colour class M(w) ∈ Y0, with w /∈ M(w) and NG(w) ∩M(w) = ∅.

Let Y1 be the set of colour classes containing a Y0-candidate. If a member Mj of Y1 does

not contain a neighbour of vi, then we colour vi with Mj and recolour some Y0-candidate

w ∈ Mj with M(w). For h � 1, let a Yh-candidate be a vertex w ∈ V − V ′ − ∪M∈Y0∪···∪YhM

such that there exists M(w) ∈ Yh with NG(w) ∩M(w) = ∅. Let Yh+1 be the set of colour

classes containing a Yh-candidate. If a member Mj of Yh+1 does not contain a neighbour

of vi, then we colour vi with Mj , and, as above, recolour a sequence of candidates. Finally,

let Y =
⋃∞
j=0 Yj and y = |Y |. Then, by the above, Y possesses the following properties:

(a) every member of Y contains a neighbour of vi and thus y � degG(vi),

(b) every vertex u ∈ V − V ′ − ∪M∈YM has a neighbour in every M ∈ Y (otherwise the

colour class of u would be in Y ).

Let V ′′ = V ′ − ∪M∈YM and V+ = V − V ′ − ∪M∈YM. By (b), at least y|V+| edges

connect V+ with ∪M∈YM. By the choice of V ′,
∑

v∈V ′′ deg(v) � λd|V ′′|. Since G is d -

degenerate, we conclude that at least λd|V ′′| − d|V ′′| = (λ− 1)d|V ′′| edges are incident

with V ′′. Hence, the total number of edges in G is at least y|V+| + (λ− 1)d|V ′′|. Recall
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that y � deg(vi) < (λ− 1)d. Hence G has at least y(|V+| + |V ′′|) = ty(k − y) but less than

dkt edges. It follows that y(k − y) < dk, that is,

ϕ(y) = y2 − ky + kd > 0. (3.3)

Observe that

ϕ(4d) = 16d2 − 4kd+ kdd(16d− 3k) < 0

and ϕ(1.1d) = 1.21d2 − 1.1kd+ kd = d(1.21d− 0.1k) < 0.

In view of (a) and (3.2), this implies that y < 1.1d.

By construction, any Mi contains at most s vertices in V ′. Let M1 ∈ Y0. Since at

most s vertices in M1 might be in V ′, the number of neighbours of M1 is at most

s∆ + (t− 1 − s)λd.

Subcase 2.1: 4 � t � 9.

Here s = 1 and λ = 1 + t. By (b), the number of neighbours of M1 is at least (k − y)(t− 1)

> (t− 1)(k − 1.1d). Hence,

(t− 1)(0.5(∆ + d+ 1) − 1.1d) < ∆ + (t− 2)(t+ 1)d

and thus

(0.5(t− 1) − 1)∆ < ((t+ 1)(t− 2) + 0.6(t− 1))d.

Since ∆ � 27d, we should have

27 < 2
t2 − 0.4t− 2.6

t− 3
= 2t+ 5.2 +

10.4

t− 3
.

But 2t+ 5.2 + 10.4
t− 3

< 27 for 4 � t � 9.

Subcase 2.2: t � 10.

In this case, λ = 1 + t
s

= s+ t
s

and hence 6 � λ � 9. By (b), the number of neighbours of

M1 is at least

(t− s)(k − y) � (t− s)

(
∆ + d+ 1

2
− 1.1d

)
.

Therefore,

s∆ + (t− s)λd > (t− s)

(
0.5∆ − 3d

5

)
.

Dividing both parts by s , expressing t− s
s

as λ− 2, and rearranging, we get(
λ− 2

2
− 1

)
∆ <

(
(λ− 2)λ+

3

5
(λ− 2)

)
d.

Since ∆ � 27d, we should have

27 <
λ+ 3

5
1
2

− 1
λ− 2

= 2λ+ 5.2 +
18.4

λ− 4
. (3.4)
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We want to prove that (3.4) is false for 6 � λ � 9. It is enough to check this only for

λ = 6 and λ = 9, since the second derivative of

ψ(λ) = 2λ+ 5.2 +
18.4

λ− 4

is positive for λ > 4. And indeed

ψ(6) = 12 + 5.2 +
18.4

6 − 4
< 27 and ψ(9) = 18 + 5.2 +

18.4

9 − 4
< 27.

Thus (3.4) is false for all possible λ. This contradiction proves the theorem.
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