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The Ramsey number, r(G), of a graph G is the minimum integer N such that, in every

2-colouring of the edges of the complete graph KN on N vertices, there is a monochromatic

copy of G. In 1975, Burr and Erdős posed a problem on Ramsey numbers of d-degenerate

graphs, i.e., graphs in which every subgraph has a vertex of degree at most d. They

conjectured that for every d there exists a constant c(d) such that

r(G) � c(d)n

for any d-degenerate graph G of order n.

In this paper we prove that r(G)�n1+o(1) for each such G. In fact, we show that, for

every ε> 0, sufficiently large n, and any graph H of order n1+ε, either H or its complement

contains a (d, n)-common graph, that is, a graph in which every set of d vertices has at

least n common neighbours. It is easy to see that any (d, n)-common graph contains every

d-degenerate graph G of order n. We further show that, for every constant C , there is an

n and a graph H of order Cn such that neither H nor its complement contains a (2, n)-

common graph.

1. Introduction

The Ramsey number of a graph G, denoted by r(G), is the minimum integer N such

that, in every 2-colouring of the edges of the complete graph KN on N vertices, there is

a monochromatic copy of G. The existence of r(G) follows from a classical theorem of

Ramsey and we refer to r(G) as the Ramsey number of G. We say that a family of graphs
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G is a Ramsey linear family if there is a constant c= c(G)> 0 such that r(G) � cn for every

G∈ G of order n.

For dense graphs G, r(G) is known to be exponential in the order of G. For example,

in the extreme case when G is the complete graph of order n, we have 2n/2 � r(G) � 22n.

Therefore, to be Ramsey linear a family should contain relatively sparse graphs.

One obvious way to force a graph to be sparse is to bound its maximal degree. Another

possibility which is less restrictive is to consider graphs in which every subgraph has a

small average degree. A graph is d-degenerate if every one of its subgraphs contains a

vertex of degree at most d. By definition, low degeneracy is equivalent to low average

degrees of all subgraphs. Burr and Erdős [4] posed the problem of estimating the Ramsey

numbers of sparse graphs. They put forward the following two conjectures.

Conjecture 1.1. The family B∆ of graphs with maximum degree at most ∆ is Ramsey linear.

Conjecture 1.2. The family Dd of d-degenerate graphs is Ramsey linear.

The first conjecture was proved by Chvátal, Rödl, Szemerédi and Trotter [6]. They

used the Regularity Lemma, and the constant c(B∆) in their proof is very large. Better

estimates for c(B∆) were obtained in [8], [9], [10], and [13]. In addition, in the past

two decades some other subfamilies of the family Dd were shown to be Ramsey linear.

Alon [1] proved that the family S of graphs obtained by subdividing every edge of some

other graph is Ramsey linear. Chen and Schelp [5] showed that for every k, the family Ak

of the so-called k-arrangeable graphs is also Ramsey linear and that every planar graph is

10-arrangeable. Rödl and Thomas [14] used Chen and Schelp’s result to deduce that for

every k, the family of graphs with no subdivision of Kk is Ramsey linear. Conjecture 1.2

is still wide open. Recently Kostochka and Rödl [13] proved that the Ramsey number of

any d-degenerate graph with n vertices and maximum degree ∆ is bounded by C(d)n∆. If

∆ is not restricted, this gives an O(n2) bound for every d-degenerate graph with n vertices

and this is the first polynomial upper bound on the Ramsey numbers of graphs in Dd.

For a pair of positive integers n > d, we say that a graph H is (d, n)-common if, for every

d vertices v1, . . . , vd ∈ V (H), there are at least n vertices of H adjacent to all vi, 1 � i � d.

Let Fd(n) denote the minimum positive integer N0 such that, for every N � N0 and every

graph H on N vertices, either H or its complement H contains a (d, n)-common subgraph.

It is easy to see from this definition (see Lemma 2.1, below) that every (d, n)-common

graph contains every d-degenerate graph on n vertices. In view of this observation, the

following question was considered in [13] (in slightly different terms).

Question 1.3. Is it true that, for every positive integer d, there exists a constant C =C(d)

such that Fd(n) �Cn?

By the above discussion, answering this question in the affirmative would imply

Conjecture 1.2. In [13], the following polynomial bound on Fd(n) was proved. For every

fixed d there exists a constant C1 =C1(d) such that Fd(n) � C1n
d.

In this paper we improve estimates on Fd(n). Our first theorem gives an upper bound

on Fd(n) which is not far from linear.



On Ramsey Numbers of Sparse Graphs 629

Theorem 1.4. For every ε> 0 there exists n0 = n0(ε) such that, for every n>n0 and every

positive integer d< 0.1
√

ln ln n,

Fd(n)<n1+ε.

As an immediate corollary we obtain the following new upper bound on the Ramsey

number of d-degenerate graphs, which comes close to the one conjectured by Burr and

Erdős.

Corollary 1.5. For every ε > 0 there exists n0 = n0(ε) such that, for every n > n0 and every

positive integer d < 0.1
√

ln ln n, the Ramsey number of every d-degenerate graph of order n

is at most n1+ε.

On the other hand, we will present a construction answering Question 1.3 in the

negative: even for d = 2 the function Fd(n) is superlinear. This is somewhat surprising and

unfortunate, since this implies that another, more subtle, approach is needed to attack

Conjecture 1.2.

Theorem 1.6. There exists a real c > 0 such that, for every integer n, there exists a graph

H of order c n ln1/4 n
ln ln n

with the property that neither H nor its complement contains a (2, n)-

common subgraph, that is,

F2(n) � c
n ln1/4 n

ln ln n
.

The rest of this paper is organized as follows. In the next section we illustrate our main

ideas by obtaining bounds on Ramsey numbers of bipartite d-degenerate graphs and

deduce Corollary 1.5 from Theorem 1.4. In Section 3 we prove Theorem 1.6, thus answering

Question 1.3 in the negative. Our construction uses the isoperimetric properties of the

Hamming space. Next, in Section 4 we treat (d, n)-common subgraphs of large graphs and

present the proof of Theorem 1.4. The last section contains some concluding remarks.

We close this section by introducing some notation. Given a graph G = (V , E), the

neighbourhood NG(v) of a vertex v ∈ V is the set of all vertices of G adjacent to it and

dG(v) = |NG(v)| is the degree of v. For a subset W ⊂ V , we let NG(W ) =
⋂

v∈W NG(v)

denote the set of vertices of G adjacent to all the vertices in W . We will frequently

write simply N(v) and N(W ), when it is clear from the context what graph is under

consideration. Similarly, given a set Y ⊆ V , we let NY (v) denote the set of all vertices in

Y adjacent to v and let NY (W ) denote the set of vertices of Y adjacent to all the vertices

in W . We let ln denote the natural logarithm. Throughout the paper we assume, whenever

necessary, that n is sufficiently large. Finally, for the sake of clarity of presentation, we

will omit some floor and ceiling signs in places where it does not affect the argument.

2. Main ideas: bipartite case

In this section we illustrate our main ideas by giving a nearly linear upper bound

on Ramsey numbers of bipartite sparse graphs. We make no attempt to optimize our

constants here and in the rest of the paper.
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We say that a bipartite graph H = (U1, U2;E) is (d, n)-quasi-common if, for each i = 1, 2,

every set of d vertices v1, . . . , vd in Ui has at least n common neighbours in U3−i. The

following folklore lemma shows why we are interested in (d, n)-common graphs and in

Question 1.3. In particular, the second statement of the lemma shows that Theorem 1.4

implies Corollary 1.5.

Lemma 2.1. Let n and d be two positive integers. Then any (d, n)-quasi-common graph

contains every d-degenerate bipartite graph of order n. Furthermore, any (d, n)-common graph

contains every d-degenerate graph of order n.

Proof. Let H = (U1, U2;E) be a (d, n)-quasi-common graph and let G = (V1, V2;E
′) be a

d-degenerate bipartite graph of order n. By the definition of d-degenerate graphs, there

exists a labelling v1, . . . , vn of vertices of G such that, for every i, the number of neighbours

vj of vi with j < i is at most d. Using this labelling we can construct embedding f : G → H

greedily so that the vertices in Vl will be embedded into set Ul , l = 1, 2.

Without loss of generality we assume that v1 ∈ V1, and let f(v1) be an arbitrary vertex

in U1. Suppose that we have already embedded vertices v1, . . . , vi−1, and suppose that

vi ∈ Vl . Let D = {f(vj) | (vj , vi) ∈ E(G), j < i}. Then D is a subset of U3−l of size at most

d, and hence the set NUl
(D) of common neighbours of D in Ul has size at least n, which

is the order of G. Therefore it is always possible to choose f(vi) to be a vertex in NUl
(D)

different from f(v1), . . . , f(vi−1). This process clearly embeds G into H .

The proof of the second statement of the lemma is very similar. It is even shorter, since

we do not need to control the parts, and we omit it here.

The main theorem of this section is the following Turán-type result. Its proof is based

on the approach introduced in [12], [7] and [15]. The crucial new idea here and also in

the proof of Theorem 1.4 is to find the way to apply these arguments in both directions.

Theorem 2.2. Let 0 < c � 1 be a constant and let d, N and n be positive integers satisfying

d � 1

64
ln n and N = n

(
2e

c

)2d1/3 ln2/3 n

. (2.1)

Then every bipartite graph G = (V1, V2;E) with |V1| = |V2| = N and |E| = cN2 contains a

(d, n)-quasi-common graph H = (U1, U2;E
′).

Proof. Let x1, . . . , xs be a sequence of s= d1/3 ln2/3 n, not necessarily distinct vertices of

V2, which we choose uniformly and independently at random, and denote S = {x1, . . . , xs}.
Let U ′

1 denote the set NV1
(S) of common neighbours of vertices in S . Note that the size

of U ′
1 is a random variable and that S ⊆ N(v) for every v ∈ U ′

1. Then, using Jensen’s

inequality and (2.1), we can estimate the expected size of U ′
1 as follows:

E
(
|U ′

1|
)

=
∑
v∈V1

Pr
(
v ∈ U ′

1

)
=

∑
v∈V1

(
|N(v)|
N

)s

=

∑
v∈V

(
d(v)

)s
Ns

�
N

(∑
v∈V d(v)

N

)s

Ns

=
N

(
|E(G)|/N

)s
Ns

� csN = n (4e2/c)d
1/3 ln2/3 n.
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On the other hand, by definition, the probability that a given set of vertices W ⊂ V1 is

contained in U ′
1 equals

(
|N(W )|/N

)s
. Let Z denote the number of subsets W of U ′

1 of

size d2/3 ln1/3 n with |N(W )| < n. Then by (2.1) the expected value of Z is at most

E
(
Z

)
=

∑
|W |=d2/3 ln1/3 n, |N(W )|<n

Pr
(
W ⊂ U ′

1

)
�

(
N

d2/3 ln1/3 n

)(
n

N

)s

� Nd2/3 ln1/3 n

(
n

N

)d1/3 ln2/3 n

= nd
2/3 ln1/3 n

(
n

N

)−d2/3 ln1/3 n+d1/3 ln2/3 n

� ed
2/3 ln4/3 n

(
n

N

)(1/2)d1/3 ln2/3 n

=

(
c

2

)d2/3 ln4/3 n

< 1.

Here we used that, by (2.1), d1/3 � (1/4) ln1/3 n < (1/2) ln1/3 n and that c/2 � 1/2 < 1.

Therefore, by linearity of expectation, there exists a particular choice of x1, . . . , xs for

which |U ′
1| − Z � n(4e2/c)d

1/3 ln2/3 n − 1. Fix these x1, . . . , xs and delete a vertex from every

subset W of U ′
1 of size d2/3 ln1/3 n with |N(W )| < n. This produces a set U1 ⊆ V1 of size at

least n (4e2/c)d
1/3 ln2/3 n − 1 � n (2e2/c)d

1/3 ln2/3 n such that every subset of d2/3 ln1/3 n vertices

has at least n common neighbours in V2.

Next, let q= d2/3 ln1/3 n − d. By (2.1), q � (3/4)d2/3 ln1/3 n. Take a sequence y1, . . . , yq of

not necessarily distinct vertices of U1, which we choose uniformly and independently at

random, and denote Q= {y1, . . . , yq}. Let U2 denote the set NV2
(Q). Note that a set of ver-

tices W ′ ⊂ V2 is contained in U2 if and only if Q ⊆ NU1
(W ′), and the probability that this

happens equals (|NU1
(W ′)|/|U1|)q . Let Z ′ denote the number of subsets W ′ of U2 of size

d with |NU1
(W ′)| < n. Then, using (2.1) and the fact that d1/3 � (1/4) ln1/3 n, we obtain

E(Z ′) �
(
N

d

)(
n

|U1|

)q

� Nd

((
2e2

c

)d1/3 ln2/3 n
)−q

� nd
(

2e

c

)2d4/3 ln2/3 n(
2e2

c

)−(3/4)d ln n

� ed ln n

(
2e

c

)(1/2)d ln n(
2e2

c

)−(3/4)d ln n

=

(
c

2

)(1/4)d ln n

< 1.

Since Z ′ is an integer, by the definition of expectation, there exists a particular choice

of y1, . . . , yq for which Z ′ = 0. Fix such y1, . . . , yq and the corresponding set U2. By

construction, every set of d vertices in U2 has at least n common neighbours in U1.

Observe that, vice versa, every set of d vertices in U1 has at least n common neighbours

in U2. Indeed, let D be a subset of U1 of size d. Then the set Y =D ∪ Q is a subset of

U1 of size at most d + q= d + (d2/3 ln1/3 n − d) = d2/3 ln1/3 n. By the choice of U1 there

are at least n vertices in V2 adjacent to all vertices in Y . Hence, to complete the proof

of the theorem one should only notice that all these vertices belong to U2. This indeed,

follows easily from the facts that U2 contains all common neighbours of Q= {y1, . . . , yq}
and Q ⊂ Y .
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This theorem immediately yields the following corollary, which provides a nearly linear

upper bound on Ramsey numbers of bipartite d-degenerate graphs.

Corollary 2.3. Let d be a fixed integer and let G be a bipartite d-degenerate graph of order

n. Then

r(G) � neO(ln2/3 n) = n1+o(1).

Proof. Let N = n(4e)2d
1/3 ln2/3 n = neO(ln2/3 n) and suppose that edges of the complete graph

K2N are 2-coloured. Consider any partition of vertices of K2N into two equal parts of size

N each. Then clearly at least N2/2 edges between these parts have the same colour. These

edges form a monochromatic bipartite graph which satisfies the conditions of Theorem 2.2

with c= 1/2. Therefore this graph contains a (d, n)-quasi-common subgraph H , and we

can now finish the proof by applying Lemma 2.1.

3. A lower bound on F2(n)

In this section we show that the results of previous section, and more generally of

Theorem 1.4, are in some sense tight. More precisely, we present a construction that

proves Theorem 1.6 and gives a negative answer to Question 1.3, even for d= 2.

Our construction is based on the isoperimetric properties of the binary cube. Let {0, 1}m
be the set of all binary vectors of length m. For any two vectors x, y ∈ {0, 1}m, let ρ(x, y)

denote their Hamming distance, that is, the number of coordinates in which they differ. We

use the well-known fact that any sufficiently large subset of {0, 1}m contains two almost

antipodal vectors. More precisely, we apply the following classical result of Kleitman [11].

Lemma 3.1. Let t < m/2, A ⊆ {0, 1}m, and

|A| >
t∑

i=0

(
m

i

)
.

Then there is a pair of vectors a1 and a2 in A such that ρ(a1, a2) � 2t + 1.

We will also use the following standard Chernoff estimates (see, e.g., [2, Appendix A,

Theorem A.4]) for binomial distributions.

Lemma 3.2. Let λ and µ be positive integers, λ < µ/2. Then∑
0�a�µ/2−λ

(
µ

a

)
� 2µ e−2λ2/µ.

Having finished all the necessary preparations, we are now ready to complete the proof

of Theorem 1.6. Our approach here was influenced by the well-known construction of

Bollobás and Erdős [3] of dense K4-free graphs without large independent sets.

Proof of Theorem 1.6. Let m= log2 n + (log2 log2 n)/4 − log2 log2 log2 n and let V =

{0, 1}m be the set of binary vectors of length m. Let H be the graph on the vertex set

V in which two vertices x, y ∈ V are adjacent if and only if their Hamming distance
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ρ(x, y) � m/2. We claim that neither graph H nor its complement H contains a (2, n)-

common subgraph. We assume that H or H contains a (2, n)-common subgraph G, and

obtain a contradiction.

Let U denote the set of vertices of G. Since G is (2, n)-common, by definition, the order

of U is at least n= (1 + o(1))2m log2 m

m1/4 > 2m/
√
m. Therefore, by Lemma 3.2 (with µ=m and

λ= 0.5
√

m log2 m) and Lemma 3.1 (with t= 0.5m− 0.5
√

m log2 m)), U contains a pair of

vertices u1, u2 such that ρ(u1, u2) � m −
√

m log2 m. We obtain a contradiction by proving

that the total number of vertices in H and also in H adjacent to both u1 and u2 is less

than n. Without loss of generality we can assume that u1 is the all-zero vector, and u2 has

0 in its first k�
√
m log2 m coordinates and 1 in the remaining m − k coordinates.

Case 1: G is contained in H .

Let x be a vertex of V which has precisely a ones in first k coordinates and b ones in

the remaining m − k coordinates. The number of such vertices in H is (ka) (m−k
b ). If x is

adjacent to both u1 and u2 then, by the definition of H , ρ(x, u1) = a + b�m/2 and

ρ(x, u2) = a+ (m − k − b) � m/2. This implies that m/2 − k+ a� b�m/2 − a and a� k/2.

First we consider the case when k � m1/4. By the above discussion the total number of

vertices of H adjacent to both u1, u2 is at most

∣∣NH (u1, u2)
∣∣ =

∑
a�k/2

∑
m/2−k+a�b�m/2−a

(
k

a

)(
m − k

b

)
�

∑
a�k/2

(
k

a

)(
m − k
m−k

2

)
(k − 2a)

� O

(
k

2m−k

√
m − k

2k
)

=O

(
2m

m1/4

)
= o(n).

In these inequalities we use the fact that the largest binomial coefficient is the central one,

Stirling’s formula, and the estimate n = (1 + o(1))2m log2 m

m1/4 .

Next suppose that k � m1/4. In this case, first note that by Lemma 3.2∑
|a−k/2|>λ

(
k

a

)
� 2e−2λ2/k2k.

By choosing λ=
√
k ln k and using the facts that 4

√
m � k=O(

√
m log2 m), n = (1 +

o(1))2m log2 m

m1/4 together with Stirling’s formula, we obtain that the total number of vertices

of H adjacent to both u1, u2 is at most

∣∣NH (u1, u2)
∣∣ =

∑
a�k/2

∑
m/2−k+a�b�m/2−a

(
k

a

)(
m − k

b

)

�
∑

|a−k/2|�
√
k ln k

∑
b

(
k

a

)(
m − k

b

)
+

∑
|2a−k|�

√
k ln k

∑
m/2−k+a�b�m/2−a

(
k

a

)(
m − k

b

)

� 2
2k

k2

∑
b

(
m − k

b

)
+

∑
|a−k/2|�2

√
k ln k

(
k

a

)(
m − k
m−k

2

)
(k − 2a)

� 2
2k2m−k

k2
+ O

(√
k ln k

2m−k

√
m − k

2k
)

� 2m+1

√
m

+ O

(
2m ln3/4 m

m1/4

)
= o(n).

This completes the proof of Case 1.
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Case 2: G is contained in H .

Let vi, i = 1, 2 be the vertex in V antipodal to ui (e.g., v1 is the all-one vector). Then

ρ(v1, v2) = ρ(u1, u2) and a vertex x is adjacent to both u1 and u2 in H if and only if x is

adjacent to both v1 and v2 in H . According to Case 1, there are only o(n) vertices with

this property. This proves the theorem.

4. Embedding (d, n)-common graphs

In this section we prove the following statement, which implies Theorem 1.4.

Theorem 4.1. Let d, n and N be positive integers such that d < 0.1
√

ln ln n,

n � N exp
(
−94d(lnN)2d/(2d+1)

)
, (4.1)

and let H be a graph of order N. Then either H or its complement H contains a (d, n)-

common subgraph.

First we show how Theorem 1.4 follows from Theorem 4.1 (which will be proved in the

next three subsections). Suppose some 0 < ε < 1 is given and n > n0(ε). Let d < 0.1
√

ln ln n

and let H be a graph on N = n1+ε vertices. Checking that our d, n and N satisfy (4.1) is

equivalent to checking that

1 � nε exp
(
−90.4

√
ln ln n((1 + ε) ln n)2d/(2d+1)

)
.

The last inequality would follow from

ε ln n > 90.4
√

ln ln n2(ln n)1−2/
√

ln ln n. (4.2)

Since

90.4
√

ln ln n

(ln n)2/
√

ln ln n
=

(
90.4

e2

)√
ln ln n

= o(1),

inequality (4.2) holds for sufficiently large n. Therefore, by Theorem 4.1, either H or H

contains a (d, n)-common subgraph.

Our important tool will be the Tripartite Lemma proved in Section 4.1. It is an

elaboration of similar lemmas proved in [7], [12] and [15]. The difference from previous

applications is that we have managed to keep some useful properties on all steps of a

procedure. After proving the Tripartite Lemma and a technical lemma, we conclude the

proof of Theorem 4.1 in Section 4.3 by presenting a procedure that, for every graph H

satisfying the conditions of the theorem either in H or in H , finds d + 1 disjoint vertex

subsets Xj1 , . . . , Xjd+1
with the property that each d-tuple of vertices in X ′ =

⋃d+1
i=1 Xji has at

least n common neighbours in X ′. The above-mentioned technical lemma helps to control

the sizes of current sets and their neighbourhoods during the procedure.

4.1. Tripartite lemma

Let G be a graph and let X and Y be two disjoint subsets of G. Then we let e(X,Y )

denote the number of edges of G incident with exactly one vertex from X and one from Y .
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Lemma 4.2. Let G = (V , E) be a tripartite graph with parts X,Y and Z such that |X| = m,

|Y | + |Z | � m2, and suppose that

e(X,Y ) � m|Y |
a

, (4.3)

for some a > 0. Let s and r be positive integers and let α be a positive real number such

that

s ln
m

α
� 2r lnm. (4.4)

Suppose also that |Y | � 2as. Then there exist S ⊂ X and T ⊂ (Y ∪ Z) ∩ N(S) such that

(a) |S | � s,

(b) |T ∩ Y | � 0.5|Y |a−s,

(c) |N(R) ∩ X| � α for every subset R ⊂ T of size r,

(d) |((Y ∪ Z) ∩ N(S)) \ T | � 2as.

Proof. Let x1, . . . , xs be a sequence of not necessarily distinct vertices of X which

we choose uniformly and independently at random, and denote S = {x1, . . . , xs}. The

probability that a given vertex y ∈ Y is in N(S) is (|N(y) ∩ X|/m)s. Thus, using (4.3) and

Jensen’s inequality, we obtain that the expected value of |N(S) ∩ Y | is

∑
y∈Y

(
|N(y) ∩ X|

m

)s

� |Y |
ms

(∑
y∈Y |N(y) ∩ X|

|Y |

)s

=
|Y |
ms

(
e(X,Y )

|Y |

)s

� |Y |
as

.

Let µ(S) denote the number of r-tuples of vertices in (Y ∪ Z) ∩ N(S) having at most α

common neighbours in X. If some r-tuple R ⊂ Y ∪ Z has at most α common neighbours

in X, then the probability that R ⊂ N(S) is at most (α/m)s. Therefore, by (4.4), the

expectation of µ(S) is at most

E
(
µ(S)

)
�

(
|Y | + |Z |

r

)(
α

m

)s

� (m2)r(α/m)s = exp

(
2r lnm − s

(
ln

m

α

))
� 1.

Hence, by linearity, the expectation of |N(S) ∩ Y | − 0.5|Y |a−sµ(S) is at least

|Y |
as

− |Y |
2as

E
(
µ(S)

)
� |Y |

as
− |Y |

2as
= 0.5

|Y |
as

.

Thus there exists a particular choice of S such that |S | � s, and

|N(S) ∩ Y | − 0.5|Y |a−sµ(S) � 0.5|Y |a−s. (4.5)

Fix such a set S and delete a vertex from every r-tuple R ⊂ (Y ∪ Z) ∩ N(S) having fewer

than α common neighbours in X. This produces a set T that together with S satisfies

statements (a) and (c) of the lemma. Next we use (4.5) together with the fact that |Y | � 2as

to conclude that

|T ∩ Y | � |N(S) ∩ Y | − µ(S) � |N(S) ∩ Y | − 0.5|Y |a−sµ(S) � 0.5|Y |a−s.

This implies that T also satisfies statement (b).
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Finally, note that we have deleted at most µ(S) vertices, and (4.5) yields

µ(S) <
|N(S) ∩ Y |
0.5|Y |a−s

� |Y |
0.5|Y |a−s

= 2as.

This proves (d) and completes the proof of the lemma.

Remark. To prove Theorem 4.1 we will use the assertion of this lemma only for a= 2.

Nevertheless we include here the proof of a slightly more general result, since it can be

applied to obtain a multicoloured version of Theorem 4.1.

4.2. A technical lemma

To dispose of boring calculations in the proof of Theorem 4.1, we deal with them in

the present subsection, which can be omitted at first reading. The relations we prove are

routine, but we fix them to be on the safe side. Let d, n and N be the positive integers

which satisfy the conditions of Theorem 4.1, and let t0 = N. For i = 1, 2, . . . , 2d, let us

define inductively integers si, ri, ti, mi and reals αi as follows.

Let

m1 = 
t0/3�, s1 =
⌊
92dd(lnN)2d/(2d+1)

⌋
+ 1, r1 =

⌊
0.5s1(lnN)−1/(2d+1)

⌋
,

t1 =

⌈
N

3
2−s1

⌉
and α1 = m1 exp

(
−(lnN)2d/(2d+1)

)
.

For i = 2, 3, . . . , 2d, let

si = 
0.5ri−1�, ri =
⌊
0.5si(lnN)−1/(2d+1)

⌋
, ti = �N2−s1−s2−···−si3−i,

mi =

⌊
ti−1

3

⌋
and αi = mi exp

(
−(lnN)2d/(2d+1)

)
.

Lemma 4.3. Let the numbers si, ri, ti, mi and αi be defined as above. Then

(p1) ri � 3 · 92d−id(lnN)(2d−i)/(2d+1) and si � 92d+1−id(lnN)(2d+1−i)/(2d+1) for every i, 1 � i �
2d,

(p2)
∑2d

j=i sj <
4si
3

and
∑2d

j=i rj <
4ri
3

for every i, 1 � i � 2d,

(p3) ri −
∑2d

j=i+1 sj � ri
3

for every i, 1 � i � 2d,

(p4) ti > 7n exp
(
(lnN)2d/(2d+1)

)
for every i � 2d,

(p5) ti > 3 · 2si+1 for every i � 2d − 1,

(p6) si
2ri

ln mi

αi
� lnmi for every i � 2d,

(p7) αi −
∑2d

j=i+1 2 · 2sj � n for every i, 1 � i � 2d.

Proof. Since, for every real q � 6, 
 q
2
� � q

3
, it is easy to see that r1 and s1 satisfy (p1).

If (p1) holds for ri and si, it also holds for si+1, since

si+1 = 
0.5ri� � ri

3
� 3 · 92d−id(lnN)(2d−i)/(2d+1)

3

= 92d+1−(i+1)d(lnN)(2d+1−(i+1))/(2d+1),
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and then also for ri+1, since

ri+1 = 
0.5si+1(lnN)−1/(2d+1)�
� 
0.5 · 92d+1−(i+1)d(lnN)(2d+1−(i+1))/(2d+1)(lnN)−1/(2d+1)�

� 92d+1−(i+1)d(lnN)(2d−(i+1))/(2d+1)

3

= 3 · 92d−(i+1)d(lnN)(2d−(i+1))/(2d+1).

To prove (p2), it is enough to observe that ri+1 � 0.5si+1 � 0.5(0.5ri) � 0.5(0.25si) and thus

ri+1 � ri/4 and si+1 � si/4. The same observation together with (p2) proves (p3).

Next, from (4.1), definitions of ti and (p2), it follows that the inequality

ti � t2d � N2−4s1/33−2d > 7n exp
(
(lnN)2d/(2d+1)

)
,

holds if

exp
(
94d(lnN)2d/(2d+1)

)
> 7 · 32d222(4/3)92dd(lnN)2d/(2d+1)

exp
(
(lnN)2d/(2d+1)

)
.

This in turn is true if

94d(lnN)2d/(2d+1) > ln 28 + 2d ln 3 +
(
(4/3)92dd ln 2 + 1

)
(lnN)2d/(2d+1).

Since the last inequality holds for every d � 1, we have (p4). The relation (p5) follows

from (p4) and the facts that si+1 � s1 and that d < 0.1
√

ln ln n.

By the definitions, si � 2ri(lnN)1/(2d+1) and mi

αi
= exp

(
(lnN)2d/(2d+1)

)
. Therefore, to

obtain (p6) note that

si

2ri
ln

mi

αi
� (lnN)1/(2d+1)(lnN)2d/(2d+1) = lnN > lnmi.

Finally, to prove (p7), observe first that the inequalities si+1 � si/4 and d < 0.1
√

ln ln n

yield

2d∑
j=i+1

2 · 2sj � 4 · 2s1 = o(n).

So, it suffices to prove that αi � 2n, which would follow from mi � 2n exp
(
(lnN)2d/(2d+1)

)
.

This, in turn, follows from (p4) and the fact that mi = 
 ti−1

3
�. The lemma is proved.

4.3. Proof of Theorem 4.1

Let the numbers si, ri, ti, mi and αi be as defined in the previous subsection and let H be

a graph which satisfies conditions of Theorem 4.1. We will now construct an auxiliary

graph G using the following procedure.

Step 1. Let T0 =V (H) and let X1 be a subset of V (H) of size m1 and Y1 =T0 − X1.

Define H1 =H if eH (X1, Y1) � m1(N−m1)
2

and H1 =H otherwise. If H1 =H , then we will say
that 1 is an H-number, and otherwise we will say that 1 is an H-number. Let G1 be the

graph with V (G1) = V (H) and E(G1) = EH1
(X1, Y1). Then G1 is a bipartite graph with at

least m1(N−m1)
2

edges between X1 and Y1. Observe that the graph G1, together with the sets

X1, Y1, and Z1 = ∅, satisfies the conditions of Lemma 4.2 with a = 2, s = s1, m = m1 and
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r = r1. This implies that there exist S1 ⊂ X1 and T1 ⊂ Y1 such that:

(a) |S1| � s1,

(b) |T1| = t1,

(c) |X1 ∩ NG1
(R)| � α1 for every R ⊂ T1 of size r1.

Define X1,1 = X1.

Step k (2 � k � 2d). Assume that at step k − 1 we have an auxiliary graph Gk−1, a

decreasing sequence of k sets T0 ⊃ T1 ⊃ · · · ⊃ Tk−1, and a family of k − 1 disjoint vertex

sets X1,k−1, X2,k−1, . . . , Xk−1,k−1 with the following properties.

(i) |Ti| = ti for every i, 1 � i � k − 1.

(ii) Xi,k−1 ⊂ Ti−1 \ Ti for every i, 1 � i � k − 1.

(iii) For every i, 1 � i � k − 1, there is an Si ⊂ Xi,k−1 such that

NGk−1
(Si) ⊃ Ti ⊃ Xi+1,k−1 ∪ · · · ∪ Xk−1,k−1 ∪ Tk−1 and |Si| � si. (4.6)

(iv) For every i, 1 � i � k − 1, and every subset R of the set Uk−1 − Xi,k−1, where Uk−1 =

Tk−1

⋃
∪k−1
j=1Xj,k−1 with |R| � ri −

∑k−1
j=i+1 sj ,

|NGk−1
(R) ∩ Xi,k−1| � αi −

k−1∑
j=i+1

2 · 2sj . (4.7)

(v) For every 1 � i � k − 1, the edges of Gk−1 connecting Xi,k−1 with Ti either all belong

to H or all belong to H .

Note that we have properties (i)–(v) after step 1. Next we will describe step k, and prove

that after step k we will still keep all these properties (with k in place of k − 1).

Let Xk be a subset of Tk−1 of size mk and Yk = Tk−1 − Xk . Define Hk = H if eH (Xk, Yk) �
mk(tk−1−mk)

2
and Hk = H otherwise. If Hk = H , then we will say that k is an H-number, and

otherwise we will say that k is an H-number. Let Gk be the graph with V (Gk) = V (H) and

E(Gk) = E(Gk−1) ∪ EHk
(Xk, Yk). Then Gk is a (k + 1)-partite graph with at least mk(tk−1−mk)

2

edges between Xk and Yk . It follows that the sets X = Xk and Y = Tk−1 − Xk satisfy

condition (4.3) of Lemma 4.2 for a = 2. Now we check that the remaining conditions of

this lemma are satisfied for Z =
⋃k−1

i=1 Xi,k−1, s = sk , m = mk , r = rk , α = αk . Indeed, (p4)

together with the fact that mk = 
 tk−1

3
� yields |Y | + |Z | < N < n2 < m2

k , (p5) yields that

|Y | � 2tk−1/3 > 2 · 2sk , and (p6) yields (4.4).

Thus, by Lemma 4.2, there exist Sk ⊂ Xk and T ⊂ (Y ∪ Z) ∩ NGk
(Sk) such that:

(a) |Sk| � sk ,

(b) |T ∩ Y | � 0.5|Y |2−sk = 0.5(tk−1 − mk)2
−sk � tk−1

3
2−sk � tk ,

(c) |Xk ∩ NGk
(R)| � αk for every R ⊂ T of size rk ,

(d) |((Y ∪ Z) ∩ NGk
(Sk)) \ T | � 2 · 2sk .

Let Tk denote any subset of T ∩ Y of size tk (the existence of such a subset follows

from (b)). Let

Xk,k = Xk and Xi,k = Xi,k−1 ∩ T . (4.8)

Next we check that properties (i)–(v) still hold after this step (with k in place of k − 1).
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The set Tk was chosen to satisfy (i). By construction, Xk,k ⊂ Tk−1, Xk,k ∩ Tk = ∅ and

Xi,k ⊆ Xi,k−1 for every i = 1, . . . , k − 1. This implies (ii). Now (iii) follows from the definition

of Sk , (4.8), and the induction hypothesis.

To check (iv), consider an arbitrary i, 1 � i � k, and R ⊂ Uk − Xi,k with |R| � ri −∑k
j=i+1 sj . If i = k, then |R| � rk , Uk − Xk ⊂ T and (4.7) reads |Xk,k ∩ NGk

(R)| = |Xk ∩
NGk

(R)| � αk , which is true, owing to (c). Let 1 � i � k − 1. Since the sets X1,k−1, . . . , Xk−1,k−1

and Tk−1 are pairwise disjoint, by definition, we have Uk − Xi,k ⊆ Uk−1 − Xi,k−1 for every

i � k − 1. Let R′ = R ∪ Sk . Then |R′| � ri −
∑k−1

j=i+1 sj . By property (iv) of the induction

hypothesis, we have

∣∣NGk−1
(R′) ∩ Xi,k−1

∣∣ � αi −
k−1∑
j=i+1

2 · 2sj . (4.9)

According to (d), Xi,k is obtained from Xi,k−1 ∩ NGk
(Sk) by deleting at most 2 · 2sk vertices.

Hence Xi,k ∩ NGk
(R) is obtained from Xi,k−1 ∩ NGk

(Sk) ∩ NGk
(R) by deleting at most 2 · 2sk

vertices. But Xi,k−1 ∩ NGk
(Sk) ∩ NGk

(R) = Xi,k−1 ∩ NGk
(R′) and therefore, by (4.9),

|Xi,k ∩ NGk
(R)| �


αi −

k−1∑
j=i+1

2 · 2sj


 − 2 · 2sk = αi −

k∑
j=i+1

2 · 2sj .

This implies that (iv) still holds after step k. To finish the proof of this induction step,

note that Xi,k ⊂ Xi,k−1 and that for 1 � i � k − 1 the edges of Gk connecting Xi,k−1 and

Ti either all belong to H or all belong to H . This implies that Xi,k, 1 � i � k − 1 satisfies

(v). Also, from the definition of Hk we conclude that (v) holds for Xk,k as well.

Let X1,2d, . . . , X2d,2d be the disjoint sets obtained after step 2d. Define V0 =
⋃2d

i=1 Xi,2d

and G = G2d. By (iv) and (p7), for every i, 1 � i � 2d and every subset R ⊂ V0 − Xi,2d with

|R| � ri −
∑2d

j=i+1 sj ,

|NG(R) ∩ Xi,2d| � αi −
2d∑

j=i+1

2 · 2sj � n. (4.10)

In addition, observe that, for every i � 2d, by (p3) and (p1) we have

ri −
2d∑

j=i+1

sj � ri/3 � d.

Therefore, in our auxiliary graph G, for every i, 1 � i � 2d, every set of d vertices in

V0 − Xi,2d has at least n common neighbours in Xi,2d.

To finish the proof, observe that the set {1, 2, . . . , 2d − 1}, either contains d H-numbers,

or contains d H-numbers. Without loss of generality suppose that the former holds and

assume that 1 � j1 < · · · < jd � 2d − 1 are some H-numbers. Define jd+1 = 2d. Then the

subgraph G′ of G induced by the set V ′ =
⋃d+1

i=1 Xji,2d is also a subgraph of H .

Let v1, . . . , vd be arbitrary vertices of G′. Since the sets Xji,2d are disjoint and there are

d + 1 of them, there is an index jk such that v1, . . . , vd �∈ Xjk,2d. Therefore, by (4.10), the

number of common neighbours of v1, . . . , vd in Xjk,2d and thus also in graph G′ is at least n.
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This implies that G′ is a (d, n)-common subgraph of H , and completes the proof of the

theorem.

5. Concluding remarks

(1) Note that, for sufficiently large n, the proof of Theorem 2.2 gives nearly linear

bounds on N not only for fixed d and c. Indeed, if d and c are functions of n satisfying

d ln3(1/c) = o(ln n), then the bound on N in (2.1) is still n1+o(1). This implies the following

two conclusions of independent interest.

First, repeating the proof of Corollary 2.3, we observe that in any colouring of edges of

the complete bipartite graph KN,N with a colours, some colour is used on at least N2/a

edges. Applying Theorem 2.2 and the previous remark to the graph spanned by the edges

of the majority colour, we obtain the following extension of Corollary 2.3.

Corollary 5.1. Let d and a be integer-valued functions of n such that d ln3 a = o(ln n). Then,

for every family of bipartite d-degenerate graphs G1, . . . , Ga of order n, the Ramsey number

r(G1, . . . , Ga) is n1+o(1).

Second, note that, for fixed c, the condition d ln3(1/c) = o(ln n) is equivalent to d =

o(ln n). In particular, we obtain that the Ramsey number r(G,G) of each d-degenerate

bipartite graph G of order n is still n1+o(1) even when d is as large as ln n/w(n), where

w(n) tends to infinity arbitrarily slowly together with n. This bound is nearly tight. For

example, if d = 3 log2 n then the random colouring of Kn3/2 , where the colour of every

edge is chosen independently with probability 1/2, does not contain monochromatic Kd,d.

Therefore the Ramsey number of Kd,d is at least n3/2.

(2) The proof of Theorem 1.4 shows that d can also grow, with n still keeping the bound

on N as n1+o(1), but in the general case the restrictions on d are much stronger than in

the bipartite one. Here d must grow no faster than
√

ln ln n. It would be interesting to

determine how large d can be, as a function of n, such that the assertion of Theorem 1.4

still holds.

(3) Using the Tripartite Lemma for a > 2, we can generalize Theorem 4.1 to edge

colourings of KN with a colours. In this more general case the structure of the proof will

remain the same, only the procedure in Section 4.3 will have ad steps, and the formulas

will become somewhat uglier. We obtain that, for a and d which grow sufficiently slowly

with n, in every a-colouring of edges of Kn1+o(1) there will be a monochromatic (d, n)-

common graph. This immediately implies the corresponding bound on Ramsey number

r(G1, . . . , Ga) for every family of d-degenerate graphs of order n.

(4) Finally, note that Theorem 2.2 is a Turán-type theorem, but Theorem 1.4 is a Ramsey-

type theorem. It is easy to see that it is not enough to have restrictions only on average

degree of the whole graph to guarantee the conclusion of Theorem 1.4. Indeed, the

complete bipartite graph KN,N has average degree N but does not contain triangles. On

the other hand we can prove the following quasi-Turán-type analogue of Theorem 1.4.
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Proposition 5.2. For every ε > 0 and positive integers d and a, there exists n0 = n0(ε, d, a)

such that, for every n > n0, the following holds. Let H be a graph of order n1+ε in which

every induced subgraph on k � 8n vertices has at least 1
a

(
k
2

)
edges. Then H contains a (d, n)-

common subgraph.

Acknowledgement

We thank a referee for helpful comments.

References

[1] Alon, N. (1994) Subdivided graphs have linear Ramsey numbers. J. Graph Theory 18 343–347.

[2] Alon, N. and Spencer, J. (2000) The Probabilistic Method, 2nd edn, Wiley, New York.
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[7] Duke, R. A., Erdős, P. and Rödl, V. Intersectionresults for small families. To appear in Random

Struct. Alg.

[8] Eaton, N. (1998) Ramsey numbers for sparse graphs. Discrete Math. 185 63–75.
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