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Abstract

The paper discusses the current status of bounds on the chromatic number
of the intersection graphs of certain types of geometric figures with given clique
number or girth. The families under consideration are boxes in Rn, intervals in
the plane, chords of a circle, and tranlates of a compact convex set. A couple
of new results fitting in the picture are proved.

1 Introduction

The intersection graph G of a family F of sets is the graph with vertex set F where two
members of F are adjacent if and only if they have common elements. Intersection
graphs of geometric figures of special kinds can be interesting both from geometric
and graph-theoretic points of view.

One of reasonable questions to ask about a family F of graphs is: What is the
maximum chromatic number χ(F , k) over graphs in F with clique number at most
k? Although, as Erdős [12] observed, in general, there are graphs of arbitrarily large
girth with arbitrarily high chromatic number, for several interesting families F of
graphs the function χ(F , k) is well defined. Sometimes, it makes sense to study how
high the chromatic number of graphs in a family F with a given girth may be. In
this case, somewhat artificial notation will be used: for a positive integer k, χ(F ,−k)
will denote the maximum chromatic number of graphs in F with girth at least k. In
particular, χ(F ,−4) = χ(F , 2).

Studying functions χ(F , k) and χ(F ,−k) for families of intersection graphs of
geometric figures and their complements was stimulated by seminal papers of Asplund
and Grünbaum [5] and Gyárfás and Lehel [23, 25].

∗This work was partially supported by the NSF grant DMS-0099608 and by grants 02-01-00039
and 00-01-00916 of the Russian Foundation for Basic Research.
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The aim of this paper is to discuss the status of problems on χ(F , k) and χ(F ,−k)
for some interesting families of intersection graphs of geometric figures and their
complements. For several of them, also the function φ(F , k)—the minimum d such
that every graph G ∈ F with clique number at most k is d-degenerate—is discussed.
Recall that a graph G is d-degenerate if every subgraph H of G has a vertex v of
degree at most d in H. The reason to consider φ(F , k) is that every d-degenerate
graph is (d+1)-colorable, and moreover, ‘easily (d+1)-colorable’: the vertices of any
d-degenerate graph can be ordered v1, v2, . . . in such a way that for every i the vertex
vi has at most d neighbors among v1, v2, . . . , vi−1, and we can color the vertices of
such a graph one by one greedily. In particular, every d-degenerate graph is (d + 1)-
list-colorable and φ(F , k) ≥ χ(F , k)− 1.

Analogously to χ(F ,−k), for a positive integer k, φ(F ,−k) is the minimum d
such that every graph in F with girth at least k is d-degenerate.

Essentially, the paper discusses the intersection graphs of the following four fam-
ilies: boxes, intervals in the plane, chords of a circle, and equal figures (without
rotation), a section for each. The final section describes applications of previous
results to Ramsey type problems for the intersection graphs of geometric figures.

2 Boxes

A box in an n-dimensional space with given axes is a parallelepiped with sides parallel
to the axes. Let Bn denote the family of the intersection graphs of boxes in the
Euclidean n-dimensional space. Clearly, B1 is the family of the interval graphs.
Therefore, for every k, χ(B1, k) = φ(B1, k) + 1 = k.

Bielecki [7] asked in 1948 whether χ(B2, 2) is finite. Asplund and Grünbaum
[5] not only proved that χ(B2, k) is finite for every k, but found the exact value
of χ(B2, 2): it is 6. The construction proving the lower bound is very nice. The
proof of finiteness of χ(B2, k) implies the bound χ(B2, k) ≤ 4k2 − 3k. Hendler [26]
improved the bound to χ(B2, k) ≤ 3k2 − 2k − 1. The best known lower bound is
linear: χ(B2, k) ≥ 3k. The gap between the upper and lower bounds is challenging.
Even improving the constant factor in the lower bound is interesting.

The situation with higher dimensions is quite different. Burling [8] constructed
triangle-free graphs in B3 with arbitrarily high chromatic number. This means that
χ(Bn, k) = ∞ for every n ≥ 3 and k ≥ 2.

Since every complete bipartite graph is in B2, we have φ(B2, 2) = φ(B2,−4) = ∞.
But imposing stricter restrictions on girth of graphs in B2 leads to finite upper bounds
on degeneracy. Perepelitsa and I [38] proved that φ(B2,−6) = 3 and φ(B2,−8) =
2. This yields χ(B2,−6) ≤ 4 and χ(B2,−8) = 3. Then Glebov [20] proved that
φ(B2,−7) = 3 and φ(B2,−5) = 4. The last bound implies that χ(B2,−5) ≤ 5 which
is less than χ(B2,−4) mentioned above.

The value of χ(Bn,−5) should be finite for every n, but I do not know whether
anybody proved such bounds. It is likely that φ(Bn,−5) is also finite for every n.
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Gyárfás and Lehel [25] studied how few points are sufficient to pierce any family
of boxes in the plane that has no k +1 pairwise disjoint members. Since every family
of boxes possesses Helly property, this is equivalent to finding how few cliques are
sufficient to cover the vertices of any intersection graph of boxes in the plane with the
independence number at most k. In other words, this is equivalent to determining
χ(B2, k), where Bn is the family of complements of the intersection graphs of boxes
in the Euclidean n-dimensional space.

Gyárfás and Lehel [25] proved that b3k/2c ≤ χ(B2, k) ≤ k(k − 1)/2. Then
Beck [6] improved the upper bound to ck log2 k and Károlyi [30] further improved and
generalized the bound to χ(Bn, k) ≤ (1 + o(1))k logn−1 k. Fon-Der-Flaass and I [15]
applied an idea of Gyárfás and Lehel of moving some hyperplane into an extremal
position to give a simple proof of a slight refinement of the Károlyi’s bound:

χ(Bn, k) ≤ k logn−1
2 k + n− 0.5k logn−2

2 k for n ≥ 2. (1)

We also showed that c
√

n/ log n ≤ χ(Bn, 2) ≤ n + 1 for every n and that χ(Bn, 2) =
n + 1 for n ≤ 4. The asymptotic behavior of χ(Bn, 2) for n → ∞ is not clear. It is
possible that χ(Bn, 2) = o(n).

The lower bound χ(B2, k) ≥ b3k/2c was improved in [15] to b5k/3c. The main
unsettled question here is whether χ(B2, k) is superlinear or not. Even better constant
factors at k in the lower bound would be interesting. Fon-Der-Flaass [14] proved that
if the ratios of the length and height of boxes in a family are bounded from below
and above by positive constants c1 and c2, then the chromatic number of a graph of
this family is at most C k, where C depends on c1 and c2.

Similarly to B2, every complete bipartite graph is in B2, and hence φ(B2, 2) =
φ(B2,−4) = ∞. It seems that φ(B2,−k) for k ≥ 5 was not considered before. Below,
the idea of an extremal hyperplane mentioned above is applied to settle this question.
But first, consider the following simple lemma.

Lemma 1 Let H be the complement of an interval graph. If the girth of H is at
least five, then
(a) H is bipartite;
(b) H does not contain any path of length 4;
(c) H is acyclic.

Proof. Let F be a family of closed intervals on the X-axis such that the comple-
ment H of the intersection graph of F has girth at least five. Then H has a transitive
orientation. Any transitive orientation of a non-bipartite graph has a transitively ori-
ented triangle. Since H has girth at least five, this proves (a).

Suppose H has a path (x0, x1, x2, x3, x4), where xi corresponds to the interval
Xi = [li, ri] ∈ F , i = 0, . . . , 4. By (a) and the girth condition, the sets {x0, x2, x4}
and {x1, x3} are independent in H. Therefore, the intervals X0, X2, and X4 have a
common point, say p0, and the intervals X1 and X3 have a common point, say p1.
We may assume that p0 < p1 and that l1 ≤ l3. Since X2 is disjoint from both X1 and
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X3, p0 < l1 ≤ l3 ≤ p1. Since X0 meets X3, we have p0 ≤ l3 ≤ r0. But then X0 meets
X1, a contradiction. This proves (b). Now (a) and (b) together yield (c).

Theorem 1 φ(B2,−k) = 1 for k ≥ 7 and φ(B2,−5) = φ(B2,−6) = 2.

Proof. First, observe that the complement of the intersection graph of the family
F0 of the 6 squares with the sides of length 6 parallel to the axes of the Cartesian plane
whose set of centers is {(0, 5), (0,−5), (5, 0), (−5, 0), (2,−2), (−2, 2)} is the cycle of
length 6. This proves that φ(B2,−5) ≥ φ(B2,−6) ≥ 2.

Now, assume that one of the upper bounds is false. This means that there exists a
family F = {Bi}s

i=1 of closed boxes in the Cartesian plane such that the complement
H of the intersection graph of F either is a Ck for some k ≥ 7 or has minimum degree
3 and girth at least 5. Every Bi is defined by the quadruple {li, ri, bi, ti}, where li and
ri (respectively, bi and ti) are the lowest and the highest X-coordinates (respectively,
Y -coordinates) of the points in Bi. One can always choose an F such that all li, ri,
bi, and ti are distinct. Order the boxes in F so that r1 < r2 < . . . < rs. Consider the
line x = r2. If there are i1 and i2 such that li1 > r2 and li2 > r2, then the subgraph of
H induced by the vertex set {B1, B2, Bi1 , Bi2} contains the 4-cycle (B1, Bi1 , B2, Bi2),
a contradiction. Hence the line x = r2 meets all members of F apart from B1 and
maybe a box Bi1 on the right of it. Thus, B1 and Bi1 (if exists) are adjacent in H.

The intersection graph of F − B1 − Bi1 is the same as the intersection graph of
the intersections of the members of F − B1 − Bi1 with the line x = r2, which is an
interval graph. By Lemma 1(c), every component M of H − B1 − Bi1 has a vertex
vM of degree at most 1, so that if the minimum degree of H is at least 3, then both
B1 and Bi1 are adjacent to vM in H. Then H has a triangle, a contradiction. Finally,
if H is a cycle, then H − B1 − Bi1 is a path, and by Lemma 1(b), has at most 4
vertices. This proves the theorem.

3 Intervals and rays in the plane

Let I and R be the families of the intersection graphs of intervals and rays in the
plane, respectively. Erdős (see e.g. [25]) asked whether χ(I,−4) is finite. Kratochv́ıl
and Nešetřil asked the same question for the family S of the intersection graphs of
curves in the plane such that the intersection of every two of them is a connected
curve (possibly empty of consisting of a single point). The answers to both questions
are unknown. There are triangle-free graphs in I with chromatic number 8. It follows
from recent results of McGuinness [40, 41] that χ(R, 2) < ∞ and that if the ratio of
the longest interval to the shortest in a family of intervals in the plane is bounded
by a constant c, then the chromatic number of the intersection graph of this family
is bounded by a function of c.

Similarly to the situation with the boxes, the graphs in S with girth at least 5
have bounded degeneracy. It is proved in [36] that φ(S,−k) < 2(k − 2)/(k − 4) for
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k > 4. In particular, φ(S,−5) ≤ 5 and φ(S,−8) = 2. Since R ⊂ I ⊂ S, the upper
bounds on φ(S,−k) above are also bounds on φ(I,−k) and φ(R,−k). But for R,
we can say more. It is proved in [36] that φ(R,−5) ≤ 3 and φ(R,−6) = 2.

For a positive integer m, let Im and Rm be the families of the intersection graphs
of intervals and rays in the plane, respectively, parallel to m given directions. Clearly,
χ(Rm, k) ≤ χ(Im, k) ≤ mk for every m and k. It is a bit surprising that for m = 2
we have here equality for even k and that the values for I2 and R2 are the same. It
is proved in [37] that

χ(R2, k) = χ(I2, k) =

{
2k, if k is even;

2k − 1, if k is odd.

The lower bound uses a modification of the Asplund–Grünbaum construction [5].
Again, all complete bipartite graphs are in R2, and hence φ(R2, 2) = ∞.

4 Circular arc graphs and circle graphs

Let A be the family of the intersection graphs of arcs of a circle. Although, every
graph in A is not far from an interval graph (deleting from a graph G ∈ A a clique
corresponding to arcs containing a given point on the circle leaves a subgraph of
G that is an interval graph), finding chromatic number of graphs in A is an NP -
complete problem [17]. Tucker [45] conjectured that χ(A, k) = b3k/2c, and this was
proved by Karapetian [27]. With the family A of the complements to graphs in A
the situation is simpler. Gavril [19] proved that χ(A, k) = k + 1 for k ≥ 2.

A graph is a circle graph, if it is the intersection graph of a family of chords
of a circle. Circle graphs are also known as overlap graphs. They arise in many
combinatorial problems ranging from sorting problems to studying planar graphs to
continous fractions (see, e.g. [21, 16]). In particular, for a given permutation P of
{1, 2, . . . , n}, the problem of finding the minimum number of stacks needed to obtain
the permutation {1, 2, . . . , n} from P reduces to finding the chromatic number of a
corresponding circle graph [13, 21].

Let X be the family of the circle graphs, and X be the family of their complements.
The clique number and the independence number of a circle graph can be found in
polynomial time [18, 21], but the problem of finding the chromatic number of such
graphs is NP -complete [17], and the complexity of finding the chromatic number of
their complements is unknown. This adds more attraction to finding χ(X , k) and
χ(X , k).

The situation with χ(X , k) is more or less clear. It is proved in [34] that

χ(X , k) ∼ k ln k, (2)

and the upper bound on χ(X , k) differs from the lower one by less than 5k/12.
Certainly, one can try to find the exact values of the function, but the formula is
likely a bit complicated.

5



The problem of finding χ(X , k) seems more difficult. Karapetian [28, 29] proved
that 4 ≤ χ(X , 2) ≤ 8. Then it was proved in [34] that χ(X , 2) ≤ 5 and Ageev [2]
constructed triangle-free circle graphs with chromatic number equal to 5. For general
k, Gyárfás [24] proved that χ(X , k) ≤ 2k(2k − 2)k2. His idea was elaborated in [34]
to prove that χ(X , k) ≤ 2kk2(k− 1), and then in [35] to prove that χ(X , k) ≤ 50 · 2k.
The only known non-linear lower bound (see [34]) is χ(X , k) ≥ 0.5k(ln k − 2). Since
there were claims (e.g., [46]) that χ(X , k) grows linearly, and the construction proving
the lower bound was published only in Russian, this construction is described in the
last section. Anyway, the gap between the exponential upper bound and the barely
super-linear lower bound is truly challenging.

As in most of the previous cases, the complete bipartite graphs are in X , and so
φ(X ,−4) = ∞. Ageev [3] proved that φ(X ,−k) = 2 for every k ≥ 5.

In fact, the upper bound 50·2k was proved in [35] for chromatic number of polygon-
circle graphs, i.e., intersection graphs of polygons inscribed in a circle. The class PC
of such graphs includes all circular arc graphs and all minors of circle graphs. No
lower bound on χ(PC, k) better than k log k is known.

5 Translates of a compact convex set

Recently, the problem of coloring intersection graphs of translates of a plane figure
attracted some attention. Akiyama, Hosono, and Urabe [4] considered χ(Cn, k),
where Cn is the family of the intersection graphs of unit cubes in the n-dimensional
Euclidean space with sides parallel to the axes. This family is a part of the family
Bn of the intersection graphs of boxes in Rn discussed above. They proved that
χ(C2, 2) = 3 and asked about χ(C2, k), and more generally about χ(Cn, k).

In connection with the channel assignment problem in broadcast networks, Clark,
Colbourn, and Johnson [10] and Gräf, Stumpf, and Weißenfels [22] considered color-
ings of graphs in the class U of intersection graphs of unit disks in the plane. They
proved that finding the chromatic number of graphs in U is an NP -complete problem.
In [22, 44], and [43] polynomial approximation algorithms are given implying that
χ(U , k) ≤ 3k− 2. Perepelitsa [44] also considered intersection graphs of translates of
triangles and boxes in the plane as well as the more general family T of intersection
graphs of translates of a fixed convex compact figure in the plane. She proved that
φ(T , k) ≤ 8k − 8 which implies that χ(T , k) ≤ 8k − 7.

Kim, Nakprasit, and I [32] improved Perepelitsa’s bound to

φ(T , k) ≤ 3k − 3 for k ≥ 2. (3)

The bound (3) on degeneracy is sharp. In [32], for every k ≥ 2 we present the
intersection graph G of a family of unit circles in the plane with ω(G) = k that is not
(3k − 4)-degenerate. It is not clear whether the bound χ(T , k) ≤ 3k − 2 implied by
(3) is sharp or not. The best construction known to us gives only χ(T , k) ≥ d5k/4e.
My feeling is that 3k − 2 is not a sharp bound for χ(T , k).
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We made use of the following old result of Minkowski.

Lemma 2 (Minkowski [42]) Let K be a convex set in the plane. Then (x + K) ∩
(y + K) 6= ∅ if and only if (x + 1

2
[K + (−K)]) ∩ (y + 1

2
[K + (−K)]) 6= ∅.

Since 1
2
[K + (−K)] is always a centrally symmetric set, it is enough to prove the

upper bound only for centrally symmetric sets.
The idea of the proof of (3) also allows to estimate the maximum degree of any

graph in T with a given clique number. Namely, it is proved in [32] that the maximum
degree of each graph in T with clique number k, k ≥ 2, is at most 6k−7. This bound
is also sharp and it helps to prove the bound

φ(D, k) ≤ 6k − 7 (4)

for the more general family D of homothetic copies of a fixed convex compact set in
the plane. In other words, every graph in D is an intersection graph of planar figures
obtained by translating, shrinking, and blowing up of a given convex compact set in
the plane. We do not know whether the bound 6k − 7 is sharp.

One can consider the more general families Tn of intersection graphs of translates
of a convex compact figure in Rn. It is probably harder to find the exact values of
φ(Tn, k) if n ≥ 3, but one can get linear upper bounds for every fixed n. One of
the possible approaches is described in the rest of this section. In fact, after this
survey was submitted, Kim and Nakprasit [33] found linear (in k) upper bounds
(depending on n) for χ(T n, k), where T n is the class of complements of graphs in Tn.
In particular, they proved that χ(T 2, k) ≤ 3k − 2.

The next lemma is so simple that it does not need a proof, but is quite helpful.

Lemma 3 If M = {Mi}s
i=1 is a family of compact convex centrally symmetric sub-

sets of Rn and f is a non-singular linear transformation of Rn, then the family
{f(Mi)}s

i=1 is also a family of compact convex centrally symmetric subsets of Rn,
and the intersection graphs of M and {f(Mi)}s

i=1 are the same.

For M ⊂ Rn, let r(M) denote the maximum radius of a ball inscribed into M .

Lemma 4 If M ⊂ Rn, centrally symmetric with respect to the origin O, has r(M) >
0, then there exists a non-singular linear transformation f of Rn such that r(f(M)) =
1 and the boundary of f(M) contains n linearly independent points v1, . . . , vn ∈ Rn

with |v1| = |v2| = . . . = |vn| = 1.

Proof. Let M1 = 1
r(M)

M . Then r(M1) = 1 and the boundary of M1 (by the

definition of r(M)) contains a point v1 with |v1| = 1.
Suppose that for some m, 1 ≤ m < n, there is a non-singular linear transforma-

tion fm of Rn such that r(fm(M)) = 1 and the boundary of fm(M) contains m lin-
early independent points v1, . . . , vm ∈ Rn with |v1| = |v2| = . . . = |vm| = 1. A way to
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construct fm+1 is as follows. If any vector v on the boundary of fm(M), linearly inde-
pendent of v1, . . . , vm, has length 1, then we let vm+1 = v and fm+1 = fm. Otherwise,
choose an arbitrary basis {v1, . . . , vm, wm+1, . . . , wn} in Rn containing v1, . . . , vm. For
α > 0, let hα be the linear transformation of Rn moving every vector with coordi-
nates (x1, . . . , xn−1, xn) into the vector with coordinates (x1, . . . , xn−1, αxn). Let α0

be the minimum α > 0 such that r(hα(fm(M))) = 1. By the definition, hα does
not change vectors that are linear combinations of v1, . . . , vm. Therefore, α0 < 1 and
there is some v on the boundary of fm(M) linearly independent of v1, . . . , vm such
that |hα0(v)| = 1. Thus, one can take fm+1 = hα0(fm) and vm+1 = v.

Repeating this procedure until m = n yields the lemma.

The next statement is auxiliary here, but maybe can be used in other situations,
so it is stated as a theorem.

Theorem 2 For every family M of translates of a compact convex set M in Rn

with r(M) > 0, there exists a family F of translates of a compact convex set F in
Rn with the same intersection graph and such that
(a) F is centrally symmetric w.r.t. the origin O;
(b) F contains the ball of radius 1 with the center O;
(c) F is contained in the cube {(x1, . . . , xn) : −1 ≤ xi ≤ 1, i = 1, . . . , n}.

Proof. Let M be a family of translates of a compact convex set M in Rn with
r(M) > 0. The set M1 = 0.5(M −M) is centrally symmetric and, by Lemma 2, the
family M1 of translates of M1 by the same shifts has the same intersection graph.
Also, if r(M) > 0, then r(M1) > 0.

Now, by Lemmas 3 and 4, there exists a family M2 with the same intersection
graph, where M2 is the family of translates of an M2 ⊂ Rn, centrally symmetric
with respect to the origin O, such that r(M2) = 1 and the boundary of M2 contains
n linearly independent points v1, . . . , vn ∈ Rn with |v1| = |v2| = . . . = |vn| =
1. Applying a linear transformation of Rn that maps vectors v1, . . . , vn into the
vectors of an orthonormal basis of Rn, we come to a family M3 that is the family
of translates of an M3 ⊂ Rn satisfying (a) and (b) and such that in an Euclidean
system of coordinates in Rn, the vectors (1, 0, 0, . . . , 0), . . ., (0, 0, . . . , 0, 1) belong to
the boundary of M3.

Assume that a point (x1, . . . , xn) with x1 > 1 is in M3. Consider the plane P
containing (x1, . . . , xn), (1, 0, 0, . . . , 0), and O. Since r(M3) = 1, the circle C of radius
1 with the center O in P is a part of M3 and hence the convex hull of C∪{(x1, . . . , xn)}
is also a part of M3. Since x1 > 1, some of the two tangents to C containing
(x1, . . . , xn) crosses the line x2 = x3 = . . . = xn = 0 at a point (β, 0, 0, . . . , 0) with
β > 1. Then (β, 0, 0, . . . , 0) ∈ M3 and hence the point (1, 0, 0, . . . , 0) is an inner point
of M3. This contradicts the fact that (1, 0, 0, . . . , 0) is on the boundary of M3. Thus,
(c) is proved.

The message of Theorem 2 is that to bound φ(Tn, k) from above, it is enough to
consider only translates of sets satisfying the conditions (a)–(c) of this theorem.
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The following folklore lemma is instrumental.

Lemma 5 Let M be a centrally symmetric convex subset of Rn. Then for any trans-
lates M1, M2, and M3 of M , if the centers of M2 and M3 are in M1, then M2 and
M3 have a common point. In other words, the intersection graph of translates of M
with centers in M1 is a clique.

Proof. Let ci be the center of Mi, i = 1, 2, 3. Let sj = cj − c1, j = 2, 3.
Since cj ∈ M1, j = 2, 3, we have ci + sj ∈ Mi for i = 1, 2, 3 and j = 2, 3. But
c1 + s2 + s3 = c2 + s3 = c3 + s2 and hence c1 + s2 + s3 ∈ M2 ∩M3.

Now we are ready to prove

Theorem 3 Let M be a family of translates of a compact convex set M in Rn

such that the clique number of the intersection graph H of M is k. Then the maxi-
mum degree of H is at most d2

√
nen(k − 1). The minimum degree of H is at most

d
√

ned2
√

nen−1(k − 1).

Proof. If r(M) = 0, then since M is convex, the problem simply reduces to a
smaller dimension. Thus, we may assume that r(M) > 0 and hence consider only
families F satisfying conditions (a)–(c) of Theorem 2. Let F be a member of F . For
convenience, we assume that the center of F is the origin O. Let L be the set of
centers of members of F intersecting F . By Theorem 2(c), every point of L belongs
to the cube Y = {(x1, . . . , xn) : −2 ≤ xi ≤ 2, i = 1, . . . , n}.

By Lemma 5, to prove the first statement of the theorem, it is enough to cover
Y with d2

√
nen translates of F . Clearly, Y can be covered by that many cubes

with side 2/
√

n. Every cube with side 2/
√

n is a part of a ball of radius 1, and by
Theorem 2(b), F contains such a ball. This proves the first statement of the theorem.

To prove the second statement, observe that if F0 is a member of F whose center
has the largest first coordinate, then the centers of the members of F intersecting F0

are all in a box of size 2 × 4 × 4 × . . . × 4. Thus, it is enough to cover this box by
d
√

ned2
√

nen−1(k − 1) cubes with side 2/
√

n.

Note that the theorem implies φ(Tn, k) ≤ d
√

ned2
√

nen−1(k − 1). In particular,
we get φ(T2, k) ≤ 6(k − 1) which is worse than the bound in [32], but better than
that in [44]. On the other hand, the idea in [32] deriving a bound on the degeneracy
of intersection graphs of homothetic copies of a convex plane figure from the bound
on the maximum degree of intersection graphs of translates of a convex plane figure
applies here. Thus, Theorem 3 yields the following fact.

Theorem 4 Let M be a family of homothetic copies of a compact convex set M in
Rn such that the clique number of the intersection graph H of M is k. Then the
minimum degree of H is at most d2

√
nen(k − 1).

Certainly, the maximum degree of the graph H in Theorem 4 is not bounded.
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6 Ramsey questions

For a positive integer n and a class F of graphs, let ρ(F ; N) denote the maximum m
such that each graph G ∈ F on N vertices has either a clique or an independent set
of size at least m. Because of the symmetry between cliques and independent sets,
if F is the family of complements of graphs in F , then

ρ(F ; N) = ρ(F ; N) for every N. (5)

The classical bounds of Erdős say that c1 log2 N ≤ ρ(G; N) ≤ c2 log2 N for the class
G of all finite graphs. For many classes F of intersection graphs of geometric figures,
the order of magnitude of ρ(F ; N) is larger than logarithmic. Larman, Matoušek,
Pach, and Törőcsik [39] proved that for the family P of intersection graphs of convex
compact sets in the plane, ρ(P , N) ≥ N0.2. On the other hand, Károlyi, Pach, and
Tóth [31] showed that ρ(P , N) ≤ N0.4207.

There is an interplay between bounds on ρ(F ; N) and on χ(F , k) and χ(F , k).
For example, suppose that χ(F , k) ≤ f(k). Then every graph G ∈ F on N vertices
with clique number k has an independent set of size at least N/f(k). Therefore,

ρ(F ; N) ≥ min
1≤k≤N

max{k,
N

f(k)
}. (6)

Thus, the bound (1) together with (6) and (5) gives

ρ(Bn; N) ≥ min
1≤k≤N

max{k,
N

k logn−1
2 k

} ≥
√

2N(log2 N)−(n−1)/2.

Similarly, (2) yields

ρ(X ; N) ≥ min
1≤k≤N

max{k,
N

(1 + o(1))k ln k
} ≥ (1 + o(1))

√
2N/ ln N,

and (4) yields

ρ(D; N) ≥ min
1≤k≤N

max{k,
N

6k − 6
} ≥

√
6N.

On the other hand, if one proves that ρ(F ; N) ≤
√

N/g(N), for some monotone

non-decreasing function g(N) ≥ 1, then χ(F , k) ≥ k g(k2). In the rest of the section,
for every m ≥ 2, a circle graph G(m) will be constructed such that

(i) |V (G(m))| ≥ 2m(2m + 1)(−2 + ln 4(m + 1));
(ii) the independence number, α(G(m)), of G(m) is at most 2m;
(iii) the clique number, ω(G(m)), of G(m) is at most 4m− 2.

This series of graphs witnesses that for infinitely many N , ρ(X ; N) ≤ 4
√

N/ ln N ,

and for infinitely many k, χ(X , k) ≥ 0.5k(ln k − 2) and χ(X , k) ≥ 0.5k(ln k − 1.5).

10



It was mentioned that a graph G is a circle graph if and only if it is an overlap
graph, i.e., a graph whose vertex set is a family F of intervals on the real line and two
intervals are adjacent in G iff they have a common point but none of them contains
the other. We will consider the overlap graph of the family of open intervals described
in the next paragraph1.

The open (respectively, closed) interval with ends a and b will be denoted by ]a, b[
(respectively, [a, b]). For i = 1, . . . ,m, let

F(i, m) = { ]j, j + 2im + 1[ : j = 0, i, 2i, . . . , (b2m(2m + 1)/ic − 2m)i},

and let F(m) =
⋃m

i=1F(i, m). Then

|F(m)| =
m∑

i=1

(⌊
2m(2m + 1)

i

⌋
− 2m + 1

)
≥

m∑
i=1

(
−2m +

2m(2m + 1)

i

)
≥

≥ 2m(2m + 1)

(
−1

2
+

m∑
i=1

1

i

)
≥ 2m(2m + 1) (−0.5 + ln(m + 1)) ≥

≥ 2m(2m + 1) (−0.5 + ln 4(m + 1)− ln 4) .

This proves (i).
Recall that independent sets in the overlap graph of a family F correspond to non-

overlapping subfamilies of F , i.e. to the families of intervals where no two members
overlap.

Lemma 6 Let j be a non-negative integer and s be a positive integer. Let F ′ be
a non-overlapping subfamily of F(m) such that every member of F ′ is contained in
[j, j + s]. Then
(a) |F ′| ≤ s−1

2m
;

(b) if ]j, j + s[/∈ F ′ and s ≥ 2, then |F ′| < s−1
2m

.

Proof. We use induction on s. If s ≤ 2m + 1, then the statement is evident.
Suppose that the lemma is proved for all s < s0 and for an arbitrary j consider a
non-overlapping subfamily F ′ of the family F(m) such that all members of F ′ are
contained in [j, j + s0]. Let j1 be the leftmost left end of an interval in F ′ and let
I1 =]j1, j1 + 2mi1 + 1[ be the longest interval in F ′ with the left end j1. If j1 > j,
then by the choice of s0,

|F ′| ≤ (j + s0)− j1 − 1

2m
<

s0 − 1

2m
.

Thus, j1 = j.

1All the figures considered before were closed figures, but for every finite family of open intervals,
there exists another family of closed intervals with the same overlap graph.
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CASE 1. s0 > 2mi1 + 1. Since j + 2mi1 + 1 is the right end of I1, it is not an
internal point of any interval in F ′. Hence F ′ is the disjoint union of F ′

1 and F ′
2,

where

F ′
1 = {]a, b[∈ F ′ : b ≤ j + 2mi1 + 1} and F ′

2 = {]a, b[∈ F ′ : a ≥ j + 2mi1 + 1}.

By the induction hypothesis, |F ′
1| ≤ 2mi1

2m
and |F ′

2| ≤ s0−2mi1−1−1
2m

. Hence |F ′| ≤
s0−2
2m

< s0−1
2m

.
CASE 2. s0 = 2mi1 + 1. Consider F ′′ = F ′ − {I1}. Then we have Case 1, and

hence by (b),

|F ′′| < s0 − 1

2m
= i1.

It follows that |F ′′| ≤ i1 − 1 and thus |F ′| ≤ i1 = s−1
2m

.

Lemma 7 The cardinality of each non-overlapping subfamily of F(m) is at most
2m. In other words, α(G(m)) ≤ 2m, that is, (ii) holds.

Proof. Let F ′ be a non-overlapping subfamily of F(m). Observe that the union
of all members of F(m) is the interval ]0, 2m(2m + 1) + 1[ and this interval is not in
F(m). Hence by Lemma 6(b),

|F ′| < 2m(2m + 1) + 1− 1

2m
= 2m + 1.

This yields the lemma.

Lemma 8 If every two members of a family F ′ ⊂ ⋃m
i=tF(i, m) overlap and the right

ends of all members of F ′ belong to ]a, b], then b− a ≥ t|F ′| − (t− 1)(m− t + 1).

Proof. Let F ′ = {]ai, bi[ : i = 1, . . . , s}, where bi = ai + 2mli + 1, i = 1, . . . , s.
Since every two members of F ′ overlap, we can number them so that

a < a1 < a2 < . . . < as < b1 < . . . < bs ≤ b.

We need to estimate bs − a. By induction on i, we show that

bi − a ≥ it− (t− 1)(m− li + 1). (7)

For i = 1, (7) becomes b1 − a ≥ t− (t− 1)(m− l1 + 1). Since li ≤ m for every i,

t− (t− 1)(m− l1 + 1) ≤ t− (t− 1) = 1.

But b1 − a ≥ 1 since b1 ∈]a, b]. Suppose now that (7) is proved for every i ≤ i0 − 1.
CASE 1. li0 ≤ li0−1− 1. Then bi0 − a ≥ 1+ bi0−1− a ≥ 1+ (i0− 1)t− (t− 1)(m−

li0−1 + 1) ≥ 1− t + i0t− (t− 1)(m− (li0 + 1) + 1) = i0t− (t− 1)(m− li0 + 1).
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CASE 2. li0 = li0−1. By the construction, bi0 ≥ bi0−1 + li0 ≥ bi0−1 + t. Therefore,

bi0−a ≥ t+ bi0−1−a ≥ t+(i0−1)t− (t−1)(m− li0−1 +1) = i0t− (t−1)(m− li0 +1).

CASE 3. li0 ≥ li0−1 + 1. Since ai0 ≥ 1 + ai0−1, we have bi0 − bi0−1 ≥ 1 + 2m(li0 −
li0−1). Hence,

bi0−a = (bi0−bi0−1)+(bi0−1−a) ≥ 1+2m(li0−li0−1)+(i0−1)t−(t−1)(m−li0−1+1) =

= i0t− (t− 1)(m− li0 + 1) + 1 + 2m(li0 − li0−1)− t− (t− 1)(li0 − li0−1) =

= i0t− (t− 1)(m− li0 + 1) + (m− t + 1)(li0 − li0−1) + m(li0 − li0−1)− t + 1 ≥
≥ i0t− (t− 1)(m− li0 + 1) + (m− t + 1)(li0 − li0−1 + 1).

This proves (7). Now, by (7) for i = s, since ls ≥ t,

b− a ≥ bs − a ≥ st− (t− 1)(m− ls + 1) ≥ st− (t− 1)(m− t + 1).

Lemma 9 The cardinality of each overlapping subfamily of F(m) is at most 4m−2.
In other words, ω(G(m)) ≤ 4m− 2, that is, (iii) holds.

Proof. Let F ′ be an overlapping subfamily of F(m) and t0 be the minimum t
such that F ′ ⊂ ⋃m

i=tF(i, m). Then for some j there exists I0 =]j, j + 2mt0 + 1[∈ F ′.
Let F ′

1 = { ]a, b[∈ F ′ : b ∈ I0} and F ′
2 = { ]a, b[∈ F ′ : a ∈ I0}. Let b′ = min{b :

]a, b[∈ F ′
1} and a′ = max{a : ]a, b[∈ F ′

2}. Since all members of F ′ overlap, a′+1 ≤ b′.
By Lemma 8,

b′ − j > (j + 2mt0)− a′ ≥ t0|F ′
1| − (t0 − 1)(m− t0 + 1).

By the analog of the lemma for left ends,

a′ − j ≥ t0|F ′
2| − (t0 − 1)(m− t0 + 1).

Summing the last two inequalities, one gets

2mt0 ≥ t0(|F ′| − 1)− 2(t0 − 1)(m− t0 + 1).

Hence |F ′| − 1 ≤ 2m + 2(1− 1/t0)(m− t0 + 1) = 4m− 2t0 + 2− 2(m + 1)/t0 + 2, and

|F ′| ≤ 4m + 5− 2
(
t0 +

m + 1

t0

)
≤ 4m + 5− 4

√
m + 1.

Since m ≥ 2, the last expression is less than 4m− 1. This proves the lemma and the
whole result.

Acknowledgment. I thank Seog-Jin Kim, Cornelia Dangelmayr, and a referee
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[36] A. Kostochka and J. Nešetřil, Coloring relatives of intervals on the plane, I:
chromatic number versus girth, European Journal of Combinatorics, 19 (1998),
103–110.
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