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Abstract

A graph G is called k-critical if it has chromatic number k; but every proper subgraph of G

is ðk � 1Þ-colourable. We prove that every k-critical graph ðkX6Þ on nXk þ 2 vertices has at
least 1

2
ðk � 1þ k�3

ðk�cÞðk�1Þþk�3Þn edges where c ¼ ðk � 5Þð1
2
� 1

ðk�1Þðk�2ÞÞ: This improves earlier
bounds established by Gallai (Acad. Sci. 8 (1963) 165) and by Krivelevich (Combinatorica 17

(1999) 401).

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A graph G is k-critical for a positive integer k if G is not ðk � 1Þ-colourable but
every proper subgraph of G is ðk � 1Þ-colourable. Then every k-critical graph has
chromatic number k and every k-chromatic graph contains a k-critical subgraph.
The importance of the notion of criticality is that problems for k-chromatic graphs
may often be reduced to problems for k-critical graphs, whose structure is more
restricted. Critical graphs were first defined and used by Dirac [5] in 1951. In the
present paper a new lower bound for the number of edges in a k-critical graph on n

vertices is established.
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The complete graph Kk is an example of a k-critical graph and for k ¼ 1; 2 it is the
only one. The only 3-critical graphs are the odd circuits, so for the remainder of this
paper we shall restrict our attention to the case kX4: Then there are k-critical graphs
on n vertices for all nXk except for n ¼ k þ 1: For nXk þ 2; let fkðnÞ denote the
minimum number of edges possible in a k-critical graph on n vertices. Since every k-
critical graph has minimum degree at least k � 1; we have 2fkðnÞXðk � 1Þn: Brooks’
theorem [3] implies

2fkðnÞXðk � 1Þn þ 1;
and Dirac [6] proved

2fkðnÞXðk � 1Þn þ k � 3:
In [7], he also gave a complete description of the extremal cases. Dirac’s proof was
rather long. Shorter and more elegant proofs were found by Kronk and Mitchem
[18], Weinstein [23] and, for the result in [7], by Deuber et al. [4]. In [13], the authors
proved

2fkðnÞXðk � 1Þn þ 2ðk � 3Þ
provided that na2k � 1: For a given constant cX0; let

gkðn; cÞ ¼ k � 1þ k � 3
ðk � cÞðk � 1Þ þ k � 3

� �
n:

In his fundamental paper [9] Gallai characterized the class of graphs that are
subgraphs of some k-critical graph G induced by the set of vertices having degree
k � 1 in G: Based on this result, he proved 2fkðnÞXgkðn; 0Þ: Recently, this lower
bound was improved by Krivelevich [17] to 2fkðnÞXgkðn; 2Þ: Krivelevich [17] also
presents some interesting applications of his lower bound on the number of edges in
critical graphs. In what follows, let

ak ¼ 1

2
� 1

ðk � 1Þðk � 2Þ:

The following theorem is one of the main results of this paper.

Theorem 1.1. If kX6 and nXk þ 2; then 2fkðnÞXgkðn; ðk � 5ÞakÞ:

1.1. Terminology

Concepts and notation not defined in this paper will be used as in standard
textbooks. Though the main objects of our study are graphs, it is convenient to
define the central concepts for hypergraphs.
A hypergraph G ¼ ðV ;EÞ consists of a finite set V ¼ VðGÞ of vertices and a set

E ¼ EðGÞ of subsets of V ; called edges, each having cardinality at least two. An edge
e with jejX3 is called a hyperedge and an edge e with jej ¼ 2 is called an ordinary

edge. A graph is a hypergraph in which each edge is ordinary.
Let G be a hypergraph. The order of G is jVðGÞj: The degree dGðxÞ of a vertex

xAVðGÞ is the number of the edges in G containing x: If dGðxÞ ¼ r for every vertex
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xAVðGÞ; then G is called r-regular. Furthermore, let dðGÞ ¼
P

xAVðGÞ dGðxÞ:
Clearly, if G is a graph, then dðGÞ ¼ 2jEðGÞj:
If H and G are hypergraphs with VðHÞDVðGÞ and EðHÞDEðGÞ; then H is said

to be a subhypergraph of G:
Let G be a hypergraph and XDVðGÞ: The subhypergraph G½X � of G induced by

X is defined as follows: VðG½X �Þ ¼ X and EðG½X �Þ ¼ feAEðGÞ j eDXg: Further-
more, let GðXÞ denote the hypergraph with VðGðXÞÞ ¼ X and EðGðX ÞÞ ¼
fe-X j eAEðGÞ & je-X jX2g: Further, let G � X ¼ G½VðGÞ � X � and G\X ¼
GðVðGÞ � X Þ: For MDEðGÞ; let G � M ¼ ðVðGÞ;EðGÞ � MÞ: Clearly, G½X � is a
subhypergraph of GðXÞ and, if G is a graph, then G½X � ¼ GðXÞ: Note that in general
GðXÞ is not a subhypergraph of G:
A subset X of VðGÞ will be called a clique of G if G½X � is a complete graph. A

clique of G with p vertices is also said to be a p-clique of G: As usual, Kn denotes the
complete graph on n vertices. For an edge e; let /eS be the hypergraph ðe; fegÞ:
For a graph G and a vertex xAVðGÞ; let Nðx : GÞ be the neighbourhood of x in G;

that is the set of all vertices yAVðGÞ such that fx; ygAEðGÞ: Obviously, dGðxÞ ¼
jNðx : GÞj:
Now consider a hypergraph G and a set XDVðGÞ: Then the set of all edges

eAEðGÞ satisfying je-X j ¼ 1 is denoted by EX ðGÞ and in case of X ¼ fxg also by
ExðGÞ: By an X -mapping of G we mean a mapping v that assigns to every edge
eAEX ðGÞ a vertex vðeÞAe � X : For an X -mapping v and a vertex xAX ; let

Nv
X ðx : GÞ ¼ fyAVðGÞ j y ¼ vðeÞ & e-X ¼ fxg for some eAEX ðGÞg:

Clearly, Nv
X ðx : GÞDVðGÞ � X and dGðxÞXdGðX ÞðxÞ þ jNv

X ðx : GÞj: Furthermore,
dGðxÞ ¼ jExðGÞj and, provided that G is a graph, Nv

X ðx : GÞ ¼ Nðx : GÞ � X :

1.2. Main results

For the proof of Theorem 1.1 we shall use the concept of list colouring. Consider a
hypergraph G and assign to each vertex x of G a set FðxÞ of colours (positive
integers). Such an assignment F of sets to vertices in G is referred to as a list for G: A
F-colouring of G is a mapping j of VðGÞ into the set of colours such that jðxÞAFðxÞ
for all xAVðGÞ and jfjðxÞ j xAegjX2 for each eAEðGÞ: If G admits a F-colouring,
then G is said to be F-colourable. In the case where FðxÞ ¼ f1;y; kg for all
xAVðGÞ; we also use the terms k-colouring and k-colourable, respectively. The
chromatic number of G denoted by wðGÞ is the least number k for which G is k-
colourable. If wðGÞ ¼ k; then G is called k-chromatic. The list colouring concept was
introduced, independently, by Vizing [22] and by Erdös et al. [8].
Let G be a hypergraph and let F be a list for G:We say that G is F-critical if G is

not F-colourable but every proper subhypergraph of G is F-colourable. In the case
where FðxÞ ¼ f1;y; k � 1g for all xAVðGÞ; we also use the term k-critical. Then G

is k-critical if and only if wðG0ÞowðGÞ ¼ k for every proper subhypergraph G0 of G:
The following theorem is one of the main results of this paper. In particular, it

implies Theorem 1.1.
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Theorem 1.2. Let G be a hypergraph not containing a Kk; and let F be a list for G

satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: If G is F-critical, then

dðGÞXgkðjVðGÞj; cÞ ¼ k � 1þ k � 3
ðk � cÞðk � 1Þ þ k � 3

� �
jVðGÞj

provided that kX9 and c ¼ 1
3 ðk � 4Þak or kX6; FðxÞ ¼ f1;y; k � 1g for every

xAVðGÞ and c ¼ ðk � 5Þak:

Theorem 1.2 is an immediate consequence of Theorem 1.9 in Section 1.4 and this
result is proved in Section 4. The proof of the next result is given in Section 2. For k-
critical graphs, this result was proved by Gallai [9] in 1963.

Theorem 1.3. Assume that kX4 and GaKk is a F-critical hypergraph where F is a list

for G satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: Then dðGÞXgkðjVðGÞj; 0Þ:

Theorem 1.3 is interesting only for F-critical hypergraphs containing a Kk:
Obviously, if a k-critical hypergraph G contains a Kk; then G ¼ Kk: However, the list
version of this statement is not true. To see this, let rX2 be an integer and let G

denote the hypergraph whose vertex set is the disjoint union of r sets A1;y;Ar such

that G½Ai� ¼ Kk for i ¼ 1;y; r and EðGÞ ¼
Sr

i¼1 EðG½Ai�Þ,feg where e-Ai ¼ fyig
for i ¼ 1;y; r: Furthermore, define the list F for the hypergraph G by

FðxÞ ¼
f1;y; k � 1g if xAVðGÞ � fy1;y; yrg;
f2;y; kg if xAfy1;y; yrg:

(

Then jFðxÞj ¼ k � 1 for all xAVðGÞ and it is easy to check that G is F-critical.
Clearly, G is a hypergraph of order n ¼ rk containing r copies of a Kk and dðGÞ ¼
ðk � 1Þn þ r:
In the next subsection we establish some basic results about list-critical

hypergraphs.

1.3. Gallai trees and bad pairs

Let G be a connected hypergraph. A vertex x of G is called a separating vertex of G

if G\fxg is non-empty and disconnected. An edge e of G is called a bridge of G if
G � feg ¼ ðVðGÞ;EðGÞ � fegÞ has precisely jej components. By a block of G we
mean a maximal connected subhypergraph B of G such that no vertex of B is a
separating vertex of B: Any two distinct blocks of G have at most one vertex in
common and, obviously, a vertex of G is a separating vertex of G iff it is contained in
more than one block of G: An end-block of G is a block that contains at most one
separating vertex of G: Clearly, every non-empty hypergraph has at least one end-
block.
The above statements about the block structure are well known for graphs. For

hypergraphs, the proof of these statements is left to the reader.
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By a brick we mean a hypergraph of the form /eS for some edge e; or an odd
circuit (consisting only of ordinary edges), or a complete graph. A connected
hypergraph all of whose blocks are bricks is called a Gallai tree; a Gallai forest is a
hypergraph all of whose components are Gallai trees.
By a bad pair we mean a pair ðG;FÞ consisting of a non-empty connected

hypergraph G and a list F of G such that jFðxÞjXdGðxÞ for all xAVðGÞ and G is not
F-colourable.

Lemma 1.4 (Kostochka et al. [16]). If ðG;FÞ is a bad pair, then the following

statements hold:

(a) jFðxÞj ¼ dGðxÞ for all xAVðGÞ:
(b) Every hyperedge e of G is a bridge of G and, therefore, /eS is a block of G:
(c) If G has no separating vertex, then FðxÞ is the same for all xAVðGÞ:
(d) G is a Gallai tree.

For graphs, Lemma 1.4 was proved, independently, by Borodin [1,2] and by Erdös
et al. [8]. Proofs of statements (a) and (c) in the graph version based on a sequential
colouring argument were given by Vizing [22] and by Lovász [19]. For a short proof
of Lemma 1.4 based on the following simple reduction idea the reader is referred
to [16].

Remark 1.5. Let G be a hypergraph, F be a list for G; XDVðGÞ; and let v be an X -
mapping of G: Furthermore, let Y ¼ VðGÞ � X and let j be a F-colouring of G½Y �:
For the hypergraph G0 ¼ GðXÞ ¼ G\Y ; define the list F0 by

F0ðxÞ ¼ FðxÞ � fjðyÞ j yANv
X ðx : GÞg

for every xAVðG0Þ: In what follows, we denote F0 by FðY ; v;jÞ and in case of
Y ¼ fyg and jðyÞ ¼ a also by Fðy; aÞ: Then it is straightforward to show that the
following statements hold.

(a) If G0 is F0-colourable, then G is F-colourable.
(b) If jFðxÞj ¼ dGðxÞ þ p for xAVðG0Þ; then jF0ðxÞjXdG0 ðxÞ þ p:
(c) If ðG;FÞ is a bad pair, then ðG0;F0Þ is a bad pair provided that G0 is

connected.

Lemma 1.6. Let G be a F-critical hypergraph where F is a given list for G; H ¼
fyAVðGÞ j dGðyÞ4jFðyÞjg and L ¼ VðGÞ � H: Furthermore, let X be a non-empty

subset of L; let v be an X -mapping of G; and let F ¼ feAEðGÞ j je-X jX2& e �
Xa|g: Then the following statements hold:

(a) dGðxÞ ¼ jFðxÞj for every xAL:
(b) GðX Þ is a Gallai forest.

(c) dGðxÞ ¼ dGðXÞðxÞ þ jNv
X ðx : GÞj for every xAX :

(d) If xAL; then je-e0j ¼ 1 for every two distinct edges e; e0AExðGÞ:
(e) If e; e0AF and eae0; then e-Xae0-X :
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(f) If eAF ; then e-X is a bridge of GðXÞ:
(g) If jFðxÞj ¼ k � 1 for every xAVðGÞ ðkX1Þ; then H is non-empty or G is a Kk or

k ¼ 3 and G is an odd circuit or k ¼ 2 and G ¼ /eS: Furthermore, if GðXÞ
contains a Kk; then G ¼ Kk:

Proof. In order to prove Lemma 1.6, it is sufficient to consider the case where GðXÞ
is connected. Let Y ¼ VðGÞ � X : Since G is F-critical, there is a F-colouring
j of G½Y �: Now consider the list F0 ¼ FðY ; v;jÞ for the connected hypergraph
G0 ¼ G\Y ¼ GðXÞ: Then, because XDL; we have

jFðxÞjXdGðxÞXdG0 ðxÞ þ jNv
X ðx : GÞj;

and, therefore,

jF0ðxÞjXjFðxÞj � jNv
X ðx : GÞjXdG0 ðxÞ

for all xAX : Furthermore, G0 is not F0-colourable. Consequently, ðG0;F0Þ is a bad
pair. Then, by Lemma 1.4, G0 is a Gallai tree and jF0ðxÞj ¼ dG0 ðxÞ for all xAX

implying that jFðxÞj ¼ dGðxÞ ¼ dG0 ðxÞ þ jNv
X ðx : GÞj for all xAX : Thus (a)–(c) are

proved.
For the proof of (d), suppose that, for some xAL; there are two distinct edges

e; e0AExðGÞ such that je-e0jX2: Then, for the set X 0 ¼ fxg; there exists an X 0-

mapping v0 of G such that v0ðeÞ ¼ v0ðe0Þ: Consequently, we have dGðxÞ4dGðX 0ÞðxÞ þ
jNv0

X 0 ðx : GÞj; a contradiction to (c).
Clearly, statement (e) is an immediate consequence of (d). For the proof of (f), let

ẽ ¼ e-X for every eAF : Then ẽ is an edge of GðXÞ for all eAF :
Now, suppose that ẽ is not a bridge of G0 ¼ GðXÞ for some eAF : Then, because of

(b), ẽ is an ordinary edge of G0; i.e. ẽ ¼ fx1; x2g with x1; x2AX and, therefore,

G̃ ¼ G0 � fẽg is a connected hypergraph. Let *F be the list for G̃ such that *FðxÞ ¼
F0ðxÞ if xax1 and *Fðx1Þ ¼ F0ðx1Þ � fjðyÞg for some yAe-Y : Then j *FðxÞjXdG̃ðxÞ
for all xAX ¼ VðG0Þ and j *Fðx2Þj4dG̃ðx2Þ: Therefore, by Lemma 1.4, G̃ is *F-
colourable implying that G is F-colourable. This contradiction proves (f).
Finally, suppose that jFðxÞj ¼ k � 1 for every xAVðGÞ: If H ¼ |; then G ¼ GðLÞ

and, since G is F-critical, G is connected. Therefore, by (a) and (b), G is a ðk � 1Þ-
regular Gallai tree. Since every block of a Gallai tree is regular, this implies that G

consists of one block. Consequently, G is a Kk or k ¼ 3 and G is an odd circuit or
k ¼ 2 and G ¼ /eS for some hyperedge e: If GðXÞ contains a Kk; then we argue as
follows. By (a), the maximum degree of GðXÞ is at most k � 1: Consequently, by (b),
one block B of GðX Þ is a Kk: Then, by (d), every edge of B belongs to G and,
therefore, B is a subhypergraph of G: Since every vertex of B has degree k � 1 in G;
this implies that B is a component of G: Then, since G is F-critical, we infer that
G ¼ B ¼ Kk: This proves (g). &

For k-critical graphs, statement (b) of Lemma 1.6 is due to Gallai [9] and the first
statement of (g) is equivalent to the well-known theorem of Brooks [3].
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Following Gallai, a vertex x of a F-critical hypergraph G is called a high vertex if
dGðxÞ4jFðxÞj; otherwise x is called a low vertex of G: For this reason, we always
write H and L for the corresponding sets of vertices.
Let G be an arbitrary Gallai tree. The set of all blocks of G is denoted by BðGÞ: If

BABðGÞ; then B is regular and we say that B is a block of type b if B is ðb � 1Þ-
regular. Clearly, if BABðGÞ is a block of type b; then bX1 and B ¼ Kb; or b ¼ 3 and
B is an odd circuit, or b ¼ 2 and B ¼ /eS for some edge e: Two distinct blocks
which have a vertex in common (they cannot have more than one vertex in common)
are called adjacent.
Let UðGÞ denote the set of all mappings u that assign to every block BABðGÞ of

type b a set uðBÞ of b � 1 colours such that uðBÞ-uðB0Þ ¼ | for any two adjacent
blocks B;B0ABðGÞ: For a given mapping uAUðGÞ; define the list F ¼ Fu for the
Gallai tree G by FðxÞ ¼

S
uðBÞ where B runs through all blocks of G containing the

vertex xAVðGÞ: The graph version of the following result was proved by Borodin
[1,2] and by Erdös et al. [8].

Lemma 1.7. Let ðG;FÞ be a bad pair. Then F ¼ Fu for some uAUðGÞ: This implies, in

particular, that FðxÞ ¼ FðyÞ provided that x and y are two non-separating vertices of G

contained in the same block of G:

Proof (By induction on the number m of blocks of G). For m ¼ 1; Lemma 1.7
follows from Lemma 1.4.
Now assume m41: Let G1 be an end-block of G and let x denote the only

separating vertex of G contained in G1: Let G2 ¼ G � ðVðG1Þ � fxgÞ: Clearly, G2 is a
Gallai tree with BðG2Þ ¼ BðGÞ � fG1g:
For i ¼ 1; 2; let Mi denote the set of all colours aAFðxÞ such that there is no F-

colouring j of Gi with jðxÞ ¼ a: If there is a colour aAFðxÞ � M1 � M2; then, for
i ¼ 1; 2; there is a F-colouring ji of Gi with jiðxÞ ¼ a: Consequently, j1,j2 is a F-
colouring of G: This contradiction shows that FðxÞ ¼ M1,M2: For i ¼ 1; 2; define a
list Fi for the hypergraph Gi by

FiðyÞ ¼
FðyÞ if yAVðGiÞ � fxg;
Mi if y ¼ x:

(

Clearly, for i ¼ 1; 2; the hypergraph Gi is not Fi-colourable and, moreover,
jFiðyÞjXdGi

ðyÞ for all yAVðGiÞ � fxg: Therefore, by Lemma 1.4, jMij ¼
jFiðxÞjpdGi

ðxÞ: Since

jM1j þ jM2jXjM1,M2j ¼ jFðxÞj ¼ dGðxÞ ¼ dG1
ðxÞ þ dG2

ðxÞ;

this implies that jMij ¼ dGi
ðxÞ for i ¼ 1; 2 and M1-M2 ¼ |: Hence ðGi;FiÞ is a bad

pair and, by the induction hypothesis, Fi ¼ Fui
for some uiAUðGiÞ: Then the

mapping u with uðG1Þ ¼ u1ðG1Þ and uðBÞ ¼ u2ðBÞ for all BABðG2Þ belongs to UðGÞ
and F ¼ Fu: &
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1.4. Basic idea

The next lemma tells us how we can find a lower bound for the degree sum of a
list-critical hypergraph.

Lemma 1.8. Assume that kX4 and GaKk is a F-critical hypergraph where F is a list

for G satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: Furthermore, let L ¼ fxAVðGÞ j
dGðxÞ ¼ k � 1g; H ¼ fxAVðGÞ j dGðxÞXkg; E1 ¼ feAEðGÞ j je-Lj ¼ 1g and E2
¼ feAEðGÞ j je-LjX2g: Finally, let

R ¼
X
eAE1

ðje-Hj � 1Þ þ
X
eAE2

je-Hj;

s ¼ k � 2þ 2

k � 1

� �
jLj � dðGðLÞÞ

and

tc ¼ dðG½H�Þ þ k � c � 2

k � 1

� �X
yAH

ðdGðyÞ � kÞ;

where 0pcpk � 2
k�1 is a given constant. If Rþ sþ tcXcjHj; then

dðGÞXgkðjVðGÞj; cÞ:

Proof. Let n ¼ jVðGÞj and g ¼
P

yAHðdGðyÞ � kÞ: Then

s ¼ k � 2þ 2

k � 1

� �
jLj � dðGðLÞÞ and

tc ¼ dðG½H�Þ þ k � c � 2

k � 1

� �
g:

From Lemma 1.4 we conclude that Ha| and n ¼ jLj þ jHj: If jLj ¼ 0;
then dðGÞXknXgkðn; cÞ: If jLjX1; then dðGðLÞÞ ¼ ðk � 1ÞjLj � jE1j and we infer
that

X
yAH

dGðyÞ ¼ dðG½H�Þ þ
X

eAE1,E2

je-Hj

¼ dðG½H�Þ þ ðk � 1ÞjLj � dðGðLÞÞ þ R:
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Since Rþ sþ tcXcjHj and every vertex in L has degree k � 1 in G; this implies, on
the one hand, that

dðGÞ ¼ ðk � 1ÞjLj þ
X
yAH

dGðyÞ

¼ dðG½H�Þ þ 2ðk � 1ÞjLj � dðGðLÞÞ þ R

¼ dðG½H�Þ þ sþ Rþ jLj k � 2

k � 1

� �

X cjHj � g k � c � 2

k � 1

� �
þ jLj k � 2

k � 1

� �

¼ cn � g k � c � 2

k � 1

� �
þ jLj k � c � 2

k � 1

� �
:

On the other hand,

dðGÞ ¼ ðk � 1Þn þ jHj þ g ¼ kn � jLj þ g:

Therefore,

dðGÞ 1þ k � c � 2

k � 1

� �
X c þ k k � c � 2

k � 1

� �� �
n:

Since k � c � 2
k�1X0; this is equivalent to

dðGÞX k � 1þ k � 3
ðk � cÞðk � 1Þ þ k � 3

� �
n ¼ gkðn; cÞ:

Thus Lemma 1.8 is proved. &

Consider a k-critical graph GaKk for some integer kX4: Furthermore, let
L; H; R; s and tc be defined as in Lemma 1.8. By this lemma, Rþ sþ tcXcjHj
implies dðGÞXgkðjVðGÞj; cÞ: For k-critical graphs, this fact was already known to
Gallai [9]. Clearly, in the graph case we have R ¼ 0; tcX0 and, moreover, Gallai [9]
proved that if cL is the number of components of G½L�; then sX2cL: Consequently,
Rþ sþ tcX0 and, therefore, dðGÞXgkðjVðGÞj; 0Þ: Krivelevich [17] observed that if
cH is the number of components of G½H�; then tcXdðG½H�Þ ¼ 2jEðG½H�ÞjX2jHj �
2cH and, therefore, Rþ sþ tcX2cL þ 2jHj � 2cH : Since cL � cHX0 by a result from
[21], this implies that Rþ sþ tcX2jHj and, therefore, dðGÞXgkðjVðGÞj; 2Þ:
The statement sX2cL holds also if GaKk is a F-critical graph for some list F

satisfying jFðxÞj ¼ k � 1 for all xAVðGÞ (see Section 2). However, the statement
cL � cHX0 is not true in this case.
As an immediate consequence of Lemma 1.8 we obtain that for the proof of

Theorem 1.2 it suffices to prove the following result.

Theorem 1.9. Let G be a hypergraph not containing a Kk; and let F be a list for G

satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: Let L; H; E1; E2; R; s and tc be
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defined as in Lemma 1.8. If G is F-critical, then

Rþ sþ tcXcjHj

provided that kX9 and c ¼ 1
3
ðk � 4Þak or kX6; FðxÞ ¼ f1;y; k � 1g for every

xAVðGÞ and c ¼ ðk � 5Þak:

The proof of Theorem 1.9 is given in Section 4. In Section 2 we give a
generalization of Gallai’s result concerning s and establish some lower bounds for
this parameter. In Section 3 we prove some auxiliary results about bipartite graphs.
Section 4 is mainly devoted to the proof of Lemma 4.1 which is the key lemma for
the proof of Theorem 1.9.

2. Lower bounds for r and ek-hypergraphs

Let kX4 be a given integer, and let

rk ¼ k � 2þ 2

k � 1:

For an arbitrary hypergraph F and xAVðFÞ; define sðx : FÞ ¼ rk � dF ðxÞ and
sðFÞ ¼

X
xAVðFÞ

sðx : FÞ ¼ jVðFÞjrk � dðFÞ:

LetTk denote the set of all Gallai trees distinct from Kk and with maximum degree
at most k � 1: For TATk and some end-block B of T ; let TB ¼ T � ðVðBÞ � fxgÞ
where x is the only separating vertex of T contained in B (if there is no such vertex,
then T ¼ B and an arbitrary vertex of B may be taken).

Lemma 2.1. Let TATk and kX4: Then the following statements hold:

(a) If BABðTÞ; then sðBÞ ¼ 2 if B ¼ Kk�1 and sðBÞXrk otherwise.
(b) If B is an end-block of TATk; then sðTÞ ¼ sðTBÞ þ sðBÞ � rk:

Proof. Let BABðTÞ be a block of type b; that is B is a brick and B is ðb � 1Þ-regular
for some bpk � 1: Then 1pbpk � 1; B ¼ Kb and

sðBÞ ¼ bðrk � b þ 1Þ
Xrk if 1pbpk � 2;
¼ 2 if b ¼ k � 1

(

or b ¼ 3; B is an odd circuit of order at least five and sðBÞ ¼ jVðBÞjðrk � 2ÞX5ðrk �
2ÞXrk; or b ¼ 2; B ¼ /eS and sðBÞ ¼ jejðrk � 1ÞXrk: This proves (a). Statement
(b) follows from the fact that TB and B have exactly one vertex in common. &

Consider an arbitrary Gallai tree TATk: Let xAVðTÞ and let B1;y;Bl be the
blocks of T containing x where Bi is of type bi ði ¼ 1;y; lÞ: Then x is said to be of
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type ðb1;y; blÞ in T : Let T0
k denote the set of all Gallai trees from Tk that do not

have a block of type 2. For an integer bX1; let tðbÞ ¼ 2� 2
b
:

Let TAT0
k and kX6: Clearly, if T contains a block B of type k � 1; then

T ¼ B ¼ Kk�1: For a vertex xAVðTÞ of type ðb1;y; blÞ in T ; define

s0ðx : TÞ ¼ sðx : TÞ þ
Pl

i¼1 tðbiÞ � 2 if TaKk�1;

0 otherwise:

(

Furthermore, let

s0ðTÞ ¼
X

xAVðTÞ
s0ðx : TÞ:

Lemma 2.2. If TAT0
k and kX6; then

(a) sðTÞXs0ðTÞ þ 2; and

(b) s0ðx : TÞXakðk � 1� dTðxÞÞ for every xAVðTÞ provided that TaKk�1:

Proof. We prove statement (a) by induction on the number m of blocks of T : First,
assume m ¼ 1: Then T is a complete graph of order b where 1pbpk � 1 and ba2 or
T is an odd circuit. If T ¼ Kk�1; then s0ðTÞ ¼ 0 and, by Lemma 2.1(a), sðTÞ ¼ 2 ¼
s0ðTÞ þ 2: If T ¼ Kb with 1pbpk � 2 and ba2; then s0ðTÞ ¼ sðTÞ þ ðtðbÞ � 2Þb ¼
sðTÞ � 2: If T is an odd circuit of order pX3; then s0ðTÞ ¼ sðTÞ þ ðtð3Þ � 2Þp ¼
sðTÞ � ð2=3ÞppsðTÞ � 2: This settles the case m ¼ 1:
Next, assume mX2: Let B be some end-block of T and let x be the only separating

vertex of T contained in B: Suppose that B is a block of type b and x is of

type ðb1;y; blÞ in T where bl ¼ b: Since TAT0
k has at least two blocks, no block of

T is a Kk�1: Furthermore, T 0 ¼ TBAT0
k and x is of type ðb1;y; bl�1Þ in T 0:

Consequently,

s0ðx : T 0Þ ¼ rk � dT 0 ðxÞ þ
Xl�1
i¼1

tðbiÞ � 2;

s0ðx : BÞ ¼ rk � dBðxÞ þ tðblÞ � 2

and

s0ðx : TÞ ¼ rk � dT ðxÞ þ
Xl

i¼1
tðbiÞ � 2:

Since dTðxÞ ¼ dT 0 ðxÞ þ dBðxÞ; this implies that

s0ðTÞ ¼ s0ðT 0Þ þ s0ðBÞ þ s0ðx : TÞ � s0ðx : T 0Þ � s0ðx : BÞ

¼ s0ðT 0Þ þ s0ðBÞ � rk þ 2:

A.V. Kostochka, M. Stiebitz / Journal of Combinatorial Theory, Series B 87 (2003) 374–402384



Then, by the induction hypothesis and Lemma 2.1(b), we infer that

s0ðTÞ ¼ s0ðT 0Þ þ s0ðBÞ � rk þ 2

p sðT 0Þ � 2þ sðBÞ � 2� rk þ 2

¼ sðTÞ � 2:

Thus (a) is proved. For the proof of (b), consider an arbitrary vertex xAVðTÞ:
Suppose that x is of type ðb1;y; blÞ in T : Then, since TAT0

k and TaKk�1; we have

1pbipk � 2 and bia2 for i ¼ 1;y;m: Furthermore, dTðxÞ ¼
Pl

i¼1ðbi � 1Þpk � 1
and we have to show that

s0ðx : TÞ ¼ rk � dT ðxÞ þ
Xl

i¼1
tðbiÞ � 2Xakðk � 1� dTðxÞÞ: ð1Þ

Let

M ¼ ð1� akÞ k � 1�
Xl

i¼1
ðbi � 1Þ

 !
þ
Xl

i¼1
2� 2

bi

� �
:

By an easy calculation, it then follows that (1) is equivalent to

MX3� 2

k � 1: ð2Þ

First, consider the case l ¼ 1: Then

M ¼ ð1� akÞðk � b1Þ þ 2� 2=b1:

For b1 ¼ 1; this yields M ¼ ð1� akÞðk � 1Þ: Then, in case of kX7 we have MX3;
and in case of k ¼ 6 we have M ¼ ð1=2þ 1=20Þ5 ¼ 55=20 and 3� 2=ðk � 1Þ ¼ 13=5:
Hence (2) is satisfied for b1 ¼ 1: If 3pb1pk � 2; then M is a monotone decreasing
function of b1; and we infer that

MX ð1� akÞðk � ðk � 2ÞÞ þ 2� 2=ðk � 2Þ

¼ 1þ 2

ðk � 1Þðk � 2Þ þ 2�
2

k � 2 ¼ 3� 2

k � 1:

This settles the case l ¼ 1: Next, consider the case l ¼ 2: Then 3pb1; b2 and b1 þ
b2pk þ 1: Hence �2=b1 � 2=b2X� 4=3: Therefore, in case of b1 þ b2pk we have

M ¼ ð1� akÞ þ 2� 2

b1

� �
þ 2� 2

b2

� �
X
1

2
þ 8
3
X3;

and in case of b1 þ b2 ¼ k þ 1 we have

M4 2� 2

b1

� �
þ 2� 2

k þ 1� b1

� �
X 2� 2

k � 2

� �
þ 2� 2

3

� �
43� 2

k � 1:
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Consequently, (2) holds for l ¼ 2: Finally, consider the case lX3: Then biX3 and,
therefore,

MX

X3
i¼1

2� 2

bi

� �
X3 2� 2

3

� �
¼ 4:

Hence (2) holds for all lX1 and, therefore, (b) is proved. &

For a hypergraph G and an integer pX2; let W pðGÞ denote the set of all vertices of
G that belong to some ðp � 1Þ-clique of G: If GATk; then W kþ1ðGÞ ¼ | and, for
every ðk � 1Þ-clique X of G; GðX Þ ¼ G½X � is a block of G:

Following Gallai, G is called an ek-hypergraph if GATk and W kðGÞ ¼ VðGÞ: For
kX5; a hypergraph G is an ek-hypergraph iff GATk and every separating vertex of G

is of type ðk � 1; 2Þ and every non-separating vertex of G is of type k � 1:
If a component G0 of GðW kðGÞÞ is an ek-hypergraph, then G0 is said to be an ek-

subcomponent of G:

Obviously, if TATk; then every vertex of W kðTÞ is of type ðk � 1; 2Þ or of type
k � 1 and the ek-subcomponents of T are precisely the components of TðW kðTÞÞ:
The number of all ek-subcomponents of T is denoted by sðTÞ:
Let TATk: For a vertex xAVðTÞ; define

snðx : TÞ ¼
akðk � 1� dT ðxÞÞ if xAVðTÞ � W kðTÞ;
0 otherwise:

(

Furthermore, let

snðTÞ ¼
X

xAVðTÞ
snðx : TÞ:

Lemma 2.3. If TATk and kX6; then sðTÞXsnðTÞ þ sðTÞak þ 2� ak:

Proof. We prove Lemma 2.3 by induction on the number m of blocks of type 2 in T :

If m ¼ 0; then TAT0
k; sðTÞp1; and, by Lemma 2.2, sðTÞXsnðTÞ þ 2XsnðTÞ þ

sðTÞak þ 2� ak:
Now assume mX1: Let B be an arbitrary block of T that is of type 2. Then

B ¼ /eS where eAEðTÞ is a bridge of T : Let e ¼ fx1;y; xpg where pX2 and, for

i ¼ 1;y; p; let Ti denote the component of T � feg containing the vertex xi: Assume

that xiAW kðTiÞ for i ¼ 1;y; l and xiAVðTiÞ � W kðTiÞ for i ¼ l þ 1;y; p: Then

snðTÞ ¼
Xp

i¼1
snðTiÞ � akðp � lÞ;

and, moreover,

sðTÞ ¼
Pp

i¼1 sðTiÞ if l ¼ 0;Pp
i¼1 sðTiÞ � l þ 1 if lX1:

(
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Consequently, using the induction hypothesis, we conclude that

sðTÞ ¼
Xp

i¼1
sðTiÞ � p

X

Xp

i¼1
snðTiÞ þ ak

Xp

1¼1
sðTiÞ þ pð2� akÞ � p

¼ snðTÞ þ akðp � lÞ þ ak

Xp

1¼1
sðTiÞ þ pð2� akÞ � p

¼ snðTÞ þ ak

Xp

1¼1
sðTiÞ � l

 !
þ p

X snðTÞ þ aksðTÞ þ p � ak

X snðTÞ þ aksðTÞ þ 2� ak:

This proves Lemma 2.3. &

Lemma 2.4. Let TATk and kX4: Then sðTÞX2 if T is an ek-hypergraph and

sðTÞXrk otherwise.

Proof (By induction on the number m of blocks of T). For m ¼ 1; Lemma 2.4 is an
immediate consequence of Lemma 2.1.
Now assume m41: If T is an ek-hypergraph, then TB is not an ek-hypergraph for

any end-block B of T and, by the induction hypothesis and Lemma 2.1,
sðTÞXsðTBÞ þ sðBÞ � rkXsðBÞX2:
If T is not an ek-hypergraph, then we argue as follows. First, consider the case

where T has a block B of type 2. Then B ¼ /eS where eAEðTÞ is a bridge of T : For
xAe; let Tx denote the component of T � feg containing x: Since T is not an ek-
hypergraph, Tx is not an ek-hypergraph for at least one xAe: Furthermore, rkXk �
2X2: Therefore, by the induction hypothesis,

sðTÞ ¼
X
xAe

sðTxÞ � jejX2ðjej � 1Þ þ rk � jejXrk:

Now, consider the case where T has no block of type 2. Then no block of T is a Kk�1:
Let B be an end-block of T : Then TB is not an ek-hypergraph and, by the induction
hypothesis and Lemma 2.1, sðTÞ ¼ sðTBÞ þ sðBÞ � rkXrk: This completes the proof
of Lemma 2.4. &

Proof of Theorem 1.3. Assume that kX4 and GaKk is a F-critical hypergraph where
F is a list for G satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: Let L ¼
fxAVðGÞ j dGðxÞ ¼ k � 1g: Then, by Lemma 1.6, each component of GðLÞ belongs
to Tk: Therefore, by Lemma 2.4, sðGðLÞÞX0: Consequently, by Lemma 1.8,
dðGÞXgkðjVðGÞj; 0Þ: &
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3. Bipartite graphs

Let G be a graph. An edge fx; yg of G is also denoted by xy or yx: We denote by

F ¼ FðA;BÞ a bipartite graph satisfying VðFÞ ¼ A,B; A-B ¼ | and EðFÞD
fxy j xAA and yABg: For an integer x; let Jxn denote the upper integer part of x:

Lemma 3.1. Let F ¼ FðA;BÞ be a bipartite graph, let rX1 be an integer, and let Br be

the set of all vertices of B having degree at least r in F : Then there is a subgraph F 0 of F

such that

(a) dF 0 ðxÞpJdF ðxÞ
r
n for every xAA;

(b) dF 0 ðyÞ ¼ 1 for every yABr and dF 0 ðyÞ ¼ 0 for every yAB � Br:

Proof. For every vertex xAA; there is a partition fNx
1 ;y;Nx

mx
g of Nðx : FÞ into

mx ¼ JdF ðxÞ
r
n subsets satisfying 1pjNx

i jpr for i ¼ 1;y;mx: Now, replace in F every

vertex xAA by m ¼ mx new vertices xð1Þ;y; xðmÞ and join xðiÞ to every vertex in Nx
i

by an edge ði ¼ 1;y;mxÞ: This results in a bipartite graph H ¼ HðA0;BÞ such that
dHðx0Þpr for every x0AA0 and dHðyÞ ¼ dF ðyÞ for every yAB:
Consider an arbitrary set SDBr and let NðSÞ ¼

S
xAS Nðx : HÞ: Let m be the

number of all edges x0yAEðHÞ satisfying yAS and x0ANðSÞDA0: On the one hand,
mXrjSj and, on the other hand, mprjNðSÞj: Consequently, jNðSÞjXjSj: Now,
Hall’s theorem yields that there is a matching M in H that covers all vertices in Br;
i.e., MDEðHÞ and for the graph H 0 ¼ ðVðHÞ;MÞ we have dH 0 ðyÞ ¼ 1 for every
yABr and dH 0 ðyÞ ¼ 0 for every yAB � Br:
Let F 0 be the graph with VðF 0Þ ¼ A,B and EðF 0Þ ¼ fxyAEðFÞ j xðiÞyAM for

1pipmxg: Then dF 0 ðxÞpmx ¼ JdF ðxÞ
r
n for every xAA; dF 0 ðyÞ ¼ 1 for every yABr;

and dF 0 ðyÞ ¼ 0 for every yAB � Br: &

Lemma 3.2. Let F ¼ FðA;BÞ be a bipartite graph and, for rX1; let Br be the set of all

vertices of B having degree at least r in F : Assume that dF ðxÞX4 for every xAA: Then

there is a subgraph F 0 of F such that

(a) dF 0 ðxÞ ¼ 2 for every xAA;
(b) dF 0 ðyÞpdF ðyÞ � 2 for every yAB4; and

(c) dF 0 ðyÞpdF ðyÞ � 1 for every yAB3:

Proof. Because of Lemma 3.1, there is a subgraph H of F such that dHðxÞpJdF ðxÞ
4

n
for every xAA; dHðyÞ ¼ 1 for every yAB4; and dHðyÞ ¼ 0 for every yAB � B4: Let

F̃ ¼ F � EðHÞ and let B̃3 be the set of all vertices of B having degree at least 3 in F̃:

Obviously, B̃3 ¼ B3,B4: Then Lemma 3.1 implies that there is a subgraph H̃ of F̃

such that dH̃ðxÞpJd
F̃
ðxÞ
3
n for every xAA; dH̃ðyÞ ¼ 1 for every yAB̃3; and dH̃ðyÞ ¼ 0

for every yAB � B̃3:
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Let G ¼ F̃ � EðH̃Þ ¼ F � EðHÞ � EðH̃Þ: Then, for yAB4; we have dGðyÞ ¼
dF ðyÞ � 2; and, for yAB3; we have dGðyÞ ¼ dF ðyÞ � 1: Let xAA: Since dF ðxÞX4;
we have dF̃ðxÞ ¼ dF ðxÞ � dHðxÞXdF ðxÞ � JdF ðxÞ

4
nX3 and, therefore, dGðxÞ ¼

dF̃ðxÞ � dH̃ðxÞXdF̃ðxÞ � Jd
F̃
ðxÞ
3
nX2:

Consequently, there is a subgraph F 0 of G satisfying (a)–(c). Thus Lemma 3.2 is
proved. &

Lemma 3.3. Let rX3 be an integer. Let F ¼ FðA;BÞ be a bipartite graph and let P be

a mapping that assigns to every vertex xAA a partition PðxÞ of Nðx : FÞ: Assume that

dF ðxÞXjPðxÞj þ 2r�3 for every xAA: Then there is a subgraph F 0 of F such that the

following statements hold:

(a) If xAA; then dF 0 ðxÞ ¼ 2 and Nðx : F 0ÞDN for some NAPðxÞ:
(b) If yAB and dF ðyÞXs where 3pspr; then dF 0 ðyÞpdF ðyÞ � s þ 3:

Proof (By induction on r and jEðFÞj). A subgraph F 0 of F satisfying the conditions
(a) and (b) of Lemma 3.3 is called a good subgraph of F with respect to P and r: Let
F1 ¼ F1ðA;BÞ be a subgraph of F and define P1 by

P1ðxÞ ¼ fN-Nðx : F1Þ j NAPðxÞ & N-Nðx : F1Þa|g

for every xAA: In this case we write P1 ¼ PjF1: It is easy to check that if F 0 is a good
subgraph of F1 with respect to P1 ¼ PjF1 and r; then F 0 is a good subgraph of F

with respect to P and r:
We have to show that there is a good subgraph of F with respect to P and r

provided that dF ðxÞXjPðxÞj þ 2r�3 for every xAA: For r ¼ 3 this is evident. Now
assume rX4:
First, assume that, for some xAA; there is a set NAPðxÞ such that N ¼ fyg:

Let F1 ¼ F � fxyg and P1 ¼ PjF1: Then dF1ðxÞ ¼ dF ðxÞ � 1XjPðxÞj þ 2r�3 � 1 ¼
jP1ðxÞj þ 2r�3 and, by the induction hypothesis, there is a good subgraph F 0

of F1 with respect to P1 and r: Then F 0 is a good subgraph of F with respect to P
and r:

Now, assume that jNjX2 for every NAPðxÞ and every xAA: If dF ðxÞ4jPðxÞj þ
2r�3 for some xAA; then let F1 ¼ F � fxyg and P1 ¼ PjF1 where yANF ðxÞ: Since
dF1ðxÞXjPðxÞj þ 2r�3 ¼ jP1ðxÞj þ 2r�3; it then follows from the induction hypoth-
esis that there is a good subgraph F 0 of F1 with respect toP1 and r: Then F 0 is a good
subgraph of F with respect to P and r:

If dF ðxÞ ¼ jPðxÞj þ 2r�3 for every xAA; then we argue as follows. Since every set

of PðxÞ has at least two elements, jPðxÞjp2r�3 and, therefore, dF ðxÞp2r�2 for every

xAA: By Lemma 3.2, there is a subgraph H of F such that dHðxÞpJdF ðxÞ
r
npJ2

r�2

4
n ¼

2r�4 for every xAA and dHðyÞ ¼ 1 for every yAB with dF ðyÞXr: Let F̃ ¼ F � EðHÞ
and *P ¼ PjF̃: Then, for every xAA; dF̃ðxÞ ¼ dF ðxÞ � dHðxÞXjPðxÞj þ 2r�3 �
2r�4 ¼ jPðxÞj þ 2r�4

Xj *PðxÞj þ 2r�4: Therefore, by the induction hypothesis, there
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is a good subgraph F 0 of F̃ with respect to *P and r � 1: Then F 0 is a good subgraph
of F with respect to P and r � 1: If yAB and dF ðyÞ ¼ r; then dHðyÞ ¼ 1 and,
therefore, dF̃ðyÞ ¼ r � 1 implying that dF 0 ðyÞpdF̃ðyÞ � ðr � 1Þ þ 3 ¼ dF ðyÞ � r þ 3:
Consequently, F 0 is a good subgraph of F with respect to P and r: Thus Lemma 3.3
is proved. &

Remark. Lemma 3.3 remains valid if the condition dF ðxÞXjPðxÞj þ 2r�3 is replaced
by dF ðxÞXjPðxÞj þ mr where m3;m4;y is a sequence of integers satisfying m3 ¼ 1

and mr � J2mr

r
nXmr�1 for rX4: For r ¼ 5; the case we are interested in, this gives

m5 ¼ 4:

Lemma 3.4. Let F ¼ FðA;BÞ be a bipartite graph, let R; d be integers with RXdX1
and, for every xAA; let aðxÞX1 be an integer. Assume that dF ðyÞXR for every yAB:
Then

ðR � dÞjBjp
X
xAA

aðxÞ

or there are non-empty subsets A0DA and B0DB such that for F 0 ¼ F ½A0,B0� we have

dF 0 ðxÞ4aðxÞ for every xAA0 and dF 0 ðyÞ4d for every yAB0:

Proof. For zAVðFÞ and ZDVðFÞ; let dðz : ZÞ ¼ jNðz : GÞ-Zj: Define a sequence
B0 ¼ |; A1;B1;A2;B2;y of sets as follows. For iX1; let

Ai ¼ fxAA j dðx : B � Bi�1ÞpaðxÞg

and

Bi ¼ fyAB j dðy : AiÞXR � dg:

Then, for every iX1; we have AiDAiþ1DA and BiDBiþ1DB: Let A0 ¼ A �S
Ai; B0 ¼ B �

S
Bi; and F 0 ¼ F ½A0,B0�:

If A0 contains a vertex x; then dðx : B � Bi�1Þ4aðxÞ for every iX1 implying that

dF 0 ðxÞ ¼ dðx : B0Þ4aðxÞ and, hence, B0a|: If B0 contains a vertex y; then dðy :
AiÞoR � d for every iX1 and, therefore, dF ðy :

S
AiÞoR � d: This implies that

dF 0 ðyÞ ¼ dðy : A0Þ ¼ dðy : AÞ � dðy :
S

AiÞ4R � ðR � dÞ ¼ d and, hence, A0a|:
Consequently, A0a| iff B0a| and, moreover, Lemma 3.4 is true if A0 or B0 is
non-empty. Otherwise, both sets A0 and B0 are empty and, therefore, A ¼

S
Ai and

B ¼
S

Bi: Let E ¼ fxyAEðFÞ j xAAi and yAB � Bi�1 for some iX1g: Then

ðR � dÞjBjpjEjp
X
xAA

aðxÞ:

Thus Lemma 3.4 is proved. &
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4. List critical hypergraphs

4.1. The key lemma

The proof of Theorem 1.9 is mainly based on the following technical lemma.
Recall that if G is a hypergraph and pX2 is an integer, then W pðGÞ denotes the set of
all vertices of G that belong to some ðp � 1Þ-clique of G:

Lemma 4.1. Let G be a hypergraph not containing a Kk; and let F be a list for G

satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: Furthermore, let L ¼
fxAVðGÞ j dGðxÞ ¼ k � 1g; XDL; YDfyAVðGÞ j dGðyÞ ¼ kg and let W ¼
W kðGðXÞÞ: Denote by C the set of all components of GðXÞ and let v be an X -
mapping of G: For yAY and TAC; define

dðyÞ ¼ jfTAC j yANv
X ðx : GÞ for some xAW-VðTÞgj;

dðTÞ ¼ jfyAY j yANv
X ðx : GÞ for some xAW-VðTÞgj

and

dv
X ðyÞ ¼ jfxAW j yANv

X ðx : GÞgj:
If G is F-critical, then the following statements hold:

(a) dðyÞXdv
X ðyÞ � 1 for every yAY provided that kX5:

(b) dðyÞp4 for some yAY or dðTÞpsðTÞ þ 3 for some TAC provided that FðxÞ ¼
f1;y; k � 1g for every xAVðGÞ and kX5:

(c) dðyÞp3 for some yAY or dðTÞp3 for some TAC provided that every member of

C is an ek-hypergraph and kX9:

The proof of this result is given in Section 4.2. In Section 4.3 we use Lemma 4.1 to
prove Theorem 1.9.

4.2. Proof of Lemma 4.1

Let G be a hypergraph, zAVðGÞ; and let F be a list for G: We call ðG; z;F; kÞ a
configuration of type 1 if the following conditions hold:

(a1) GaKk and every component of G � fzg belongs to Tk:
(a2) dGðzÞpk and z is contained only in ordinary edges of G:
(a3) jFðzÞjXdGðzÞ � 1 and jFðxÞjXdGðxÞ for all xAVðGÞ � fzg:

The proof of Lemma 4.1(a) is based on the following result.

Lemma 4.2. Let ðG; z;F; kÞ be a configuration of type 1 where kX5; let m be the

number of components of G � fzg and let W ¼ W kðG � fzgÞ: Furthermore, let Nz ¼
fxAVðGÞ j fz; xgAEðGÞg and Wz ¼ Nz-W : Assume that VðTÞ-Wza| for every

component T of G � fzg: If G is not F-colourable, then mXjWzj � 1:
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Proof. Consider a possible counterexample ðG; z;F; kÞ such that jVðGÞj is minimum.
Let T1;y;Tm denote the components of G � fzg: Then, by (a1), TiATk for i ¼
1;y;m: Furthermore, for i ¼ 1;y;m; let di ¼ jVðTiÞ-Wzj where d1Xd2X?Xdm:
Then dmX1 and mpjWzj � 2 ¼ d1 þ?þ dm � 2:We claim that m ¼ 1 and d1X3 or
m ¼ 2 and d1 ¼ d2 ¼ 2:

Obviously, if m ¼ 1; then d1X3: Now, assume mX2: Let T ¼ Tm: Then
jFðxÞjXdGðxÞXdTðxÞ for all xAVðTÞ: Since there is a vertex xAVðTÞ-Wz; we
have jFðxÞj4dTðxÞ for this vertex x: Therefore, by Lemma 1.4, there is a F-
colouring j of T : Let G0 ¼ G � VðTÞ ¼ G\VðTÞ and F0 ¼ FðVðTÞ; v;jÞ (see

Remark 1.5). Then F0ðxÞ ¼ FðxÞ for all xAVðG0Þ � fzg and F0ðzÞ ¼ FðzÞ �
fjðxÞ j xAVðTÞ-Nzg: Since G is not F-colourable, G0 is not F0-colourable.
Moreover, it is easy to check that ðG0; z;F0; kÞ is a configuration of type 1 satisfying
the assumption of Lemma 4.2. Therefore, m � 1XjWz-VðG0Þj � 1 ¼ d1 þ?þ
dm�1 � 1 implying that m ¼ 2 and d1 ¼ d2 ¼ 2: This proves our claim. Now, we
consider two cases.

Case 1: m ¼ 2 and d1 ¼ d2 ¼ 2: Let iAf1; 2g and let Gi ¼ G½VðTiÞ,fzg�: For
xAVðGiÞ � fzg; we have jFðxÞjXdGðxÞ ¼ dGi

ðxÞ: Since z has exactly two neighbours

in the Gallai tree Ti ¼ Gi � fzgATk that belong to ðk � 1Þ-cliques of Ti and every
ðk � 1Þ-clique of Ti is a block of Ti; we conclude that Gi is not a Gallai tree and
jFðzÞjXdGðzÞ � 14dGi

ðzÞ:
LetMi be the set of all colours aAFðzÞ such that jðzÞaa for every F-colouring j of

Gi: Since G is not F-colourable, M1,M2 ¼ FðzÞ: From jFðzÞjXdGðzÞ � 1 ¼ dG1
ðzÞ þ

dG2
ðzÞ � 1 we conclude that jMijXdGi

ðzÞ for some i; say i ¼ 1: Now, let F0 be the list
for G1 with F0ðxÞ ¼ FðxÞ for xAVðG1Þ � fzg and F0ðzÞ ¼ M1: Since G1 is a connected

hypergraph but not a Gallai tree, we infer from Lemma 1.4 that G1 is F0-colourable.
This implies that there is a F-colouring j of G1 with jðzÞAM1; a contradiction.

Case 2: m ¼ 1 and d1X3: Then T ¼ G � fzgATk: Since G is not F-colourable, we
may assume that jFðxÞj ¼ dGðxÞ for all xAVðGÞ � fzg: Let B be an arbitrary end-
block of T and let X be the set of all non-separating vertices of T that belong to B:
Consider a vertex uAX : Since jFðuÞj ¼ dGðuÞX1; there is a colour aAFðuÞ: Let
G0 ¼ G\fug and F0 ¼ Fðu; aÞ: Then G0 is not F0-colourable and ðG0; z;F0; kÞ is a
configuration of type 1. If no vertex of B belongs to Wz; then Wz-VðG0Þ ¼
Wz-VðGÞ and, therefore, ðG0; z;F0; kÞ is a smaller counterexample, a contradiction.
Hence jVðBÞ-WzjX1: Since dGðxÞpk � 1 for all vertices x of the Gallai tree
TATk; this implies that B is a Kk�1:

Let yAVðBÞ-Wz: Since dGðyÞpk � 1; we have jFðyÞj ¼ dGðyÞ ¼ k � 1 and yAX :
We claim that XDWz: Suppose, on the contrary, that there is a vertex xAX � Wz:
Then jFðxÞj ¼ dGðxÞ ¼ k � 2 and, therefore, there is a colour aAFðyÞ � FðxÞ: Since
jFðzÞjXdGðzÞ � 1Xd1 � 1X2; there is a colour bAFðzÞ with baa: Let F0 ¼ Fðz; bÞ:
Then T ¼ G � fzg ¼ G\fzg is not F0-colourable and jF0ðuÞjXdT ðuÞ for all uAVðTÞ:
Therefore, ðT ;F0Þ is a bad pair and F0ðxÞaF0ðyÞ; a contradiction to Lemma 1.7.
This proves our claim, i.e., XDWz:
If B is the only block of T ; then X ¼ VðBÞ ¼ VðTÞ and, therefore G ¼ Kk; a

contradiction to (a1). Hence, there is an end-block B0aB of T : For the set X 0 of all

A.V. Kostochka, M. Stiebitz / Journal of Combinatorial Theory, Series B 87 (2003) 374–402392



vertices of B0 that are non-separating vertices of T ; we have X 0DWz: Since kX5; this
yields dGðzÞXjX j þ jX 0jX2ðk � 2ÞXk þ 1; a contradiction to (a2).
Thus in both cases 1 and 2 we arrive at a contradiction. This proves

Lemma 4.2. &

4.2.1. Proof of Lemma 4.1(a)

Consider a vertex yAY : By Lemma 1.6, GðXÞ is a Gallai forest and so every
component of GðXÞ belongs to Tk: Denote by C0 the set of all components T of

GðXÞ such that yANv
X ðx : GÞ for some vertex xAW kðTÞ ¼ W-VðTÞ: Clearly,

dðyÞ ¼ jC0j:
Let X 0 ¼

S
VðTÞ where the union is taken over all TAC0: Then GðX 0Þ is a Gallai

forest and, for W 0 ¼ W kðGðX 0ÞÞ; we have W 0 ¼ X 0-W : Since there is no edge
in G having a vertex in common with both X 0 and X � X 0; the set EX ðGÞ is the
disjoint union of EX 0 ðGÞ and EX�X 0 ðGÞ: Therefore, v is an X 0-mapping of G and
Nv

X 0 ðx : GÞ ¼ Nv
X ðx : GÞ for all xAX 0:

Let Ny ¼ fxAX 0 j yANv
X ðx : GÞg and Wy ¼ Ny-W : Then Wy ¼ Ny-W 0 and

dv
X ðyÞ ¼ jWyj: Furthermore, let

E0 ¼ feAEX 0 ðGÞ j y ¼ vðeÞg

and

En ¼ feAEðGÞ j e-X 0 ¼ | & yAeg:

Then jNyj ¼ jE0j since otherwise there are two distinct edges e; e0AExðGÞ; for some
vertex xAX 0DL; satisfying je-e0jX2; a contradiction to Lemma 1.6. For all edges
eAEX 0 ðGÞ,En; choose a vertex v0ðeÞAe such that v0ðeÞ ¼ vðeÞ for all eAE0 and
v0ðeÞay for all eAEn:
Let G1 be the hypergraph obtained from the Gallai forest G0 ¼ GðX 0Þ by adding

the vertex y and joining y to every vertex in Ny by an ordinary edge. Since G is F-
critical, there is a F-colouring j of the subhypergraph G2 ¼ G � ðX 0,fygÞ of G:
Now, define the list F1 of G1 as follows. For xAX 0; let

F1ðxÞ ¼ FðxÞ � fjðv0ðeÞÞ j xAeAEX 0 ðGÞ � E0g

and let

F1ðyÞ ¼ FðyÞ � fjðv0ðeÞÞ j eAEng:

If eAEðGÞ; then eAEðG2Þ; or e-X 0AEðG1Þ; or eAEX 0 ðGÞ,En: This implies that
j,j1 is a F-colouring of G for every F1-colouring j1 of G1: Therefore, since G is
not F-colourable, G1 is not F1-colourable. Furthermore, for xAX 0DL;

jF1ðxÞjXdGðxÞ � jfeAEðGÞ j xAeAEX 0 ðGÞ � E0gjXdG1
ðxÞ

and, since jFðyÞj ¼ k � 1 ¼ dGðyÞ � 1;
jF1ðyÞjXdGðyÞ � 1� jEnjXdG1

ðyÞ � 1:

If G1aKk; then, clearly, ðG1; y;F1; kÞ is a configuration of type 1 and, by Lemma
4.2, dðyÞ ¼ jC0jXjWyj � 1 ¼ dv

X ðyÞ:
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Now, consider the case G1 ¼ Kk: Then G1ðX 0Þ ¼ GðX 0Þ is a Kk�1 and, by Lemma
1.6, X 0 is a ðk � 1Þ-clique of G: Since G does not contain a Kk; this implies that there
is a vertex xAX 0 such that fx; ygAEðG1Þ � EðGÞ: Consequently, there is an edge
eAEX 0 ðGÞ such that x; yAe; y ¼ vðeÞ and jejX3: Let y0Ae � fx; yg: Remove the edge
fx; yg from G1 and, for the resulting graph G0

1; define the list F
0
1 by F

0
1ðuÞ ¼ F1ðuÞ for

all uAVðG0
1Þ � fxg and F0

1ðxÞ ¼ F1ðxÞ � fjðy0Þg: Then jF0
1ðuÞjXdG0

1
ðuÞ for all

uAVðG0
1Þ ¼ VðG1Þ: Since G0

1 is connected but not a Gallai tree, we infer from

Lemma 1.4 that there is a F0
1-colouring j0 of G0

1 and, therefore, j,j0 is a F-
colouring of G; a contradiction. This completes the proof of Lemma 4.1(a). &

Lemma 4.3. Assume that kX4 and ðT ;FÞ is a bad pair satisfying TATk and

FðuÞDf1;y; k � 1g for every uAVðGÞ: If x and y are two non-separating vertices of

T contained in the same ek-subcomponent of T ; then FðxÞ ¼ FðyÞ:

Proof. By Lemma 1.7, F ¼ Fu for some mapping uAUðGÞ: If x; y are contained in
the same block, then the statement is evident. Otherwise, there is a sequence
B1;B2;y;B2lþ1 of blocks of T such that xAVðB1Þ; yAVðB2lþ1Þ; B2iþ1 is a Kk�1 for
i ¼ 0;y; l and B2i is a block of type 2 for i ¼ 1;y; l and VðBiÞ-VðBiþ1Þa| for
i ¼ 1;y; 2l: Then uðBiÞ-uðBiþ1Þ ¼ | for i ¼ 1;y; 2l: Since uðBiÞDf1;y; k �
1g; juðB2iþ1Þj ¼ k � 2 and juðB2iÞj ¼ 1; we infer that uðB1Þ ¼ uðB2lþ1Þ and, there-
fore, FðxÞ ¼ FðyÞ: &

4.2.2. Proof of Lemma 4.1(b)

Suppose on the contrary that dðyÞX5 for every yAY and dðTÞXsðTÞ þ 4 for
every TAC: By Lemma 1.6, GðX Þ is a Gallai forest not containing a Kk and with
maximum degree at most k � 1: Consequently, CDTk:
Let F ¼ FðA;BÞ be the bipartite graph with A ¼ C and B ¼ Y where, for every

TAC; the neighbourhood NðT : FÞ consists of all vertices yAY such that yANv
X ðx :

GÞ for some xAW kðTÞ ¼ W-VðTÞ: Then dF ðyÞ ¼ dðyÞX5 for every yAB ¼ Y and
dF ðTÞ ¼ dðTÞXsðTÞ þ 4 for every TAA ¼ C:
For TAA; let PðTÞ be a partition of NðF : TÞ such that for every NAPðTÞ there

is an ek-subcomponent T 0 of T with

NDfyAY j yANv
X ðx : GÞ for some xAW kðT 0Þ ¼ VðT 0Þg:

Then dF ðTÞXsðTÞ þ 4XjPðTÞj þ 4 for every TAA: Therefore, since dF ðyÞX5 for all
yAB; we infer from Lemma 3.3 that there is a subgraph F 0 of F such that, for every
TAA; dF 0 ðTÞ ¼ 2 and NðT : F 0ÞDN for some NAPðTÞ and, for every
yAB; dF 0 ðyÞpdF ðyÞ � 2:
Now let G0 be the hypergraph obtained from the subhypergraph G � X of G by

adding the ordinary edges NðT : F 0Þ for all TAC: If yAY ; then dGðyÞ ¼ k and, by
the construction of F 0; dG0 ðyÞpk � 2: Since G is F-critical, there is a F-colouring j
of G � X � Y ¼ G0 � Y : For every yAY ; we have jFðyÞj ¼ k � 1XdG0 ðyÞ þ 1: This
implies that j can be extended to some F-colouring j0 of G0:

A.V. Kostochka, M. Stiebitz / Journal of Combinatorial Theory, Series B 87 (2003) 374–402394



Let Gn ¼ G\VðG0Þ ¼ GðXÞ and let Fn ¼ FðVðG0Þ; v;j0Þ (see Remark 1.5). Then
Gn is not Fn-colourable and, since jFðxÞj ¼ dGðxÞ; we have jFnðxÞjXdGnðxÞ for every
xAX : Consequently, there is a component T of GðX Þ; such that ðT ;F1Þ is a bad pair
where F1 is the restriction of Fn to T : Consider the two vertices y1; y2 of NðT : F 0Þ:
Then there is a ek-subcomponent T 0 of T and two vertices x1; x2 in VðT 0Þ such that
yiANv

X ðxi : GÞ for i ¼ 1; 2: Since every vertex of TATk has degree k � 1 in G and T 0

is an ek-subcomponent of T ; it follows that dTðx1Þ ¼ dTðx2Þ ¼ k � 2: Consequently,
x1; x2 are two distinct non-separating vertices of T : Moreover, F1ðxiÞ ¼ FðxiÞ �
fj0ðy1Þg ¼ f1;y; k � 1g � fj0ðy1Þg for i ¼ 1; 2: Since j0ðy1Þaj0ðy2Þ; this implies
F1ðx1ÞaF1ðx2Þ; a contradiction to Lemma 4.3. This completes the proof of Lemma
4.1(b). &

Let G be a hypergraph, let F be a subhypergraph of G; YDVðGÞ; and let F be a
list for G: Then we call ðG;F ;Y ;FÞ a configuration of type 2 if the following
conditions hold:

(b1) G � Y is a Gallai forest and jFðxÞjXdGðxÞ for every xAVðGÞ � Y :
(b2) jFðyÞjXdG½Y �ðyÞ þ dF ðyÞ þ 1 for every yAY :

(b3) Every edge of G intersecting both Y and VðGÞ � Y is an ordinary edge. For
xAVðGÞ � Y ; let Nx ¼ fyAY j fx; ygAEðGÞg:

(b4) F is a graph and, for every component T of G � Y ; there are two edges
fx1; y1g; fx2; y2gAEðFÞ such that x1; x2 are two distinct non-separating
vertices of T ; y1; y2 are two distinct vertices of Y and, for i ¼ 1; 2; Nxi

¼
fyig: Furthermore, if Bi ði ¼ 1; 2Þ is the only block of T containing xi; then
B1 ¼ B2 or, for some iAf1; 2g; there is a non-separating vertex x of T such that

xAVðBiÞ and Nx ¼ |:

Lemma 4.4. If ðG;F ;Y ;FÞ is a configuration of type 2, then G is F-colourable

Proof (By induction on m ¼ jVðGÞ � Y j). If m ¼ 0; then G ¼ G½Y � and
jFðyÞjXdGðyÞ þ 1 for every yAVðGÞ implying that G is F-colourable.
Now assume mX1: Then let T be a component of G � Y and let fx1; y1g; fx2; y2g

be the two edges of F given by condition (b4). For i ¼ 1; 2; let Bi be the only block of
T containing xi: Let G0 ¼ G � VðTÞ ¼ G\VðTÞ and F 0 ¼ F � VðTÞ: We consider
two cases.

Case 1: B1 ¼ B2: First, assume Fðx1Þ ¼ Fðx2Þ: Let Gn be the hypergraph obtained

from G0 by adding the edge fy1; y2g: Then ðGn;F 0;Y ;FÞ is a configuration of type 2
and, by the induction hypothesis, there is a F-colouring j of G0: Consider the list
F0 ¼ FðVðG0Þ;jÞ for T ¼ G � VðG0Þ; that is

F0ðxÞ ¼ FðxÞ � fjðyÞ j yANxg

for all xAVðTÞ:Note that, by (b3), every edge of G containing xAVðTÞ belongs to T

or is an ordinary edge. By (b2), jF0ðxÞjXdT ðxÞ for all xAVðTÞ: Consequently, if T is

not F0-colourable, then ðT ;F0Þ is a bad pair and, since Nxi
¼ fyig and jðy1Þajðy2Þ;
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we have F0ðx1ÞaF0ðx2Þ; a contradiction to Lemma 1.7. Therefore, T is F0-colourable
implying that G is F-colourable.
Now, assume Fðx1ÞaFðx2Þ; say aAFðx1Þ � Fðx2Þ: Let F0 be the list obtained

from F by removing colour a from Fðy1Þ: Then ðG0;F 0;Y ;F0Þ is a configuration of
type 2 and, by the induction hypothesis, there is a F0-colouring j of G0: Consider the
list F1 ¼ FðVðG0Þ;jÞ for T ¼ G � VðG0Þ: Then jF0ðxÞjXdTðxÞ for all xAVðTÞ and
F1ðx1ÞaF1ðx2Þ: Consequently, by Lemma 1.7, T is F1-colourable and, therefore, G

is F-colourable.
Case 2: B1aB2: Then, by (b4), one of these two blocks, say B1; contains a non-

separating vertex x of T such that Nx ¼ |: We may assume that jFðxÞj ¼ dGðxÞ:
Then jFðx1ÞjXdGðx1Þ4dGðxÞ and, therefore, there is a colour aAFðx1Þ � FðxÞ: Let
F0 be the list obtained from F by removing colour a from Fðy1Þ: Then ðG0;F 0;Y ;F0Þ
is a configuration of type 2 and, by the induction hypothesis, there is a F0-colouring
j of G0: Consider the list F1 ¼ FðVðG0Þ;jÞ for T ¼ G � VðG0Þ: Then F1ðx1ÞaF1ðxÞ
and we infer from Lemma 1.7 that T is F1-colourable. Hence G is F-colourable.
Therefore, in both cases we have established that G is F-colourable. Thus Lemma

4.4 is proved. &

4.2.3. Proof of Lemma 4.1(c)

Suppose on the contrary that dðyÞX4 for every yAY and dðTÞX4 for every TAC:
To arrive at a contradiction, we show that G is F-colourable.
Since G is F-critical, we infer from Lemma 1.6 that CDTk: Furthermore, by the

assumption of Lemma 4.1(c), every component T of GðX Þ is an ek-hypergraph and,

therefore, VðTÞDW ¼ W kðGðXÞÞ ¼ X :
Let Xn denote the set of all non-separating vertices ofGðXÞ: Then dGðX ÞðxÞ ¼ dGðxÞ ¼

k � 1 for all xAX � Xn; and dGðXÞðxÞ ¼ dGðxÞ � 1 ¼ k � 2 for all xAXn: Consequently,

for every xAXn; there is exactly one edge exAEðGÞ � EðGðXÞÞ containing x: Clearly, if
xAXn; then ex-X ¼ fxg and, moreover, yANv

X ðx : GÞ iff y ¼ vðexÞ:
Let E0 be the set of all edges eAEðGÞ satisfying e-X ¼ | and e-Ya|: For every

edge eAE0; choose a vertex v0ðeÞAe � Y provided that e � Ya|:
Next, we construct the hypergraph G1 as follows. Let VðG1Þ ¼ X,Y and let

EðG1Þ ¼ EðGðXÞÞ,E1,E2 where

E1 ¼ fe-Y j eAE0 & je-Y jX2g

and

E2 ¼ ffx; yg j xAXn & y ¼ vðexÞAYg:

For xAX ; let

Nx ¼ Nv
X ðx : GÞ ¼ fyAY j fx; ygAEðG1Þg:

Then jNxj ¼ 1 if xAXn and jNxj ¼ 0 if xAX � Xn: Since G is F-critical, there is a F-
colouring j of G0 ¼ G � X � Y : Now, we define a list F1 for the hypergraph G1 as
follows. For a vertex yAY ; let

F1ðyÞ ¼ FðyÞ � fjðv0ðeÞÞ j eAE0 & e-Y ¼ fygg:
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For a vertex xAX ; let

F1ðxÞ ¼ FðxÞ � fjðvðexÞÞg

if xAXn and vðexÞeY ; and let F1ðxÞ ¼ FðxÞ otherwise, that is if xAX � Xn or xAXn

and vðexÞAY :
Our aim is to show that G1 is F1-colourable. If this is true, then there is a F1-

colouring j1 of G1 and j,j1 is a F-colouring of G; a contradiction. Note that if e is
an edge of G; then e is an edge of G0 ¼ G � X � Y ; or eAE0; or
e-XAEðGðXÞÞDEðG1Þ; or e ¼ ex for some vertex xAXn:
To prove that G1 is F1-colourable, we use Lemma 4.4. First, we need some

notation. For ZDX ; let NðZÞ ¼
S

xAZ Nx; and, for a set of blocks B of GðXÞ; let
XðBÞ be the set of all vertices contained in some block of B:
Consider an arbitrary component TAC: Since T is an ek-hypergraph, VðTÞDW

and, therefore, jNðVðTÞÞj ¼ dðTÞX4: Let S denote the set of all vertices x of T such

that Nxa| and let R denote the set of all non-separating vertices of T : Then SDR:
From Lemma 4.1(a) it follows that, for every vertex yAY ; there are at most two
vertices x; x0AVðTÞ such that Nx ¼ Nx0 ¼ fyg: This implies, in particular, that
jNðZÞjX4 provided that jZ-SjX7:
Let B1 denote the set of all blocks B of T such that VðBÞ-ðR � SÞa|; i.e., B

contains a non-separating vertex x of T such that Nx ¼ |:
We claim that there is a set B ¼ BT of blocks of T such that all but at most one

block of B belong to B1 and jNðXðBÞÞjX4: If some end-block B of T is not in B1;
then VðBÞ-RDS and, since B is a Kk�1 and kX9; jVðBÞ-Rj ¼ k � 2X7: This
implies that the claim is true for B ¼ fBg:
Now, assume that every end-block of T belong to B1 and jNðB1Þjp3: Since

jNðVðTÞÞjX4; there is a block B of T not contained in B1: Let B ¼ B1,fBg: Since
|aVðBÞ-RDS and T has at least jVðBÞ � Rj end-blocks, we conclude that B is a
Kk�1 and jX ðBÞ-SjXjVðBÞj ¼ k � 1X8 and, therefore, jNðXðBÞÞjX4: This proves
our claim.
Next, let F ¼ FðC;YÞ be the bipartite graph such that NðT : FÞ ¼ NðXðBTÞÞ for

every TAC: Then dF ðTÞX4 for every TAC and, by Lemma 3.2, there is a subgraph
F 0 of F such that dF 0 ðTÞ ¼ 2 for every TAC and dF 0 ðyÞpdF ðyÞ � 2 for every yAY

with dF ðyÞX4 and dF 0 ðyÞp2 for every yAY with dF ðyÞX3:
For every component TAC; the set NðT : F 0Þ consists of two distinct vertices

y1ðTÞ; y2ðTÞ and, moreover, there are two distinct vertices x1ðTÞ; x2ðTÞAXðBTÞ
such that NxiðTÞ ¼ fyiðTÞg for i ¼ 1; 2: Let F1 be the subgraph of G1 with the same

vertex set as G1 and with EðF1Þ ¼ ffxiðTÞ; yiðTÞg j TAC & i ¼ 1; 2g: Then it is easy
to check that ðG1;F1;Y ;F1Þ is a configuration of type 2. Therefore, by Lemma 4.4,
G1 is F1-colourable. Hence, Lemma 4.1(c) is proved. &

4.3. Proof of Theorem 1.9

In this subsection, let G be a hypergraph not containing a Kk; and let F be a list for
G satisfying jFðxÞj ¼ k � 1 for every xAVðGÞ: Suppose that G is F-critical.
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Let L ¼ fxAVðGÞ j dGðxÞ ¼ k � 1g; H ¼ fxAVðGÞ j dGðxÞXkg; W ¼ W kðGðLÞÞ
and L0 ¼ L � W : Furthermore, let

E1 ¼ feAEðGÞ j je-Lj ¼ 1g and E2 ¼ feAEðGÞ j je-LjX2g:

Let C be the set of all components of GðLÞ and let D be the set of all components of

GðWÞ: By Lemma 1.6, Ha| and C;DDTk: Obviously, W ¼ W kðGðWÞÞ and,
therefore, every member of D is an ek-hypergraph. This implies, in particular, that
every member of D is an ek-subcomponent of some member in C:
Denote by v an arbitrary L-mapping of G and let v0 be a W -mapping of G such

that v0ðeÞ ¼ vðeÞ for all eAEW-EL: Then Nv
Lðx : GÞDNv0

W ðx : GÞ for every xAW

and, therefore, dv0
W ðyÞXdv

LðyÞ for every yAH:
Let R; s and tc be defined as in Lemma 1.8 and, for yAH; let

tcðyÞ ¼ dG½H�ðyÞ þ k � c � 2

k � 1

� �
ðdGðyÞ � kÞ:

Then, we have

s ¼ sðGðLÞÞ ¼
X
TAC

sðTÞ and tc ¼
X
yAH

tcðyÞ:

Since CDTk; it follows from Lemma 2.3 that

sX
X
TAC

ðsnðTÞ þ sðTÞak þ 2� akÞ

provided that kX6: For xAL; let d1ðxÞ ¼ jfeAE1 j xAegj: If the vertex xAL belongs
to a component TAC; then, by Lemma 1.6,

d1ðxÞ ¼ k � 1� dTðxÞ ¼ dGðxÞ � dGðLÞðxÞ ¼ jNv
Lðx : GÞj: ð3Þ

Consequently,

sX
X
xAL0

akd1ðxÞ þ
X
TAC

ðsðTÞak þ 2� akÞ ð4Þ

provided that kX6: For an edge eAE1 ¼ ELðGÞ; let xe denote the vertex satisfying
e-L ¼ fxeg: For a vertex yAH; define

d1ðyÞ ¼ jfeAE1 j yAe and ðxeAL � W or yavðeÞÞgj

and

d2ðyÞ ¼ jfeAE2 j yAegj:

It follows from (3) thatX
yAH

ðd1ðyÞ þ d2ðyÞÞ þ
X
xAW

d1ðxÞ ¼
X

eAE1,E2

je-Hj:

Since jE1j ¼
P

xAL d1ðxÞ; this implies thatX
yAH

ðd1ðyÞ þ d2ðyÞÞ ¼
X

eAE1,E2

je-Hj þ
X
xAL0

d1ðxÞ � jE1j: ð5Þ
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Furthermore, for yAH; we have dv
LðyÞ ¼ jfxAW j yANv

Lðx : GÞgj and, therefore,
dGðyÞ ¼ d1ðyÞ þ d2ðyÞ þ dv

LðyÞ þ dG½H�ðyÞ: ð6Þ

Let H 0 ¼ fyAH j dGðyÞ ¼ kg and let
S ¼ Rþ sþ

X
yAH 0

tcðyÞ ¼
X

eAE1,E2

je-Hj � jE1j þ sþ
X
yAH 0

dG½H�ðyÞ: ð7Þ

Next, define the bipartite graph F ¼ FðA;BÞ as follows:

(a) B ¼ H 0 and A is the disjoint union of the sets A1; A2 and A3:
(b) A1 ¼ C and a component TAA1 is joined to a vertex yAB in F if and only if

yANv
Lðx : GÞ for some xAW kðTÞ ¼ W-VðTÞ:

(c) For each vertex yAB; let A2ðyÞ be a set of d1ðyÞ þ d2ðyÞ vertices which are all
joined to y in F : Let A2 be the disjoint union of all these sets A2ðyÞ; yAB:

(d) For each vertex yAB; let A3ðyÞ be a set of dG½H�ðyÞ vertices which are all joined
to y in F : Let A3 be the disjoint union of all these sets A3ðyÞ; yAB:

Now, we prove the two parts (Cases 1 and 2) of Theorem 1.9.
Case 1: kX6; FðxÞ ¼ f1;y; k � 1g for every xAVðGÞ and c ¼ ðk � 5Þak: We

have to show that Rþ sþ tcXcjHj: Since for yAH � H 0 we have tcðyÞXk � c þ
2

k�1Xc; it is sufficient to show that SXcjH 0j: The proof of this statement is based on
Lemma 4.1 where X ¼ L; Y ¼ H 0 and v is the given L-mapping of G:
Consider the bipartite graph F ¼ FðA;BÞ: If TAA1; then dF ðTÞ ¼ dðTÞ: If yAB ¼

H 0; then Lemma 4.1(a) implies that jNðy : FÞ-A1j ¼ dðyÞXdv
LðyÞ � 1 and, by (6),

we conclude that

dF ðyÞXdv
LðyÞ � 1þ d1ðyÞ þ d2ðyÞ þ dG½H�ðyÞ ¼ dGðyÞ � 1 ¼ k � 1:

Furthermore, we infer from (4), (5) and (7) that

SX
X

eAE1,E2

je-Hj � jE1j þ
X
xAL0

akd1ðxÞ þ
X
TAC

ðsðTÞak þ 2� akÞ

þ
X
yAH 0

dG½H�ðyÞ

X akjA2j þ
X
TAC

ðsðTÞ þ 3Þak þ jA3j

X ak jA2j þ
X
TAC

ðsðTÞ þ 3Þ þ jA3j
 !

:

Now, we apply Lemma 3.4 to F ¼ FðA;BÞ where R ¼ k � 1; d ¼ 4 and aðxÞ ¼ 1 if
xAA2,A3 and aðxÞ ¼ sðTÞ þ 3 if x ¼ TAA1: If ðR � dÞjBjp

P
xAA aðxÞ; then the

above inequality for S implies

SXak

X
xAA

aðxÞXakðk � 5ÞjBj ¼ cjH 0j:

Otherwise, by Lemma 3.4, there are non-empty subsets A0DA and B0DB ¼ H 0 such
that for F 0 ¼ F ½A0,B0� we have dF 0 ðxÞ4aðxÞ for every xAA0 and dF 0 ðyÞ4d ¼ 4 for
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every yAB0: Since every vertex of A2,A3 has degree 1 in F ; we have A0DA1 ¼ C:
This gives a contradiction to Lemma 4.1(b).

Case 2: kX9; jFðxÞj ¼ k � 1 for every xAVðGÞ and c ¼ 1
3
ðk � 4Þak: We have

to show that Rþ sþ tcXcjHj: Since tcðyÞXc for every yAH � H 0; it is sufficient
to show that SXcjH 0j: The proof of this statement is based on Lemma 4.1
where X ¼ W ; Y ¼ H 0 and v0 is the W -mapping of G obtained from the given
L-mapping v:
Let Fn ¼ FnðAn;BÞ be the bipartite graph obtained from F � A1 by adding the set

An
1 ¼ D where TAD and yAB are joined by an edge in Fn iff yANv0

W ðx : GÞ for some
vertex xAW kðTÞ ¼ W-VðTÞ: Since every ek-hypergraph TAD is an ek-subcompo-
nent of some member in C; we infer from (4), (5) and (7) that

SX
X
eAE1

ðje-Hj � 1Þ þ
X
eAE2

je-Hj þ
X
xAL0

akd1ðxÞ þ
X
TAD

ak þ
X
yAH 0

dG½H�ðyÞ

X akjA2j þ akjAn

1 j þ jA3jXakjAnj:

Since dv0

W ðyÞXdv
LðyÞ for every yAH; we conclude from (6) and Lemma 4.1(a),

similarly to Case 1, that dF ðyÞXk � 1 for every yAB: Now, we apply Lemma 3.4 to
Fn where R ¼ k � 1; d ¼ 3 and aðxÞ ¼ 3 for every xAAn: If ðR � dÞjBjp3jAnj; then
we obtain

SXakjAnjX1
3
ðk � 4ÞakjBj ¼ cjH 0j:

Otherwise, by Lemma 3.4, there are non-empty subsets A0DA and B0DB ¼ H 0 such
that for F 0 ¼ Fn½A0,B0� we have dF 0 ðxÞ43 for every xAA0 and dF 0 ðyÞ43 for every
yAB0: Since every vertex of A2,A3 has degree 1 in Fn; we have A0DAn

1 ¼ D: This
gives a contradiction to Lemma 4.1(c). Therefore, Theorem 1.9 is proved. &

5. Concluding remarks

The main result of this paper is that 2fkðnÞXgkðn; cÞ where c ¼ ðk � 5Þak and
kX6: Our method of proof yields two restrictions for the possible values of the

constant c, namely cpk � 2=ðk � 1Þ (see Lemma 1.8) and cp1
2
ðk � 2=ðk � 1ÞÞ (see

the proof of Theorem 1.9, the part where we show that tcðyÞXc provided that
dGðyÞ4k). For integers p; k satisfying kX4 and 2pppk; let

ck;p ¼ fkðk þ pÞ � 1
2

gk k þ p; k � 2

k � 1

� �

and

hk;pðnÞ ¼
1

2
gk n; k � 2

k � 1

� �
þ ck;p ¼ 1

2
k � 1þ k � 3

k � 1

� �
n þ ck;p:
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We claim that if nXk þ 2 and n � p � 1 mod ðk � 1Þ where 2pppk; then there is a
k-critical graph with n vertices and hk;pðnÞ edges implying that

2fkðnÞp2hk;pðnÞ ¼ gk n; k � 2

k � 1

� �
þ 2ck;p: ð8Þ

For n ¼ k þ p; we have hk;pðnÞ ¼ fkðnÞ and the claim is evidently true. Now, assume

n � p � 1 mod ðk � 1Þ: If G is a k-critical graph with n vertices and hk;pðnÞ edges,
then we apply the Hajós construction (see [11] or [12]) to G and Kk: This results in a
k-critical graph with n þ k � 1 vertices and

m ¼ jEðGÞj þ
k

2

 !
� 1

edges. By an easy calculation, we then obtain

m ¼ hk;pðnÞ þ
k

2

 !
� 1 ¼ hk;pðn þ k � 1Þ:

This proves our claim.
Ore [20] (see also [12, Problem 5.3]) conjectured that equality holds in (8). In [10]

Gallai proved that

2fkðk þ pÞ ¼ ðk � 1Þðk þ pÞ þ pðk � pÞ

provided that 2pppk � 1 and in [13] it was proved that fkð2kÞ ¼ k2 � 3: Ore’s
conjecture implies, in particular, that

lim
n-N

2fkðnÞ
n

¼ k � 2

k � 1:

Some further results concerning list critical graphs and hypergraphs with few edges
can be found in [14,15].
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