ACADEMIC PRESS

A new lower bound on the number of edges in colour-critical graphs and hypergraphs

Alexandr V. Kostochka ${ }^{\text {a,b,1 }}$ and Michael Stiebitz ${ }^{\mathrm{c}, 2}$
${ }^{\text {a }}$ University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Novosibirsk State University, 630090 Novosibirsk, Russia
${ }^{\text {c }}$ Technische Universität Ilmenau, D-98684 Ilmenau, Germany

Received 15 September 2000

Abstract

A graph G is called k-critical if it has chromatic number k, but every proper subgraph of G is $(k-1)$-colourable. We prove that every k-critical graph $(k \geqslant 6)$ on $n \geqslant k+2$ vertices has at least $\frac{1}{2}\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right) n$ edges where $c=(k-5)\left(\frac{1}{2}-\frac{1}{(k-1)(k-2)}\right)$. This improves earlier bounds established by Gallai (Acad. Sci. 8 (1963) 165) and by Krivelevich (Combinatorica 17 (1999) 401). (C) 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A graph G is k-critical for a positive integer k if G is not $(k-1)$-colourable but every proper subgraph of G is $(k-1)$-colourable. Then every k-critical graph has chromatic number k and every k-chromatic graph contains a k-critical subgraph. The importance of the notion of criticality is that problems for k-chromatic graphs may often be reduced to problems for k-critical graphs, whose structure is more restricted. Critical graphs were first defined and used by Dirac [5] in 1951. In the present paper a new lower bound for the number of edges in a k-critical graph on n vertices is established.

[^0]The complete graph K_{k} is an example of a k-critical graph and for $k=1,2$ it is the only one. The only 3 -critical graphs are the odd circuits, so for the remainder of this paper we shall restrict our attention to the case $k \geqslant 4$. Then there are k-critical graphs on n vertices for all $n \geqslant k$ except for $n=k+1$. For $n \geqslant k+2$, let $f_{k}(n)$ denote the minimum number of edges possible in a k-critical graph on n vertices. Since every k critical graph has minimum degree at least $k-1$, we have $2 f_{k}(n) \geqslant(k-1) n$. Brooks' theorem [3] implies

$$
2 f_{k}(n) \geqslant(k-1) n+1,
$$

and Dirac [6] proved

$$
2 f_{k}(n) \geqslant(k-1) n+k-3 .
$$

In [7], he also gave a complete description of the extremal cases. Dirac's proof was rather long. Shorter and more elegant proofs were found by Kronk and Mitchem [18], Weinstein [23] and, for the result in [7], by Deuber et al. [4]. In [13], the authors proved

$$
2 f_{k}(n) \geqslant(k-1) n+2(k-3)
$$

provided that $n \neq 2 k-1$. For a given constant $c \geqslant 0$, let

$$
g_{k}(n, c)=\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right) n .
$$

In his fundamental paper [9] Gallai characterized the class of graphs that are subgraphs of some k-critical graph G induced by the set of vertices having degree $k-1$ in G. Based on this result, he proved $2 f_{k}(n) \geqslant g_{k}(n, 0)$. Recently, this lower bound was improved by Krivelevich [17] to $2 f_{k}(n) \geqslant g_{k}(n, 2)$. Krivelevich [17] also presents some interesting applications of his lower bound on the number of edges in critical graphs. In what follows, let

$$
\alpha_{k}=\frac{1}{2}-\frac{1}{(k-1)(k-2)} .
$$

The following theorem is one of the main results of this paper.
Theorem 1.1. If $k \geqslant 6$ and $n \geqslant k+2$, then $2 f_{k}(n) \geqslant g_{k}\left(n,(k-5) \alpha_{k}\right)$.

1.1. Terminology

Concepts and notation not defined in this paper will be used as in standard textbooks. Though the main objects of our study are graphs, it is convenient to define the central concepts for hypergraphs.

A hypergraph $G=(V, E)$ consists of a finite set $V=V(G)$ of vertices and a set $E=E(G)$ of subsets of V, called edges, each having cardinality at least two. An edge e with $|e| \geqslant 3$ is called a hyperedge and an edge e with $|e|=2$ is called an ordinary edge. A graph is a hypergraph in which each edge is ordinary.

Let G be a hypergraph. The order of G is $|V(G)|$. The degree $d_{G}(x)$ of a vertex $x \in V(G)$ is the number of the edges in G containing x. If $d_{G}(x)=r$ for every vertex
$x \in V(G)$, then G is called r-regular. Furthermore, let $d(G)=\sum_{x \in V(G)} d_{G}(x)$. Clearly, if G is a graph, then $d(G)=2|E(G)|$.

If H and G are hypergraphs with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then H is said to be a subhypergraph of G.

Let G be a hypergraph and $X \subseteq V(G)$. The subhypergraph $G[X]$ of G induced by X is defined as follows: $V(G[X])=X$ and $E(G[X])=\{e \in E(G) \mid e \subseteq X\}$. Furthermore, let $G(X)$ denote the hypergraph with $V(G(X))=X$ and $E(G(X))=$ $\{e \cap X|e \in E(G) \&| e \cap X \mid \geqslant 2\}$. Further, let $G-X=G[V(G)-X]$ and $G \backslash X=$ $G(V(G)-X)$. For $M \subseteq E(G)$, let $G-M=(V(G), E(G)-M)$. Clearly, $G[X]$ is a subhypergraph of $G(X)$ and, if G is a graph, then $G[X]=G(X)$. Note that in general $G(X)$ is not a subhypergraph of G.

A subset X of $V(G)$ will be called a clique of G if $G[X]$ is a complete graph. A clique of G with p vertices is also said to be a p-clique of G. As usual, K_{n} denotes the complete graph on n vertices. For an edge e, let $\langle e\rangle$ be the hypergraph $(e,\{e\})$.

For a graph G and a vertex $x \in V(G)$, let $N(x: G)$ be the neighbourhood of x in G, that is the set of all vertices $y \in V(G)$ such that $\{x, y\} \in E(G)$. Obviously, $d_{G}(x)=$ $|N(x: G)|$.

Now consider a hypergraph G and a set $X \subseteq V(G)$. Then the set of all edges $e \in E(G)$ satisfying $|e \cap X|=1$ is denoted by $E_{X}(G)$ and in case of $X=\{x\}$ also by $E_{x}(G)$. By an X-mapping of G we mean a mapping v that assigns to every edge $e \in E_{X}(G)$ a vertex $v(e) \in e-X$. For an X-mapping v and a vertex $x \in X$, let

$$
N_{X}^{v}(x: G)=\left\{y \in V(G) \mid y=v(e) \& e \cap X=\{x\} \text { for some } e \in E_{X}(G)\right\} .
$$

Clearly, $N_{X}^{v}(x: G) \subseteq V(G)-X$ and $d_{G}(x) \geqslant d_{G(X)}(x)+\left|N_{X}^{v}(x: G)\right|$. Furthermore, $d_{G}(x)=\left|E_{x}(G)\right|$ and, provided that G is a graph, $N_{X}^{v}(x: G)=N(x: G)-X$.

1.2. Main results

For the proof of Theorem 1.1 we shall use the concept of list colouring. Consider a hypergraph G and assign to each vertex x of G a set $\Phi(x)$ of colours (positive integers). Such an assignment Φ of sets to vertices in G is referred to as a list for G. A Φ-colouring of G is a mapping φ of $V(G)$ into the set of colours such that $\varphi(x) \in \Phi(x)$ for all $x \in V(G)$ and $|\{\varphi(x) \mid x \in e\}| \geqslant 2$ for each $e \in E(G)$. If G admits a Φ-colouring, then G is said to be Φ-colourable. In the case where $\Phi(x)=\{1, \ldots, k\}$ for all $x \in V(G)$, we also use the terms k-colouring and k-colourable, respectively. The chromatic number of G denoted by $\chi(G)$ is the least number k for which G is k colourable. If $\chi(G)=k$, then G is called k-chromatic. The list colouring concept was introduced, independently, by Vizing [22] and by Erdös et al. [8].

Let G be a hypergraph and let Φ be a list for G. We say that G is Φ-critical if G is not Φ-colourable but every proper subhypergraph of G is Φ-colourable. In the case where $\Phi(x)=\{1, \ldots, k-1\}$ for all $x \in V(G)$, we also use the term k-critical. Then G is k-critical if and only if $\chi\left(G^{\prime}\right)<\chi(G)=k$ for every proper subhypergraph G^{\prime} of G.

The following theorem is one of the main results of this paper. In particular, it implies Theorem 1.1.

Theorem 1.2. Let G be a hypergraph not containing a K_{k}, and let Φ be a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. If G is Φ-critical, then

$$
d(G) \geqslant g_{k}(|V(G)|, c)=\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right)|V(G)|
$$

provided that $k \geqslant 9$ and $c=\frac{1}{3}(k-4) \alpha_{k}$ or $k \geqslant 6, \Phi(x)=\{1, \ldots, k-1\}$ for every $x \in V(G)$ and $c=(k-5) \alpha_{k}$.

Theorem 1.2 is an immediate consequence of Theorem 1.9 in Section 1.4 and this result is proved in Section 4. The proof of the next result is given in Section 2. For k critical graphs, this result was proved by Gallai [9] in 1963.

Theorem 1.3. Assume that $k \geqslant 4$ and $G \neq K_{k}$ is a Φ-critical hypergraph where Φ is a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. Then $d(G) \geqslant g_{k}(|V(G)|, 0)$.

Theorem 1.3 is interesting only for Φ-critical hypergraphs containing a K_{k}. Obviously, if a k-critical hypergraph G contains a K_{k}, then $G=K_{k}$. However, the list version of this statement is not true. To see this, let $r \geqslant 2$ be an integer and let G denote the hypergraph whose vertex set is the disjoint union of r sets A_{1}, \ldots, A_{r} such that $G\left[A_{i}\right]=K_{k}$ for $i=1, \ldots, r$ and $E(G)=\bigcup_{i=1}^{r} E\left(G\left[A_{i}\right]\right) \cup\{e\}$ where $e \cap A_{i}=\left\{y_{i}\right\}$ for $i=1, \ldots, r$. Furthermore, define the list Φ for the hypergraph G by

$$
\Phi(x)= \begin{cases}\{1, \ldots, k-1\} & \text { if } x \in V(G)-\left\{y_{1}, \ldots, y_{r}\right\}, \\ \{2, \ldots, k\} & \text { if } x \in\left\{y_{1}, \ldots, y_{r}\right\} .\end{cases}
$$

Then $|\Phi(x)|=k-1$ for all $x \in V(G)$ and it is easy to check that G is Φ-critical. Clearly, G is a hypergraph of order $n=r k$ containing r copies of a K_{k} and $d(G)=$ $(k-1) n+r$.

In the next subsection we establish some basic results about list-critical hypergraphs.

1.3. Gallai trees and bad pairs

Let G be a connected hypergraph. A vertex x of G is called a separating vertex of G if $G \backslash x\}$ is non-empty and disconnected. An edge e of G is called a bridge of G if $G-\{e\}=(V(G), E(G)-\{e\})$ has precisely $|e|$ components. By a block of G we mean a maximal connected subhypergraph B of G such that no vertex of B is a separating vertex of B. Any two distinct blocks of G have at most one vertex in common and, obviously, a vertex of G is a separating vertex of G iff it is contained in more than one block of G. An end-block of G is a block that contains at most one separating vertex of G. Clearly, every non-empty hypergraph has at least one endblock.

The above statements about the block structure are well known for graphs. For hypergraphs, the proof of these statements is left to the reader.

By a brick we mean a hypergraph of the form $\langle e\rangle$ for some edge e, or an odd circuit (consisting only of ordinary edges), or a complete graph. A connected hypergraph all of whose blocks are bricks is called a Gallai tree; a Gallai forest is a hypergraph all of whose components are Gallai trees.

By a bad pair we mean a pair (G, Φ) consisting of a non-empty connected hypergraph G and a list Φ of G such that $|\Phi(x)| \geqslant d_{G}(x)$ for all $x \in V(G)$ and G is not Φ-colourable.

Lemma 1.4 (Kostochka et al. [16]). If (G, Φ) is a bad pair, then the following statements hold:
(a) $|\Phi(x)|=d_{G}(x)$ for all $x \in V(G)$.
(b) Every hyperedge e of G is a bridge of G and, therefore, $\langle e\rangle$ is a block of G.
(c) If G has no separating vertex, then $\Phi(x)$ is the same for all $x \in V(G)$.
(d) G is a Gallai tree.

For graphs, Lemma 1.4 was proved, independently, by Borodin [1,2] and by Erdös et al. [8]. Proofs of statements (a) and (c) in the graph version based on a sequential colouring argument were given by Vizing [22] and by Lovász [19]. For a short proof of Lemma 1.4 based on the following simple reduction idea the reader is referred to [16].

Remark 1.5. Let G be a hypergraph, Φ be a list for $G, X \subseteq V(G)$, and let v be an X mapping of G. Furthermore, let $Y=V(G)-X$ and let φ be a Φ-colouring of $G[Y]$. For the hypergraph $G^{\prime}=G(X)=G \backslash Y$, define the list Φ^{\prime} by

$$
\Phi^{\prime}(x)=\Phi(x)-\left\{\varphi(y) \mid y \in N_{X}^{v}(x: G)\right\}
$$

for every $x \in V\left(G^{\prime}\right)$. In what follows, we denote Φ^{\prime} by $\Phi(Y, v, \varphi)$ and in case of $Y=\{y\}$ and $\varphi(y)=a$ also by $\Phi(y, a)$. Then it is straightforward to show that the following statements hold.
(a) If G^{\prime} is Φ^{\prime}-colourable, then G is Φ-colourable.
(b) If $|\Phi(x)|=d_{G}(x)+p$ for $x \in V\left(G^{\prime}\right)$, then $\left|\Phi^{\prime}(x)\right| \geqslant d_{G^{\prime}}(x)+p$.
(c) If (G, Φ) is a bad pair, then $\left(G^{\prime}, \Phi^{\prime}\right)$ is a bad pair provided that G^{\prime} is connected.

Lemma 1.6. Let G be a Φ-critical hypergraph where Φ is a given list for $G, H=$ $\left\{y \in V(G)\left|d_{G}(y)>|\Phi(y)|\right\}\right.$ and $L=V(G)-H$. Furthermore, let X be a non-empty subset of L, let v be an X-mapping of G, and let $F=\{e \in E(G)| | e \cap X \mid \geqslant 2 \& e-$ $X \neq \emptyset\}$. Then the following statements hold:
(a) $d_{G}(x)=|\Phi(x)|$ for every $x \in L$.
(b) $G(X)$ is a Gallai forest.
(c) $d_{G}(x)=d_{G(X)}(x)+\left|N_{X}^{v}(x: G)\right|$ for every $x \in X$.
(d) If $x \in L$, then $\left|e \cap e^{\prime}\right|=1$ for every two distinct edges $e, e^{\prime} \in E_{x}(G)$.
(e) If $e, e^{\prime} \in F$ and $e \neq e^{\prime}$, then $e \cap X \neq e^{\prime} \cap X$.
(f) If $e \in F$, then $e \cap X$ is a bridge of $G(X)$.
(g) If $|\Phi(x)|=k-1$ for every $x \in V(G)(k \geqslant 1)$, then H is non-empty or G is a K_{k} or $k=3$ and G is an odd circuit or $k=2$ and $G=\langle e\rangle$. Furthermore, if $G(X)$ contains a K_{k}, then $G=K_{k}$.

Proof. In order to prove Lemma 1.6, it is sufficient to consider the case where $G(X)$ is connected. Let $Y=V(G)-X$. Since G is Φ-critical, there is a Φ-colouring φ of $G[Y]$. Now consider the list $\Phi^{\prime}=\Phi(Y, v, \varphi)$ for the connected hypergraph $G^{\prime}=G \backslash Y=G(X)$. Then, because $X \subseteq L$, we have

$$
|\Phi(x)| \geqslant d_{G}(x) \geqslant d_{G^{\prime}}(x)+\left|N_{X}^{v}(x: G)\right|,
$$

and, therefore,

$$
\left|\Phi^{\prime}(x)\right| \geqslant|\Phi(x)|-\left|N_{X}^{v}(x: G)\right| \geqslant d_{G^{\prime}}(x)
$$

for all $x \in X$. Furthermore, G^{\prime} is not Φ^{\prime}-colourable. Consequently, $\left(G^{\prime}, \Phi^{\prime}\right)$ is a bad pair. Then, by Lemma 1.4, G^{\prime} is a Gallai tree and $\left|\Phi^{\prime}(x)\right|=d_{G^{\prime}}(x)$ for all $x \in X$ implying that $|\Phi(x)|=d_{G}(x)=d_{G^{\prime}}(x)+\left|N_{X}^{v}(x: G)\right|$ for all $x \in X$. Thus (a)-(c) are proved.

For the proof of (d), suppose that, for some $x \in L$, there are two distinct edges $e, e^{\prime} \in E_{x}(G)$ such that $\left|e \cap e^{\prime}\right| \geqslant 2$. Then, for the set $X^{\prime}=\{x\}$, there exists an $X^{\prime}-$ mapping v^{\prime} of G such that $v^{\prime}(e)=v^{\prime}\left(e^{\prime}\right)$. Consequently, we have $d_{G}(x)>d_{G\left(X^{\prime}\right)}(x)+$ $\left|N_{X^{\prime}}^{v^{\prime}}(x: G)\right|$, a contradiction to (c).

Clearly, statement (e) is an immediate consequence of (d). For the proof of (f), let $\tilde{e}=e \cap X$ for every $e \in F$. Then \tilde{e} is an edge of $G(X)$ for all $e \in F$.

Now, suppose that \tilde{e} is not a bridge of $G^{\prime}=G(X)$ for some $e \in F$. Then, because of (b), \tilde{e} is an ordinary edge of G^{\prime}, i.e. $\tilde{e}=\left\{x_{1}, x_{2}\right\}$ with $x_{1}, x_{2} \in X$ and, therefore, $\tilde{G}=G^{\prime}-\{\tilde{e}\}$ is a connected hypergraph. Let $\tilde{\Phi}$ be the list for \tilde{G} such that $\tilde{\Phi}(x)=$ $\Phi^{\prime}(x)$ if $x \neq x_{1}$ and $\tilde{\Phi}\left(x_{1}\right)=\Phi^{\prime}\left(x_{1}\right)-\{\varphi(y)\}$ for some $y \in e \cap Y$. Then $|\tilde{\Phi}(x)| \geqslant d_{\tilde{G}}(x)$ for all $x \in X=V\left(G^{\prime}\right)$ and $\left|\tilde{\Phi}\left(x_{2}\right)\right|>d_{\tilde{G}}\left(x_{2}\right)$. Therefore, by Lemma 1.4, \tilde{G} is $\tilde{\Phi}$ colourable implying that G is Φ-colourable. This contradiction proves (f).

Finally, suppose that $|\Phi(x)|=k-1$ for every $x \in V(G)$. If $H=\emptyset$, then $G=G(L)$ and, since G is Φ-critical, G is connected. Therefore, by (a) and (b), G is a ($k-1$)regular Gallai tree. Since every block of a Gallai tree is regular, this implies that G consists of one block. Consequently, G is a K_{k} or $k=3$ and G is an odd circuit or $k=2$ and $G=\langle e\rangle$ for some hyperedge e. If $G(X)$ contains a K_{k}, then we argue as follows. By (a), the maximum degree of $G(X)$ is at most $k-1$. Consequently, by (b), one block B of $G(X)$ is a K_{k}. Then, by (d), every edge of B belongs to G and, therefore, B is a subhypergraph of G. Since every vertex of B has degree $k-1$ in G, this implies that B is a component of G. Then, since G is Φ-critical, we infer that $G=B=K_{k}$. This proves (g).

For k-critical graphs, statement (b) of Lemma 1.6 is due to Gallai [9] and the first statement of (g) is equivalent to the well-known theorem of Brooks [3].

Following Gallai, a vertex x of a Φ-critical hypergraph G is called a high vertex if $d_{G}(x)>|\Phi(x)|$, otherwise x is called a low vertex of G. For this reason, we always write H and L for the corresponding sets of vertices.

Let G be an arbitrary Gallai tree. The set of all blocks of G is denoted by $\mathscr{B}(G)$. If $B \in \mathscr{B}(G)$, then B is regular and we say that B is a block of type b if B is $(b-1)$ regular. Clearly, if $B \in \mathscr{B}(G)$ is a block of type b, then $b \geqslant 1$ and $B=K_{b}$, or $b=3$ and B is an odd circuit, or $b=2$ and $B=\langle e\rangle$ for some edge e. Two distinct blocks which have a vertex in common (they cannot have more than one vertex in common) are called adjacent.

Let $\mathscr{U}(G)$ denote the set of all mappings u that assign to every block $B \in \mathscr{B}(G)$ of type b a set $u(B)$ of $b-1$ colours such that $u(B) \cap u\left(B^{\prime}\right)=\emptyset$ for any two adjacent blocks $B, B^{\prime} \in \mathscr{B}(G)$. For a given mapping $u \in \mathscr{U}(G)$, define the list $\Phi=\Phi_{u}$ for the Gallai tree G by $\Phi(x)=\bigcup u(B)$ where B runs through all blocks of G containing the vertex $x \in V(G)$. The graph version of the following result was proved by Borodin [1,2] and by Erdös et al. [8].

Lemma 1.7. Let (G, Φ) be a bad pair. Then $\Phi=\Phi_{u}$ for some $u \in \mathscr{U}(G)$. This implies, in particular, that $\Phi(x)=\Phi(y)$ provided that x and y are two non-separating vertices of G contained in the same block of G.

Proof (By induction on the number m of blocks of G). For $m=1$, Lemma 1.7 follows from Lemma 1.4.

Now assume $m>1$. Let G_{1} be an end-block of G and let x denote the only separating vertex of G contained in G_{1}. Let $G_{2}=G-\left(V\left(G_{1}\right)-\{x\}\right)$. Clearly, G_{2} is a Gallai tree with $\mathscr{B}\left(G_{2}\right)=\mathscr{B}(G)-\left\{G_{1}\right\}$.

For $i=1,2$, let M_{i} denote the set of all colours $a \in \Phi(x)$ such that there is no Φ colouring φ of G_{i} with $\varphi(x)=a$. If there is a colour $a \in \Phi(x)-M_{1}-M_{2}$, then, for $i=1,2$, there is a Φ-colouring φ_{i} of G_{i} with $\varphi_{i}(x)=a$. Consequently, $\varphi_{1} \cup \varphi_{2}$ is a Φ colouring of G. This contradiction shows that $\Phi(x)=M_{1} \cup M_{2}$. For $i=1,2$, define a list Φ_{i} for the hypergraph G_{i} by

$$
\Phi_{i}(y)= \begin{cases}\Phi(y) & \text { if } y \in V\left(G_{i}\right)-\{x\} \\ M_{i} & \text { if } y=x .\end{cases}
$$

Clearly, for $i=1,2$, the hypergraph G_{i} is not Φ_{i}-colourable and, moreover, $\left|\Phi_{i}(y)\right| \geqslant d_{G_{i}}(y)$ for all $y \in V\left(G_{i}\right)-\{x\}$. Therefore, by Lemma 1.4, $\left|M_{i}\right|=$ $\left|\Phi_{i}(x)\right| \leqslant d_{G_{i}}(x)$. Since

$$
\left|M_{1}\right|+\left|M_{2}\right| \geqslant\left|M_{1} \cup M_{2}\right|=|\Phi(x)|=d_{G}(x)=d_{G_{1}}(x)+d_{G_{2}}(x),
$$

this implies that $\left|M_{i}\right|=d_{G_{i}}(x)$ for $i=1,2$ and $M_{1} \cap M_{2}=\emptyset$. Hence $\left(G_{i}, \Phi_{i}\right)$ is a bad pair and, by the induction hypothesis, $\Phi_{i}=\Phi_{u_{i}}$ for some $u_{i} \in \mathscr{U}\left(G_{i}\right)$. Then the mapping u with $u\left(G_{1}\right)=u_{1}\left(G_{1}\right)$ and $u(B)=u_{2}(B)$ for all $B \in \mathscr{B}\left(G_{2}\right)$ belongs to $\mathscr{U}(G)$ and $\Phi=\Phi_{u}$.

1.4. Basic idea

The next lemma tells us how we can find a lower bound for the degree sum of a list-critical hypergraph.

Lemma 1.8. Assume that $k \geqslant 4$ and $G \neq K_{k}$ is a Φ-critical hypergraph where Φ is a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. Furthermore, let $L=\{x \in V(G) \mid$ $\left.d_{G}(x)=k-1\right\}, H=\left\{x \in V(G) \mid d_{G}(x) \geqslant k\right\}, E_{1}=\{e \in E(G)| | e \cap L \mid=1\}$ and E_{2} $=\{e \in E(G)| | e \cap L \mid \geqslant 2\}$. Finally, let

$$
\begin{aligned}
& \varrho=\sum_{e \in E_{1}}(|e \cap H|-1)+\sum_{e \in E_{2}}|e \cap H|, \\
& \sigma=\left(k-2+\frac{2}{k-1}\right)|L|-d(G(L))
\end{aligned}
$$

and

$$
\tau_{c}=d(G[H])+\left(k-c-\frac{2}{k-1}\right) \sum_{y \in H}\left(d_{G}(y)-k\right)
$$

where $0 \leqslant c \leqslant k-\frac{2}{k-1}$ is a given constant. If $\varrho+\sigma+\tau_{c} \geqslant c|H|$, then $d(G) \geqslant g_{k}(|V(G)|, c)$.

Proof. Let $n=|V(G)|$ and $\gamma=\sum_{y \in H}\left(d_{G}(y)-k\right)$. Then

$$
\begin{aligned}
\sigma & =\left(k-2+\frac{2}{k-1}\right)|L|-d(G(L)) \quad \text { and } \\
\tau_{c} & =d(G[H])+\left(k-c-\frac{2}{k-1}\right) \gamma .
\end{aligned}
$$

From Lemma 1.4 we conclude that $H \neq \emptyset$ and $n=|L|+|H|$. If $|L|=0$, then $d(G) \geqslant k n \geqslant g_{k}(n, c)$. If $|L| \geqslant 1$, then $d(G(L))=(k-1)|L|-\left|E_{1}\right|$ and we infer that

$$
\begin{aligned}
\sum_{y \in H} d_{G}(y) & =d(G[H])+\sum_{e \in E_{1} \cup E_{2}}|e \cap H| \\
& =d(G[H])+(k-1)|L|-d(G(L))+\varrho .
\end{aligned}
$$

Since $\varrho+\sigma+\tau_{c} \geqslant c|H|$ and every vertex in L has degree $k-1$ in G, this implies, on the one hand, that

$$
\begin{aligned}
d(G) & =(k-1)|L|+\sum_{y \in H} d_{G}(y) \\
& =d(G[H])+2(k-1)|L|-d(G(L))+\varrho \\
& =d(G[H])+\sigma+\varrho+|L|\left(k-\frac{2}{k-1}\right) \\
& \geqslant c|H|-\gamma\left(k-c-\frac{2}{k-1}\right)+|L|\left(k-\frac{2}{k-1}\right) \\
& =c n-\gamma\left(k-c-\frac{2}{k-1}\right)+|L|\left(k-c-\frac{2}{k-1}\right) .
\end{aligned}
$$

On the other hand,

$$
d(G)=(k-1) n+|H|+\gamma=k n-|L|+\gamma .
$$

Therefore,

$$
d(G)\left(1+k-c-\frac{2}{k-1}\right) \geqslant\left(c+k\left(k-c-\frac{2}{k-1}\right)\right) n
$$

Since $k-c-\frac{2}{k-1} \geqslant 0$, this is equivalent to

$$
d(G) \geqslant\left(k-1+\frac{k-3}{(k-c)(k-1)+k-3}\right) n=g_{k}(n, c) .
$$

Thus Lemma 1.8 is proved.
Consider a k-critical graph $G \neq K_{k}$ for some integer $k \geqslant 4$. Furthermore, let L, H, ϱ, σ and τ_{c} be defined as in Lemma 1.8. By this lemma, $\varrho+\sigma+\tau_{c} \geqslant c|H|$ implies $d(G) \geqslant g_{k}(|V(G)|, c)$. For k-critical graphs, this fact was already known to Gallai [9]. Clearly, in the graph case we have $\varrho=0, \tau_{c} \geqslant 0$ and, moreover, Gallai [9] proved that if c_{L} is the number of components of $G[L]$, then $\sigma \geqslant 2 c_{L}$. Consequently, $\varrho+\sigma+\tau_{c} \geqslant 0$ and, therefore, $d(G) \geqslant g_{k}(|V(G)|, 0)$. Krivelevich [17] observed that if c_{H} is the number of components of $G[H]$, then $\tau_{c} \geqslant d(G[H])=2|E(G[H])| \geqslant 2|H|-$ $2 c_{H}$ and, therefore, $\varrho+\sigma+\tau_{c} \geqslant 2 c_{L}+2|H|-2 c_{H}$. Since $c_{L}-c_{H} \geqslant 0$ by a result from [21], this implies that $\varrho+\sigma+\tau_{c} \geqslant 2|H|$ and, therefore, $d(G) \geqslant g_{k}(|V(G)|, 2)$.

The statement $\sigma \geqslant 2 c_{L}$ holds also if $G \neq K_{k}$ is a Φ-critical graph for some list Φ satisfying $|\Phi(x)|=k-1$ for all $x \in V(G)$ (see Section 2). However, the statement $c_{L}-c_{H} \geqslant 0$ is not true in this case.

As an immediate consequence of Lemma 1.8 we obtain that for the proof of Theorem 1.2 it suffices to prove the following result.

Theorem 1.9. Let G be a hypergraph not containing a K_{k}, and let Φ be a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. Let $L, H, E_{1}, E_{2}, \varrho, \sigma$ and τ_{c} be
defined as in Lemma 1.8. If G is Φ-critical, then

$$
\varrho+\sigma+\tau_{c} \geqslant c|H|
$$

provided that $k \geqslant 9$ and $c=\frac{1}{3}(k-4) \alpha_{k}$ or $k \geqslant 6, \Phi(x)=\{1, \ldots, k-1\}$ for every $x \in V(G)$ and $c=(k-5) \alpha_{k}$.

The proof of Theorem 1.9 is given in Section 4. In Section 2 we give a generalization of Gallai's result concerning σ and establish some lower bounds for this parameter. In Section 3 we prove some auxiliary results about bipartite graphs. Section 4 is mainly devoted to the proof of Lemma 4.1 which is the key lemma for the proof of Theorem 1.9.

2. Lower bounds for σ and ε_{k}-hypergraphs

Let $k \geqslant 4$ be a given integer, and let

$$
r_{k}=k-2+\frac{2}{k-1}
$$

For an arbitrary hypergraph F and $x \in V(F)$, define $\sigma(x: F)=r_{k}-d_{F}(x)$ and

$$
\sigma(F)=\sum_{x \in V(F)} \sigma(x: F)=|V(F)| r_{k}-d(F)
$$

Let \mathscr{T}_{k} denote the set of all Gallai trees distinct from K_{k} and with maximum degree at most $k-1$. For $T \in \mathscr{T}_{k}$ and some end-block B of T, let $T_{B}=T-(V(B)-\{x\})$ where x is the only separating vertex of T contained in B (if there is no such vertex, then $T=B$ and an arbitrary vertex of B may be taken).

Lemma 2.1. Let $T \in \mathscr{T}_{k}$ and $k \geqslant 4$. Then the following statements hold:
(a) If $B \in \mathscr{B}(T)$, then $\sigma(B)=2$ if $B=K_{k-1}$ and $\sigma(B) \geqslant r_{k}$ otherwise.
(b) If B is an end-block of $T \in \mathscr{T}_{k}$, then $\sigma(T)=\sigma\left(T_{B}\right)+\sigma(B)-r_{k}$.

Proof. Let $B \in \mathscr{B}(T)$ be a block of type b, that is B is a brick and B is $(b-1)$-regular for some $b \leqslant k-1$. Then $1 \leqslant b \leqslant k-1, B=K_{b}$ and

$$
\sigma(B)=b\left(r_{k}-b+1\right) \begin{cases}\geqslant r_{k} & \text { if } 1 \leqslant b \leqslant k-2 \\ =2 & \text { if } b=k-1\end{cases}
$$

or $b=3, B$ is an odd circuit of order at least five and $\sigma(B)=|V(B)|\left(r_{k}-2\right) \geqslant 5\left(r_{k}-\right.$ $2) \geqslant r_{k}$, or $b=2, B=\langle e\rangle$ and $\sigma(B)=|e|\left(r_{k}-1\right) \geqslant r_{k}$. This proves (a). Statement (b) follows from the fact that T_{B} and B have exactly one vertex in common.

Consider an arbitrary Gallai tree $T \in \mathscr{T}_{k}$. Let $x \in V(T)$ and let B_{1}, \ldots, B_{l} be the blocks of T containing x where B_{i} is of type $b_{i}(i=1, \ldots, l)$. Then x is said to be of
type $\left(b_{1}, \ldots, b_{l}\right)$ in T. Let \mathscr{T}_{k}^{\prime} denote the set of all Gallai trees from \mathscr{T}_{k} that do not have a block of type 2 . For an integer $b \geqslant 1$, let $t(b)=2-\frac{2}{b}$.

Let $T \in \mathscr{T}_{k}^{\prime}$ and $k \geqslant 6$. Clearly, if T contains a block B of type $k-1$, then $T=B=K_{k-1}$. For a vertex $x \in V(T)$ of type $\left(b_{1}, \ldots, b_{l}\right)$ in T, define

$$
\sigma^{\prime}(x: T)= \begin{cases}\sigma(x: T)+\sum_{i=1}^{l} t\left(b_{i}\right)-2 & \text { if } T \neq K_{k-1} \\ 0 & \text { otherwise }\end{cases}
$$

Furthermore, let

$$
\sigma^{\prime}(T)=\sum_{x \in V(T)} \sigma^{\prime}(x: T)
$$

Lemma 2.2. If $T \in \mathscr{T}_{k}^{\prime}$ and $k \geqslant 6$, then
(a) $\sigma(T) \geqslant \sigma^{\prime}(T)+2$, and
(b) $\sigma^{\prime}(x: T) \geqslant \alpha_{k}\left(k-1-d_{T}(x)\right)$ for every $x \in V(T)$ provided that $T \neq K_{k-1}$.

Proof. We prove statement (a) by induction on the number m of blocks of T. First, assume $m=1$. Then T is a complete graph of order b where $1 \leqslant b \leqslant k-1$ and $b \neq 2$ or T is an odd circuit. If $T=K_{k-1}$, then $\sigma^{\prime}(T)=0$ and, by Lemma 2.1(a), $\sigma(T)=2=$ $\sigma^{\prime}(T)+2$. If $T=K_{b}$ with $1 \leqslant b \leqslant k-2$ and $b \neq 2$, then $\sigma^{\prime}(T)=\sigma(T)+(t(b)-2) b=$ $\sigma(T)-2$. If T is an odd circuit of order $p \geqslant 3$, then $\sigma^{\prime}(T)=\sigma(T)+(t(3)-2) p=$ $\sigma(T)-(2 / 3) p \leqslant \sigma(T)-2$. This settles the case $m=1$.

Next, assume $m \geqslant 2$. Let B be some end-block of T and let x be the only separating vertex of T contained in B. Suppose that B is a block of type b and x is of type $\left(b_{1}, \ldots, b_{l}\right)$ in T where $b_{l}=b$. Since $T \in \mathscr{T}_{k}^{\prime}$ has at least two blocks, no block of T is a K_{k-1}. Furthermore, $T^{\prime}=T_{B} \in \mathscr{T}_{k}^{\prime}$ and x is of type $\left(b_{1}, \ldots, b_{l-1}\right)$ in T^{\prime}. Consequently,

$$
\begin{aligned}
& \sigma^{\prime}\left(x: T^{\prime}\right)=r_{k}-d_{T^{\prime}}(x)+\sum_{i=1}^{l-1} t\left(b_{i}\right)-2, \\
& \sigma^{\prime}(x: B)=r_{k}-d_{B}(x)+t\left(b_{l}\right)-2
\end{aligned}
$$

and

$$
\sigma^{\prime}(x: T)=r_{k}-d_{T}(x)+\sum_{i=1}^{l} t\left(b_{i}\right)-2
$$

Since $d_{T}(x)=d_{T^{\prime}}(x)+d_{B}(x)$, this implies that

$$
\begin{aligned}
\sigma^{\prime}(T) & =\sigma^{\prime}\left(T^{\prime}\right)+\sigma^{\prime}(B)+\sigma^{\prime}(x: T)-\sigma^{\prime}\left(x: T^{\prime}\right)-\sigma^{\prime}(x: B) \\
& =\sigma^{\prime}\left(T^{\prime}\right)+\sigma^{\prime}(B)-r_{k}+2
\end{aligned}
$$

Then, by the induction hypothesis and Lemma 2.1(b), we infer that

$$
\begin{aligned}
\sigma^{\prime}(T) & =\sigma^{\prime}\left(T^{\prime}\right)+\sigma^{\prime}(B)-r_{k}+2 \\
& \leqslant \sigma\left(T^{\prime}\right)-2+\sigma(B)-2-r_{k}+2 \\
& =\sigma(T)-2
\end{aligned}
$$

Thus (a) is proved. For the proof of (b), consider an arbitrary vertex $x \in V(T)$. Suppose that x is of type $\left(b_{1}, \ldots, b_{l}\right)$ in T. Then, since $T \in \mathscr{T}_{k}^{\prime}$ and $T \neq K_{k-1}$, we have $1 \leqslant b_{i} \leqslant k-2$ and $b_{i} \neq 2$ for $i=1, \ldots, m$. Furthermore, $d_{T}(x)=\sum_{i=1}^{l}\left(b_{i}-1\right) \leqslant k-1$ and we have to show that

$$
\begin{equation*}
\sigma^{\prime}(x: T)=r_{k}-d_{T}(x)+\sum_{i=1}^{l} t\left(b_{i}\right)-2 \geqslant \alpha_{k}\left(k-1-d_{T}(x)\right) . \tag{1}
\end{equation*}
$$

Let

$$
M=\left(1-\alpha_{k}\right)\left(k-1-\sum_{i=1}^{l}\left(b_{i}-1\right)\right)+\sum_{i=1}^{l}\left(2-\frac{2}{b_{i}}\right) .
$$

By an easy calculation, it then follows that (1) is equivalent to

$$
\begin{equation*}
M \geqslant 3-\frac{2}{k-1} \tag{2}
\end{equation*}
$$

First, consider the case $l=1$. Then

$$
M=\left(1-\alpha_{k}\right)\left(k-b_{1}\right)+2-2 / b_{1} .
$$

For $b_{1}=1$, this yields $M=\left(1-\alpha_{k}\right)(k-1)$. Then, in case of $k \geqslant 7$ we have $M \geqslant 3$, and in case of $k=6$ we have $M=(1 / 2+1 / 20) 5=55 / 20$ and $3-2 /(k-1)=13 / 5$. Hence (2) is satisfied for $b_{1}=1$. If $3 \leqslant b_{1} \leqslant k-2$, then M is a monotone decreasing function of b_{1}, and we infer that

$$
\begin{aligned}
M & \geqslant\left(1-\alpha_{k}\right)(k-(k-2))+2-2 /(k-2) \\
& =1+\frac{2}{(k-1)(k-2)}+2-\frac{2}{k-2}=3-\frac{2}{k-1} .
\end{aligned}
$$

This settles the case $l=1$. Next, consider the case $l=2$. Then $3 \leqslant b_{1}, b_{2}$ and $b_{1}+$ $b_{2} \leqslant k+1$. Hence $-2 / b_{1}-2 / b_{2} \geqslant-4 / 3$. Therefore, in case of $b_{1}+b_{2} \leqslant k$ we have

$$
M=\left(1-\alpha_{k}\right)+\left(2-\frac{2}{b_{1}}\right)+\left(2-\frac{2}{b_{2}}\right) \geqslant \frac{1}{2}+\frac{8}{3} \geqslant 3,
$$

and in case of $b_{1}+b_{2}=k+1$ we have

$$
M>\left(2-\frac{2}{b_{1}}\right)+\left(2-\frac{2}{k+1-b_{1}}\right) \geqslant\left(2-\frac{2}{k-2}\right)+\left(2-\frac{2}{3}\right)>3-\frac{2}{k-1} .
$$

Consequently, (2) holds for $l=2$. Finally, consider the case $l \geqslant 3$. Then $b_{i} \geqslant 3$ and, therefore,

$$
M \geqslant \sum_{i=1}^{3}\left(2-\frac{2}{b_{i}}\right) \geqslant 3\left(2-\frac{2}{3}\right)=4
$$

Hence (2) holds for all $l \geqslant 1$ and, therefore, (b) is proved.
For a hypergraph G and an integer $p \geqslant 2$, let $W^{p}(G)$ denote the set of all vertices of G that belong to some $(p-1)$-clique of G. If $G \in \mathscr{T}_{k}$, then $W^{k+1}(G)=\emptyset$ and, for every $(k-1)$-clique X of $G, G(X)=G[X]$ is a block of G.

Following Gallai, G is called an ε_{k}-hypergraph if $G \in \mathscr{T}_{k}$ and $W^{k}(G)=V(G)$. For $k \geqslant 5$, a hypergraph G is an ε_{k}-hypergraph iff $G \in \mathscr{T}_{k}$ and every separating vertex of G is of type $(k-1,2)$ and every non-separating vertex of G is of type $k-1$.

If a component G^{\prime} of $G\left(W^{k}(G)\right)$ is an ε_{k}-hypergraph, then G^{\prime} is said to be an $\varepsilon_{k^{-}}$ subcomponent of G.

Obviously, if $T \in \mathscr{T}_{k}$, then every vertex of $W^{k}(T)$ is of type $(k-1,2)$ or of type $k-1$ and the ε_{k}-subcomponents of T are precisely the components of $T\left(W^{k}(T)\right)$. The number of all ε_{k}-subcomponents of T is denoted by $s(T)$.

Let $T \in \mathscr{T}_{k}$. For a vertex $x \in V(T)$, define

$$
\sigma^{*}(x: T)= \begin{cases}\alpha_{k}\left(k-1-d_{T}(x)\right) & \text { if } x \in V(T)-W^{k}(T) \\ 0 & \text { otherwise }\end{cases}
$$

Furthermore, let

$$
\sigma^{*}(T)=\sum_{x \in V(T)} \sigma^{*}(x: T)
$$

Lemma 2.3. If $T \in \mathscr{T}_{k}$ and $k \geqslant 6$, then $\sigma(T) \geqslant \sigma^{*}(T)+s(T) \alpha_{k}+2-\alpha_{k}$.
Proof. We prove Lemma 2.3 by induction on the number m of blocks of type 2 in T. If $m=0$, then $T \in \mathscr{T}_{k}^{\prime}, s(T) \leqslant 1$, and, by Lemma 2.2, $\sigma(T) \geqslant \sigma^{*}(T)+2 \geqslant \sigma^{*}(T)+$ $s(T) \alpha_{k}+2-\alpha_{k}$.

Now assume $m \geqslant 1$. Let B be an arbitrary block of T that is of type 2 . Then $B=\langle e\rangle$ where $e \in E(T)$ is a bridge of T. Let $e=\left\{x_{1}, \ldots, x_{p}\right\}$ where $p \geqslant 2$ and, for $i=1, \ldots, p$, let T_{i} denote the component of $T-\{e\}$ containing the vertex x_{i}. Assume that $x_{i} \in W^{k}\left(T_{i}\right)$ for $i=1, \ldots, l$ and $x_{i} \in V\left(T_{i}\right)-W^{k}\left(T_{i}\right)$ for $i=l+1, \ldots, p$. Then

$$
\sigma^{*}(T)=\sum_{i=1}^{p} \sigma^{*}\left(T_{i}\right)-\alpha_{k}(p-l)
$$

and, moreover,

$$
s(T)= \begin{cases}\sum_{i=1}^{p} s\left(T_{i}\right) & \text { if } l=0 \\ \sum_{i=1}^{p} s\left(T_{i}\right)-l+1 & \text { if } l \geqslant 1\end{cases}
$$

Consequently, using the induction hypothesis, we conclude that

$$
\begin{aligned}
\sigma(T) & =\sum_{i=1}^{p} \sigma\left(T_{i}\right)-p \\
& \geqslant \sum_{i=1}^{p} \sigma^{*}\left(T_{i}\right)+\alpha_{k} \sum_{1=1}^{p} s\left(T_{i}\right)+p\left(2-\alpha_{k}\right)-p \\
& =\sigma^{*}(T)+\alpha_{k}(p-l)+\alpha_{k} \sum_{1=1}^{p} s\left(T_{i}\right)+p\left(2-\alpha_{k}\right)-p \\
& =\sigma^{*}(T)+\alpha_{k}\left(\sum_{1=1}^{p} s\left(T_{i}\right)-l\right)+p \\
& \geqslant \sigma^{*}(T)+\alpha_{k} s(T)+p-\alpha_{k} \\
& \geqslant \sigma^{*}(T)+\alpha_{k} s(T)+2-\alpha_{k} .
\end{aligned}
$$

This proves Lemma 2.3.
Lemma 2.4. Let $T \in \mathscr{T}_{k}$ and $k \geqslant 4$. Then $\sigma(T) \geqslant 2$ if T is an ε_{k}-hypergraph and $\sigma(T) \geqslant r_{k}$ otherwise.

Proof (By induction on the number m of blocks of T). For $m=1$, Lemma 2.4 is an immediate consequence of Lemma 2.1.

Now assume $m>1$. If T is an ε_{k}-hypergraph, then T_{B} is not an ε_{k}-hypergraph for any end-block B of T and, by the induction hypothesis and Lemma 2.1, $\sigma(T) \geqslant \sigma\left(T_{B}\right)+\sigma(B)-r_{k} \geqslant \sigma(B) \geqslant 2$.

If T is not an ε_{k}-hypergraph, then we argue as follows. First, consider the case where T has a block B of type 2 . Then $B=\langle e\rangle$ where $e \in E(T)$ is a bridge of T. For $x \in e$, let T_{x} denote the component of $T-\{e\}$ containing x. Since T is not an $\varepsilon_{k^{-}}$ hypergraph, T_{x} is not an ε_{k}-hypergraph for at least one $x \in e$. Furthermore, $r_{k} \geqslant k-$ $2 \geqslant 2$. Therefore, by the induction hypothesis,

$$
\sigma(T)=\sum_{x \in e} \sigma\left(T_{x}\right)-|e| \geqslant 2(|e|-1)+r_{k}-|e| \geqslant r_{k} .
$$

Now, consider the case where T has no block of type 2 . Then no block of T is a K_{k-1}. Let B be an end-block of T. Then T_{B} is not an ε_{k}-hypergraph and, by the induction hypothesis and Lemma 2.1, $\sigma(T)=\sigma\left(T_{B}\right)+\sigma(B)-r_{k} \geqslant r_{k}$. This completes the proof of Lemma 2.4.

Proof of Theorem 1.3. Assume that $k \geqslant 4$ and $G \neq K_{k}$ is a Φ-critical hypergraph where Φ is a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. Let $L=$ $\left\{x \in V(G) \mid d_{G}(x)=k-1\right\}$. Then, by Lemma 1.6, each component of $G(L)$ belongs to \mathscr{T}_{k}. Therefore, by Lemma 2.4, $\sigma(G(L)) \geqslant 0$. Consequently, by Lemma 1.8, $d(G) \geqslant g_{k}(|V(G)|, 0)$.

3. Bipartite graphs

Let G be a graph. An edge $\{x, y\}$ of G is also denoted by $x y$ or $y x$. We denote by $F=F(A, B)$ a bipartite graph satisfying $V(F)=A \cup B, A \cap B=\emptyset$ and $E(F) \subseteq$ $\{x y \mid x \in A$ and $y \in B\}$. For an integer x, let $\lceil x\rceil$ denote the upper integer part of x.

Lemma 3.1. Let $F=F(A, B)$ be a bipartite graph, let $r \geqslant 1$ be an integer, and let B_{r} be the set of all vertices of B having degree at least r in F. Then there is a subgraph F^{\prime} of F such that
(a) $d_{F^{\prime}}(x) \leqslant\left\lceil\frac{d_{F}(x)}{r}\right\rceil$ for every $x \in A$,
(b) $d_{F^{\prime}}(y)=1$ for every $y \in B_{r}$ and $d_{F^{\prime}}(y)=0$ for every $y \in B-B_{r}$.

Proof. For every vertex $x \in A$, there is a partition $\left\{N_{1}^{x}, \ldots, N_{m_{x}}^{x}\right\}$ of $N(x: F)$ into $m_{x}=\left\lceil\frac{d_{F}(x)}{r}\right\rceil$ subsets satisfying $1 \leqslant\left|N_{i}^{x}\right| \leqslant r$ for $i=1, \ldots, m_{x}$. Now, replace in F every vertex $x \in A$ by $m=m_{x}$ new vertices $x_{(1)}, \ldots, x_{(m)}$ and join $x_{(i)}$ to every vertex in N_{i}^{x} by an edge $\left(i=1, \ldots, m_{x}\right)$. This results in a bipartite graph $H=H\left(A^{\prime}, B\right)$ such that $d_{H}\left(x^{\prime}\right) \leqslant r$ for every $x^{\prime} \in A^{\prime}$ and $d_{H}(y)=d_{F}(y)$ for every $y \in B$.

Consider an arbitrary set $S \subseteq B_{r}$ and let $N(S)=\bigcup_{x \in S} N(x: H)$. Let m be the number of all edges $x^{\prime} y \in E(H)$ satisfying $y \in S$ and $x^{\prime} \in N(S) \subseteq A^{\prime}$. On the one hand, $m \geqslant r|S|$ and, on the other hand, $m \leqslant r|N(S)|$. Consequently, $|N(S)| \geqslant|S|$. Now, Hall's theorem yields that there is a matching M in H that covers all vertices in B_{r}, i.e., $M \subseteq E(H)$ and for the graph $H^{\prime}=(V(H), M)$ we have $d_{H^{\prime}}(y)=1$ for every $y \in B_{r}$ and $d_{H^{\prime}}(y)=0$ for every $y \in B-B_{r}$.

Let F^{\prime} be the graph with $V\left(F^{\prime}\right)=A \cup B$ and $E\left(F^{\prime}\right)=\left\{x y \in E(F) \mid x_{(i)} y \in M\right.$ for $\left.1 \leqslant i \leqslant m_{x}\right\}$. Then $d_{F^{\prime}}(x) \leqslant m_{x}=\left\lceil\frac{d_{F}(x)}{r}\right\rceil$ for every $x \in A, d_{F^{\prime}}(y)=1$ for every $y \in B_{r}$, and $d_{F^{\prime}}(y)=0$ for every $y \in B-B_{r}$.

Lemma 3.2. Let $F=F(A, B)$ be a bipartite graph and, for $r \geqslant 1$, let B_{r} be the set of all vertices of B having degree at least r in F. Assume that $d_{F}(x) \geqslant 4$ for every $x \in A$. Then there is a subgraph F^{\prime} of F such that
(a) $d_{F^{\prime}}(x)=2$ for every $x \in A$,
(b) $d_{F^{\prime}}(y) \leqslant d_{F}(y)-2$ for every $y \in B_{4}$, and
(c) $d_{F^{\prime}}(y) \leqslant d_{F}(y)-1$ for every $y \in B_{3}$.

Proof. Because of Lemma 3.1, there is a subgraph H of F such that $d_{H}(x) \leqslant\left\lceil\frac{d_{F}(x)}{4}\right\rceil$ for every $x \in A, d_{H}(y)=1$ for every $y \in B_{4}$, and $d_{H}(y)=0$ for every $y \in B-B_{4}$. Let $\tilde{F}=F-E(H)$ and let \tilde{B}_{3} be the set of all vertices of B having degree at least 3 in \tilde{F}. Obviously, $\tilde{B}_{3}=B_{3} \cup B_{4}$. Then Lemma 3.1 implies that there is a subgraph \tilde{H} of \tilde{F} such that $d_{\tilde{H}}(x) \leqslant\left\lceil\frac{d_{\tilde{F}}(x)}{3}\right\rceil$ for every $x \in A, d_{\tilde{H}}(y)=1$ for every $y \in \tilde{B}_{3}$, and $d_{\tilde{H}}(y)=0$ for every $y \in B-\tilde{B}_{3}$.

Let $G=\tilde{F}-E(\tilde{H})=F-E(H)-E(\tilde{H})$. Then, for $y \in B_{4}$, we have $d_{G}(y)=$ $d_{F}(y)-2$, and, for $y \in B_{3}$, we have $d_{G}(y)=d_{F}(y)-1$. Let $x \in A$. Since $d_{F}(x) \geqslant 4$, we have $d_{\hat{F}}(x)=d_{F}(x)-d_{H}(x) \geqslant d_{F}(x)-\left\lceil\frac{d_{F}(x)}{4}\right\rceil \geqslant 3$ and, therefore, $d_{G}(x)=$ $d_{\tilde{F}}(x)-d_{\tilde{H}}(x) \geqslant d_{\tilde{F}}(x)-\left\lceil\frac{d_{\tilde{F}}(x)}{3}\right\rceil \geqslant 2$.

Consequently, there is a subgraph F^{\prime} of G satisfying (a)-(c). Thus Lemma 3.2 is proved.

Lemma 3.3. Let $r \geqslant 3$ be an integer. Let $F=F(A, B)$ be a bipartite graph and let \mathscr{P} be a mapping that assigns to every vertex $x \in A$ a partition $\mathscr{P}(x)$ of $N(x: F)$. Assume that $d_{F}(x) \geqslant|\mathscr{P}(x)|+2^{r-3}$ for every $x \in A$. Then there is a subgraph F^{\prime} of F such that the following statements hold:
(a) If $x \in A$, then $d_{F^{\prime}}(x)=2$ and $N\left(x: F^{\prime}\right) \subseteq N$ for some $N \in \mathscr{P}(x)$.
(b) If $y \in B$ and $d_{F}(y) \geqslant s$ where $3 \leqslant s \leqslant r$, then $d_{F^{\prime}}(y) \leqslant d_{F}(y)-s+3$.

Proof (By induction on r and $|E(F)|$). A subgraph F^{\prime} of F satisfying the conditions (a) and (b) of Lemma 3.3 is called a good subgraph of F with respect to \mathscr{P} and r. Let $F_{1}=F_{1}(A, B)$ be a subgraph of F and define \mathscr{P}_{1} by

$$
\mathscr{P}_{1}(x)=\left\{N \cap N\left(x: F_{1}\right) \mid N \in \mathscr{P}(x) \& N \cap N\left(x: F_{1}\right) \neq \emptyset\right\}
$$

for every $x \in A$. In this case we write $\mathscr{P}_{1}=\mathscr{P} \mid F_{1}$. It is easy to check that if F^{\prime} is a good subgraph of F_{1} with respect to $\mathscr{P}_{1}=\mathscr{P} \mid F_{1}$ and r, then F^{\prime} is a good subgraph of F with respect to \mathscr{P} and r.

We have to show that there is a good subgraph of F with respect to \mathscr{P} and r provided that $d_{F}(x) \geqslant|\mathscr{P}(x)|+2^{r-3}$ for every $x \in A$. For $r=3$ this is evident. Now assume $r \geqslant 4$.

First, assume that, for some $x \in A$, there is a set $N \in \mathscr{P}(x)$ such that $N=\{y\}$. Let $F_{1}=F-\{x y\}$ and $\mathscr{P}_{1}=P \mid F_{1}$. Then $d_{F_{1}}(x)=d_{F}(x)-1 \geqslant|\mathscr{P}(x)|+2^{r-3}-1=$ $\left|\mathscr{P}_{1}(x)\right|+2^{r-3}$ and, by the induction hypothesis, there is a good subgraph F^{\prime} of F_{1} with respect to \mathscr{P}_{1} and r. Then F^{\prime} is a good subgraph of F with respect to \mathscr{P} and r.

Now, assume that $|N| \geqslant 2$ for every $N \in \mathscr{P}(x)$ and every $x \in A$. If $d_{F}(x)>|\mathscr{P}(x)|+$ 2^{r-3} for some $x \in A$, then let $F_{1}=F-\{x y\}$ and $\mathscr{P}_{1}=\mathscr{P} \mid F_{1}$ where $y \in N_{F}(x)$. Since $d_{F_{1}}(x) \geqslant|\mathscr{P}(x)|+2^{r-3}=\left|\mathscr{P}_{1}(x)\right|+2^{r-3}$, it then follows from the induction hypothesis that there is a good subgraph F^{\prime} of F_{1} with respect to \mathscr{P}_{1} and r. Then F^{\prime} is a good subgraph of F with respect to \mathscr{P} and r.

If $d_{F}(x)=|\mathscr{P}(x)|+2^{r-3}$ for every $x \in A$, then we argue as follows. Since every set of $\mathscr{P}(x)$ has at least two elements, $|\mathscr{P}(x)| \leqslant 2^{r-3}$ and, therefore, $d_{F}(x) \leqslant 2^{r-2}$ for every $x \in A$. By Lemma 3.2, there is a subgraph H of F such that $d_{H}(x) \leqslant\left\lceil\frac{d_{F}(x)}{r}\right\rceil \leqslant\left\lceil\frac{2^{r-2}}{4}\right\rceil=$ 2^{r-4} for every $x \in A$ and $d_{H}(y)=1$ for every $y \in B$ with $d_{F}(y) \geqslant r$. Let $\tilde{F}=F-E(H)$ and $\tilde{\mathscr{P}}=\mathscr{P} \mid \tilde{F}$. Then, for every $x \in A, d_{\tilde{F}}(x)=d_{F}(x)-d_{H}(x) \geqslant|\mathscr{P}(x)|+2^{r-3}-$ $2^{r-4}=|\mathscr{P}(x)|+2^{r-4} \geqslant|\tilde{P}(x)|+2^{r-4}$. Therefore, by the induction hypothesis, there
is a good subgraph F^{\prime} of \tilde{F} with respect to \tilde{P} and $r-1$. Then F^{\prime} is a good subgraph of F with respect to \mathscr{P} and $r-1$. If $y \in B$ and $d_{F}(y)=r$, then $d_{H}(y)=1$ and, therefore, $d_{\tilde{F}}(y)=r-1$ implying that $d_{F^{\prime}}(y) \leqslant d_{\tilde{F}}(y)-(r-1)+3=d_{F}(y)-r+3$. Consequently, F^{\prime} is a good subgraph of F with respect to \mathscr{P} and r. Thus Lemma 3.3 is proved.

Remark. Lemma 3.3 remains valid if the condition $d_{F}(x) \geqslant|\mathscr{P}(x)|+2^{r-3}$ is replaced by $d_{F}(x) \geqslant|\mathscr{P}(x)|+m_{r}$ where m_{3}, m_{4}, \ldots is a sequence of integers satisfying $m_{3}=1$ and $m_{r}-\left\lceil\frac{2 m_{r}}{r}\right\rceil \geqslant m_{r-1}$ for $r \geqslant 4$. For $r=5$, the case we are interested in, this gives $m_{5}=4$.

Lemma 3.4. Let $F=F(A, B)$ be a bipartite graph, let R, d be integers with $R \geqslant d \geqslant 1$ and, for every $x \in A$, let $a(x) \geqslant 1$ be an integer. Assume that $d_{F}(y) \geqslant R$ for every $y \in B$. Then

$$
(R-d)|B| \leqslant \sum_{x \in A} a(x)
$$

or there are non-empty subsets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ such that for $F^{\prime}=F\left[A^{\prime} \cup B^{\prime}\right]$ we have $d_{F^{\prime}}(x)>a(x)$ for every $x \in A^{\prime}$ and $d_{F^{\prime}}(y)>d$ for every $y \in B^{\prime}$.

Proof. For $z \in V(F)$ and $Z \subseteq V(F)$, let $d(z: Z)=|N(z: G) \cap Z|$. Define a sequence $B_{0}=\emptyset, A_{1}, B_{1}, A_{2}, B_{2}, \ldots$ of sets as follows. For $i \geqslant 1$, let

$$
A_{i}=\left\{x \in A \mid d\left(x: B-B_{i-1}\right) \leqslant a(x)\right\}
$$

and

$$
B_{i}=\left\{y \in B \mid d\left(y: A_{i}\right) \geqslant R-d\right\} .
$$

Then, for every $i \geqslant 1$, we have $A_{i} \subseteq A_{i+1} \subseteq A$ and $B_{i} \subseteq B_{i+1} \subseteq B$. Let $A^{\prime}=A-$ $\bigcup A_{i}, B^{\prime}=B-\bigcup B_{i}$, and $F^{\prime}=F\left[A^{\prime} \cup B^{\prime}\right]$.

If A^{\prime} contains a vertex x, then $d\left(x: B-B_{i-1}\right)>a(x)$ for every $i \geqslant 1$ implying that $d_{F^{\prime}}(x)=d\left(x: B^{\prime}\right)>a(x)$ and, hence, $B^{\prime} \neq \emptyset$. If B^{\prime} contains a vertex y, then $d(y$: $\left.A_{i}\right)<R-d$ for every $i \geqslant 1$ and, therefore, $d_{F}\left(y: \bigcup A_{i}\right)<R-d$. This implies that $d_{F^{\prime}}(y)=d\left(y: A^{\prime}\right)=d(y: A)-d\left(y: \bigcup A_{i}\right)>R-(R-d)=d$ and, hence, $A^{\prime} \neq \emptyset$. Consequently, $A^{\prime} \neq \emptyset$ iff $B^{\prime} \neq \emptyset$ and, moreover, Lemma 3.4 is true if A^{\prime} or B^{\prime} is non-empty. Otherwise, both sets A^{\prime} and B^{\prime} are empty and, therefore, $A=\bigcup A_{i}$ and $B=\bigcup B_{i}$. Let $E=\left\{x y \in E(F) \mid x \in A_{i}\right.$ and $y \in B-B_{i-1}$ for some $\left.i \geqslant 1\right\}$. Then

$$
(R-d)|B| \leqslant|E| \leqslant \sum_{x \in A} a(x)
$$

Thus Lemma 3.4 is proved.

4. List critical hypergraphs

4.1. The key lemma

The proof of Theorem 1.9 is mainly based on the following technical lemma. Recall that if G is a hypergraph and $p \geqslant 2$ is an integer, then $W^{p}(G)$ denotes the set of all vertices of G that belong to some $(p-1)$-clique of G.

Lemma 4.1. Let G be a hypergraph not containing a K_{k}, and let Φ be a list for G satisfying $|\Phi(x)|=k-1 \quad$ for every $x \in V(G)$. Furthermore, let $L=$ $\left\{x \in V(G) \mid d_{G}(x)=k-1\right\}, \quad X \subseteq L, \quad Y \subseteq\left\{y \in V(G) \mid d_{G}(y)=k\right\} \quad$ and \quad let $\quad W=$ $W^{k}(G(X))$. Denote by \mathscr{C} the set of all components of $G(X)$ and let v be an X mapping of G. For $y \in Y$ and $T \in \mathscr{C}$, define

$$
\begin{aligned}
& d(y)=\mid\left\{T \in \mathscr{C} \mid y \in N_{X}^{v}(x: G) \text { for some } x \in W \cap V(T)\right\} \mid, \\
& d(T)=\mid\left\{y \in Y \mid y \in N_{X}^{v}(x: G) \text { for some } x \in W \cap V(T)\right\} \mid
\end{aligned}
$$

and

$$
d_{X}^{v}(y)=\left|\left\{x \in W \mid y \in N_{X}^{v}(x: G)\right\}\right| .
$$

If G is Φ-critical, then the following statements hold:
(a) $d(y) \geqslant d_{X}^{v}(y)-1$ for every $y \in Y$ provided that $k \geqslant 5$.
(b) $d(y) \leqslant 4$ for some $y \in Y$ or $d(T) \leqslant s(T)+3$ for some $T \in \mathscr{C}$ provided that $\Phi(x)=$ $\{1, \ldots, k-1\}$ for every $x \in V(G)$ and $k \geqslant 5$.
(c) $d(y) \leqslant 3$ for some $y \in Y$ or $d(T) \leqslant 3$ for some $T \in \mathscr{C}$ provided that every member of \mathscr{C} is an ε_{k}-hypergraph and $k \geqslant 9$.

The proof of this result is given in Section 4.2. In Section 4.3 we use Lemma 4.1 to prove Theorem 1.9.

4.2. Proof of Lemma 4.1

Let G be a hypergraph, $z \in V(G)$, and let Φ be a list for G. We call (G, z, Φ, k) a configuration of type 1 if the following conditions hold:
(a1) $G \neq K_{k}$ and every component of $G-\{z\}$ belongs to \mathscr{T}_{k}.
(a2) $d_{G}(z) \leqslant k$ and z is contained only in ordinary edges of G.
(a3) $|\Phi(z)| \geqslant d_{G}(z)-1$ and $|\Phi(x)| \geqslant d_{G}(x)$ for all $x \in V(G)-\{z\}$.
The proof of Lemma 4.1(a) is based on the following result.
Lemma 4.2. Let (G, z, Φ, k) be a configuration of type 1 where $k \geqslant 5$, let m be the number of components of $G-\{z\}$ and let $W=W^{k}(G-\{z\})$. Furthermore, let $N_{z}=$ $\{x \in V(G) \mid\{z, x\} \in E(G)\}$ and $W_{z}=N_{z} \cap W$. Assume that $V(T) \cap W_{z} \neq \emptyset$ for every component T of $G-\{z\}$. If G is not Φ-colourable, then $m \geqslant\left|W_{z}\right|-1$.

Proof. Consider a possible counterexample (G, z, Φ, k) such that $|V(G)|$ is minimum. Let T_{1}, \ldots, T_{m} denote the components of $G-\{z\}$. Then, by (a1), $T_{i} \in \mathscr{T}_{k}$ for $i=$ $1, \ldots, m$. Furthermore, for $i=1, \ldots, m$, let $d_{i}=\left|V\left(T_{i}\right) \cap W_{z}\right|$ where $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{m}$. Then $d_{m} \geqslant 1$ and $m \leqslant\left|W_{z}\right|-2=d_{1}+\cdots+d_{m}-2$. We claim that $m=1$ and $d_{1} \geqslant 3$ or $m=2$ and $d_{1}=d_{2}=2$.

Obviously, if $m=1$, then $d_{1} \geqslant 3$. Now, assume $m \geqslant 2$. Let $T=T_{m}$. Then $|\Phi(x)| \geqslant d_{G}(x) \geqslant d_{T}(x)$ for all $x \in V(T)$. Since there is a vertex $x \in V(T) \cap W_{z}$, we have $|\Phi(x)|>d_{T}(x)$ for this vertex x. Therefore, by Lemma 1.4, there is a $\Phi-$ colouring φ of T. Let $G^{\prime}=G-V(T)=G \backslash V(T)$ and $\Phi^{\prime}=\Phi(V(T), v, \varphi)$ (see Remark 1.5). Then $\Phi^{\prime}(x)=\Phi(x)$ for all $x \in V\left(G^{\prime}\right)-\{z\}$ and $\Phi^{\prime}(z)=\Phi(z)-$ $\left\{\varphi(x) \mid x \in V(T) \cap N_{z}\right\}$. Since G is not Φ-colourable, G^{\prime} is not Φ^{\prime}-colourable. Moreover, it is easy to check that $\left(G^{\prime}, z, \Phi^{\prime}, k\right)$ is a configuration of type 1 satisfying the assumption of Lemma 4.2. Therefore, $m-1 \geqslant\left|W_{z} \cap V\left(G^{\prime}\right)\right|-1=d_{1}+\cdots+$ $d_{m-1}-1$ implying that $m=2$ and $d_{1}=d_{2}=2$. This proves our claim. Now, we consider two cases.

Case 1: $m=2$ and $d_{1}=d_{2}=2$. Let $i \in\{1,2\}$ and let $G_{i}=G\left[V\left(T_{i}\right) \cup\{z\}\right]$. For $x \in V\left(G_{i}\right)-\{z\}$, we have $|\Phi(x)| \geqslant d_{G}(x)=d_{G_{i}}(x)$. Since z has exactly two neighbours in the Gallai tree $T_{i}=G_{i}-\{z\} \in \mathscr{T}_{k}$ that belong to $(k-1)$-cliques of T_{i} and every ($k-1$)-clique of T_{i} is a block of T_{i}, we conclude that G_{i} is not a Gallai tree and $|\Phi(z)| \geqslant d_{G}(z)-1>d_{G_{i}}(z)$.

Let M_{i} be the set of all colours $a \in \Phi(z)$ such that $\varphi(z) \neq a$ for every Φ-colouring φ of G_{i}. Since G is not Φ-colourable, $M_{1} \cup M_{2}=\Phi(z)$. From $|\Phi(z)| \geqslant d_{G}(z)-1=d_{G_{1}}(z)+$ $d_{G_{2}}(z)-1$ we conclude that $\left|M_{i}\right| \geqslant d_{G_{i}}(z)$ for some i, say $i=1$. Now, let Φ^{\prime} be the list for G_{1} with $\Phi^{\prime}(x)=\Phi(x)$ for $x \in V\left(G_{1}\right)-\{z\}$ and $\Phi^{\prime}(z)=M_{1}$. Since G_{1} is a connected hypergraph but not a Gallai tree, we infer from Lemma 1.4 that G_{1} is Φ^{\prime}-colourable. This implies that there is a Φ-colouring φ of G_{1} with $\varphi(z) \in M_{1}$, a contradiction.

Case 2: $m=1$ and $d_{1} \geqslant 3$. Then $T=G-\{z\} \in \mathscr{T}_{k}$. Since G is not Φ-colourable, we may assume that $|\Phi(x)|=d_{G}(x)$ for all $x \in V(G)-\{z\}$. Let B be an arbitrary endblock of T and let X be the set of all non-separating vertices of T that belong to B. Consider a vertex $u \in X$. Since $|\Phi(u)|=d_{G}(u) \geqslant 1$, there is a colour $a \in \Phi(u)$. Let $G^{\prime}=G \backslash\{u\}$ and $\Phi^{\prime}=\Phi(u, a)$. Then G^{\prime} is not Φ^{\prime}-colourable and $\left(G^{\prime}, z, \Phi^{\prime}, k\right)$ is a configuration of type 1. If no vertex of B belongs to W_{z}, then $W_{z} \cap V\left(G^{\prime}\right)=$ $W_{z} \cap V(G)$ and, therefore, $\left(G^{\prime}, z, \Phi^{\prime}, k\right)$ is a smaller counterexample, a contradiction. Hence $\left|V(B) \cap W_{z}\right| \geqslant 1$. Since $d_{G}(x) \leqslant k-1$ for all vertices x of the Gallai tree $T \in \mathscr{T}_{k}$, this implies that B is a K_{k-1}.

Let $y \in V(B) \cap W_{z}$. Since $d_{G}(y) \leqslant k-1$, we have $|\Phi(y)|=d_{G}(y)=k-1$ and $y \in X$. We claim that $X \subseteq W_{z}$. Suppose, on the contrary, that there is a vertex $x \in X-W_{z}$. Then $|\Phi(x)|=d_{G}(x)=k-2$ and, therefore, there is a colour $a \in \Phi(y)-\Phi(x)$. Since $|\Phi(z)| \geqslant d_{G}(z)-1 \geqslant d_{1}-1 \geqslant 2$, there is a colour $b \in \Phi(z)$ with $b \neq a$. Let $\Phi^{\prime}=\Phi(z, b)$. Then $T=G-\{z\}=G \backslash\{z\}$ is not Φ^{\prime}-colourable and $\left|\Phi^{\prime}(u)\right| \geqslant d_{T}(u)$ for all $u \in V(T)$. Therefore, $\left(T, \Phi^{\prime}\right)$ is a bad pair and $\Phi^{\prime}(x) \neq \Phi^{\prime}(y)$, a contradiction to Lemma 1.7. This proves our claim, i.e., $X \subseteq W_{z}$.

If B is the only block of T, then $X=V(B)=V(T)$ and, therefore $G=K_{k}$, a contradiction to (a1). Hence, there is an end-block $B^{\prime} \neq B$ of T. For the set X^{\prime} of all
vertices of B^{\prime} that are non-separating vertices of T, we have $X^{\prime} \subseteq W_{z}$. Since $k \geqslant 5$, this yields $d_{G}(z) \geqslant|X|+\left|X^{\prime}\right| \geqslant 2(k-2) \geqslant k+1$, a contradiction to (a2).

Thus in both cases 1 and 2 we arrive at a contradiction. This proves Lemma 4.2.

4.2.1. Proof of Lemma 4.1(a)

Consider a vertex $y \in Y$. By Lemma 1.6, $G(X)$ is a Gallai forest and so every component of $G(X)$ belongs to \mathscr{T}_{k}. Denote by \mathscr{C}^{\prime} the set of all components T of $G(X)$ such that $y \in N_{X}^{v}(x: G)$ for some vertex $x \in W^{k}(T)=W \cap V(T)$. Clearly, $d(y)=\left|\mathscr{C}^{\prime}\right|$.

Let $X^{\prime}=\bigcup V(T)$ where the union is taken over all $T \in \mathscr{C}^{\prime}$. Then $G\left(X^{\prime}\right)$ is a Gallai forest and, for $W^{\prime}=W^{k}\left(G\left(X^{\prime}\right)\right)$, we have $W^{\prime}=X^{\prime} \cap W$. Since there is no edge in G having a vertex in common with both X^{\prime} and $X-X^{\prime}$, the set $E_{X}(G)$ is the disjoint union of $E_{X^{\prime}}(G)$ and $E_{X-X^{\prime}}(G)$. Therefore, v is an X^{\prime}-mapping of G and $N_{X^{\prime}}^{v}(x: G)=N_{X}^{v}(x: G)$ for all $x \in X^{\prime}$.

Let $N_{y}=\left\{x \in X^{\prime} \mid y \in N_{X}^{v}(x: G)\right\}$ and $W_{y}=N_{y} \cap W$. Then $W_{y}=N_{y} \cap W^{\prime}$ and $d_{X}^{v}(y)=\left|W_{y}\right|$. Furthermore, let

$$
E^{\prime}=\left\{e \in E_{X^{\prime}}(G) \mid y=v(e)\right\}
$$

and

$$
E^{*}=\left\{e \in E(G) \mid e \cap X^{\prime}=\emptyset \& y \in e\right\} .
$$

Then $\left|N_{y}\right|=\left|E^{\prime}\right|$ since otherwise there are two distinct edges $e, e^{\prime} \in E_{x}(G)$, for some vertex $x \in X^{\prime} \subseteq L$, satisfying $\left|e \cap e^{\prime}\right| \geqslant 2$, a contradiction to Lemma 1.6. For all edges $e \in E_{X^{\prime}}(G) \cup E^{*}$, choose a vertex $v^{\prime}(e) \in e$ such that $v^{\prime}(e)=v(e)$ for all $e \in E^{\prime}$ and $v^{\prime}(e) \neq y$ for all $e \in E^{*}$.

Let G_{1} be the hypergraph obtained from the Gallai forest $G^{\prime}=G\left(X^{\prime}\right)$ by adding the vertex y and joining y to every vertex in N_{y} by an ordinary edge. Since G is Φ critical, there is a Φ-colouring φ of the subhypergraph $G_{2}=G-\left(X^{\prime} \cup\{y\}\right)$ of G. Now, define the list Φ_{1} of G_{1} as follows. For $x \in X^{\prime}$, let

$$
\Phi_{1}(x)=\Phi(x)-\left\{\varphi\left(v^{\prime}(e)\right) \mid x \in e \in E_{X^{\prime}}(G)-E^{\prime}\right\}
$$

and let

$$
\Phi_{1}(y)=\Phi(y)-\left\{\varphi\left(v^{\prime}(e)\right) \mid e \in E^{*}\right\} .
$$

If $e \in E(G)$, then $e \in E\left(G_{2}\right)$, or $e \cap X^{\prime} \in E\left(G_{1}\right)$, or $e \in E_{X^{\prime}}(G) \cup E^{*}$. This implies that $\varphi \cup \varphi_{1}$ is a Φ-colouring of G for every Φ_{1}-colouring φ_{1} of G_{1}. Therefore, since G is not Φ-colourable, G_{1} is not Φ_{1}-colourable. Furthermore, for $x \in X^{\prime} \subseteq L$,

$$
\left|\Phi_{1}(x)\right| \geqslant d_{G}(x)-\left|\left\{e \in E(G) \mid x \in e \in E_{X^{\prime}}(G)-E^{\prime}\right\}\right| \geqslant d_{G_{1}}(x)
$$

and, since $|\Phi(y)|=k-1=d_{G}(y)-1$,

$$
\left|\Phi_{1}(y)\right| \geqslant d_{G}(y)-1-\left|E^{*}\right| \geqslant d_{G_{1}}(y)-1 .
$$

If $G_{1} \neq K_{k}$, then, clearly, $\left(G_{1}, y, \Phi_{1}, k\right)$ is a configuration of type 1 and, by Lemma 4.2, $d(y)=\left|\mathscr{C}^{\prime}\right| \geqslant\left|W_{y}\right|-1=d_{X}^{v}(y)$.

Now, consider the case $G_{1}=K_{k}$. Then $G_{1}\left(X^{\prime}\right)=G\left(X^{\prime}\right)$ is a K_{k-1} and, by Lemma 1.6, X^{\prime} is a $(k-1)$-clique of G. Since G does not contain a K_{k}, this implies that there is a vertex $x \in X^{\prime}$ such that $\{x, y\} \in E\left(G_{1}\right)-E(G)$. Consequently, there is an edge $e \in E_{X^{\prime}}(G)$ such that $x, y \in e, y=v(e)$ and $|e| \geqslant 3$. Let $y^{\prime} \in e-\{x, y\}$. Remove the edge $\{x, y\}$ from G_{1} and, for the resulting graph G_{1}^{\prime}, define the list Φ_{1}^{\prime} by $\Phi_{1}^{\prime}(u)=\Phi_{1}(u)$ for all $u \in V\left(G_{1}^{\prime}\right)-\{x\}$ and $\Phi_{1}^{\prime}(x)=\Phi_{1}(x)-\left\{\varphi\left(y^{\prime}\right)\right\}$. Then $\left|\Phi_{1}^{\prime}(u)\right| \geqslant d_{G_{1}^{\prime}}(u)$ for all $u \in V\left(G_{1}^{\prime}\right)=V\left(G_{1}\right)$. Since G_{1}^{\prime} is connected but not a Gallai tree, we infer from Lemma 1.4 that there is a Φ_{1}^{\prime}-colouring φ^{\prime} of G_{1}^{\prime} and, therefore, $\varphi \cup \varphi^{\prime}$ is a Φ colouring of G, a contradiction. This completes the proof of Lemma 4.1(a).

Lemma 4.3. Assume that $k \geqslant 4$ and (T, Φ) is a bad pair satisfying $T \in \mathscr{T}_{k}$ and $\Phi(u) \subseteq\{1, \ldots, k-1\}$ for every $u \in V(G)$. If x and y are two non-separating vertices of T contained in the same ε_{k}-subcomponent of T, then $\Phi(x)=\Phi(y)$.

Proof. By Lemma 1.7, $\Phi=\Phi_{u}$ for some mapping $u \in \mathscr{U}(G)$. If x, y are contained in the same block, then the statement is evident. Otherwise, there is a sequence $B_{1}, B_{2}, \ldots, B_{2 l+1}$ of blocks of T such that $x \in V\left(B_{1}\right), y \in V\left(B_{2 l+1}\right), B_{2 i+1}$ is a K_{k-1} for $i=0, \ldots, l$ and $B_{2 i}$ is a block of type 2 for $i=1, \ldots, l$ and $V\left(B_{i}\right) \cap V\left(B_{i+1}\right) \neq \emptyset$ for $i=1, \ldots, 2 l$. Then $u\left(B_{i}\right) \cap u\left(B_{i+1}\right)=\emptyset$ for $i=1, \ldots, 2 l$. Since $u\left(B_{i}\right) \subseteq\{1, \ldots, k-$ $1\},\left|u\left(B_{2 i+1}\right)\right|=k-2$ and $\left|u\left(B_{2 i}\right)\right|=1$, we infer that $u\left(B_{1}\right)=u\left(B_{2 l+1}\right)$ and, therefore, $\Phi(x)=\Phi(y)$.

4.2.2. Proof of Lemma 4.1(b)

Suppose on the contrary that $d(y) \geqslant 5$ for every $y \in Y$ and $d(T) \geqslant s(T)+4$ for every $T \in \mathscr{C}$. By Lemma 1.6, $G(X)$ is a Gallai forest not containing a K_{k} and with maximum degree at most $k-1$. Consequently, $\mathscr{C} \subseteq \mathscr{T}_{k}$.

Let $F=F(A, B)$ be the bipartite graph with $A=\mathscr{C}$ and $B=Y$ where, for every $T \in \mathscr{C}$, the neighbourhood $N(T: F)$ consists of all vertices $y \in Y$ such that $y \in N_{X}^{v}(x$: G) for some $x \in W^{k}(T)=W \cap V(T)$. Then $d_{F}(y)=d(y) \geqslant 5$ for every $y \in B=Y$ and $d_{F}(T)=d(T) \geqslant s(T)+4$ for every $T \in A=\mathscr{C}$.

For $T \in A$, let $\mathscr{P}(T)$ be a partition of $N(F: T)$ such that for every $N \in \mathscr{P}(T)$ there is an ε_{k}-subcomponent T^{\prime} of T with

$$
N \subseteq\left\{y \in Y \mid y \in N_{X}^{v}(x: G) \text { for some } x \in W^{k}\left(T^{\prime}\right)=V\left(T^{\prime}\right)\right\}
$$

Then $d_{F}(T) \geqslant s(T)+4 \geqslant|\mathscr{P}(T)|+4$ for every $T \in A$. Therefore, since $d_{F}(y) \geqslant 5$ for all $y \in B$, we infer from Lemma 3.3 that there is a subgraph F^{\prime} of F such that, for every $T \in A, \quad d_{F^{\prime}}(T)=2$ and $N\left(T: F^{\prime}\right) \subseteq N$ for some $N \in \mathscr{P}(T)$ and, for every $y \in B, \quad d_{F^{\prime}}(y) \leqslant d_{F}(y)-2$.

Now let G^{\prime} be the hypergraph obtained from the subhypergraph $G-X$ of G by adding the ordinary edges $N\left(T: F^{\prime}\right)$ for all $T \in \mathscr{C}$. If $y \in Y$, then $d_{G}(y)=k$ and, by the construction of $F^{\prime}, d_{G^{\prime}}(y) \leqslant k-2$. Since G is Φ-critical, there is a Φ-colouring φ of $G-X-Y=G^{\prime}-Y$. For every $y \in Y$, we have $|\Phi(y)|=k-1 \geqslant d_{G^{\prime}}(y)+1$. This implies that φ can be extended to some Φ-colouring φ^{\prime} of G^{\prime}.

Let $G^{*}=G \backslash V\left(G^{\prime}\right)=G(X)$ and let $\Phi^{*}=\Phi\left(V\left(G^{\prime}\right), v, \varphi^{\prime}\right)$ (see Remark 1.5). Then G^{*} is not Φ^{*}-colourable and, since $|\Phi(x)|=d_{G}(x)$, we have $\left|\Phi^{*}(x)\right| \geqslant d_{G^{*}}(x)$ for every $x \in X$. Consequently, there is a component T of $G(X)$, such that $\left(T, \Phi_{1}\right)$ is a bad pair where Φ_{1} is the restriction of Φ^{*} to T. Consider the two vertices y_{1}, y_{2} of $N\left(T: F^{\prime}\right)$. Then there is a ε_{k}-subcomponent T^{\prime} of T and two vertices x_{1}, x_{2} in $V\left(T^{\prime}\right)$ such that $y_{i} \in N_{X}^{v}\left(x_{i}: G\right)$ for $i=1,2$. Since every vertex of $T \in \mathscr{T}_{k}$ has degree $k-1$ in G and T^{\prime} is an ε_{k}-subcomponent of T, it follows that $d_{T}\left(x_{1}\right)=d_{T}\left(x_{2}\right)=k-2$. Consequently, x_{1}, x_{2} are two distinct non-separating vertices of T. Moreover, $\Phi_{1}\left(x_{i}\right)=\Phi\left(x_{i}\right)-$ $\left\{\varphi^{\prime}\left(y_{1}\right)\right\}=\{1, \ldots, k-1\}-\left\{\varphi^{\prime}\left(y_{1}\right)\right\}$ for $i=1,2$. Since $\varphi^{\prime}\left(y_{1}\right) \neq \varphi^{\prime}\left(y_{2}\right)$, this implies $\Phi_{1}\left(x_{1}\right) \neq \Phi_{1}\left(x_{2}\right)$, a contradiction to Lemma 4.3. This completes the proof of Lemma 4.1(b).

Let G be a hypergraph, let F be a subhypergraph of $G, Y \subseteq V(G)$, and let Φ be a list for G. Then we call (G, F, Y, Φ) a configuration of type 2 if the following conditions hold:
(b1) $G-Y$ is a Gallai forest and $|\Phi(x)| \geqslant d_{G}(x)$ for every $x \in V(G)-Y$.
(b2) $|\Phi(y)| \geqslant d_{G[Y]}(y)+d_{F}(y)+1$ for every $y \in Y$.
(b3) Every edge of G intersecting both Y and $V(G)-Y$ is an ordinary edge. For $x \in V(G)-Y$, let $N_{x}=\{y \in Y \mid\{x, y\} \in E(G)\}$.
(b4) F is a graph and, for every component T of $G-Y$, there are two edges $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\} \in E(F)$ such that x_{1}, x_{2} are two distinct non-separating vertices of T, y_{1}, y_{2} are two distinct vertices of Y and, for $i=1,2, N_{x_{i}}=$ $\left\{y_{i}\right\}$. Furthermore, if $B_{i}(i=1,2)$ is the only block of T containing x_{i}, then $B_{1}=B_{2}$ or, for some $i \in\{1,2\}$, there is a non-separating vertex x of T such that $x \in V\left(B_{i}\right)$ and $N_{x}=\emptyset$.

Lemma 4.4. If (G, F, Y, Φ) is a configuration of type 2 , then G is Φ-colourable
Proof (By induction on $m=|V(G)-Y|$). If $m=0$, then $G=G[Y]$ and $|\Phi(y)| \geqslant d_{G}(y)+1$ for every $y \in V(G)$ implying that G is Φ-colourable.

Now assume $m \geqslant 1$. Then let T be a component of $G-Y$ and let $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}$ be the two edges of F given by condition (b4). For $i=1,2$, let B_{i} be the only block of T containing x_{i}. Let $G^{\prime}=G-V(T)=G \backslash V(T)$ and $F^{\prime}=F-V(T)$. We consider two cases.

Case 1: $B_{1}=B_{2}$. First, assume $\Phi\left(x_{1}\right)=\Phi\left(x_{2}\right)$. Let G^{*} be the hypergraph obtained from G^{\prime} by adding the edge $\left\{y_{1}, y_{2}\right\}$. Then $\left(G^{*}, F^{\prime}, Y, \Phi\right)$ is a configuration of type 2 and, by the induction hypothesis, there is a Φ-colouring φ of G^{\prime}. Consider the list $\Phi^{\prime}=\Phi\left(V\left(G^{\prime}\right), \varphi\right)$ for $T=G-V\left(G^{\prime}\right)$, that is

$$
\Phi^{\prime}(x)=\Phi(x)-\left\{\varphi(y) \mid y \in N_{x}\right\}
$$

for all $x \in V(T)$. Note that, by (b3), every edge of G containing $x \in V(T)$ belongs to T or is an ordinary edge. By (b2), $\left|\Phi^{\prime}(x)\right| \geqslant d_{T}(x)$ for all $x \in V(T)$. Consequently, if T is not Φ^{\prime}-colourable, then $\left(T, \Phi^{\prime}\right)$ is a bad pair and, since $N_{x_{i}}=\left\{y_{i}\right\}$ and $\varphi\left(y_{1}\right) \neq \varphi\left(y_{2}\right)$,
we have $\Phi^{\prime}\left(x_{1}\right) \neq \Phi^{\prime}\left(x_{2}\right)$, a contradiction to Lemma 1.7. Therefore, T is Φ^{\prime}-colourable implying that G is Φ-colourable.

Now, assume $\Phi\left(x_{1}\right) \neq \Phi\left(x_{2}\right)$, say $a \in \Phi\left(x_{1}\right)-\Phi\left(x_{2}\right)$. Let Φ^{\prime} be the list obtained from Φ by removing colour a from $\Phi\left(y_{1}\right)$. Then $\left(G^{\prime}, F^{\prime}, Y, \Phi^{\prime}\right)$ is a configuration of type 2 and, by the induction hypothesis, there is a Φ^{\prime}-colouring φ of G^{\prime}. Consider the list $\Phi_{1}=\Phi\left(V\left(G^{\prime}\right), \varphi\right)$ for $T=G-V\left(G^{\prime}\right)$. Then $\left|\Phi^{\prime}(x)\right| \geqslant d_{T}(x)$ for all $x \in V(T)$ and $\Phi_{1}\left(x_{1}\right) \neq \Phi_{1}\left(x_{2}\right)$. Consequently, by Lemma 1.7, T is Φ_{1}-colourable and, therefore, G is Φ-colourable.

Case 2: $B_{1} \neq B_{2}$. Then, by (b4), one of these two blocks, say B_{1}, contains a nonseparating vertex x of T such that $N_{x}=\emptyset$. We may assume that $|\Phi(x)|=d_{G}(x)$. Then $\left|\Phi\left(x_{1}\right)\right| \geqslant d_{G}\left(x_{1}\right)>d_{G}(x)$ and, therefore, there is a colour $a \in \Phi\left(x_{1}\right)-\Phi(x)$. Let Φ^{\prime} be the list obtained from Φ by removing colour a from $\Phi\left(y_{1}\right)$. Then ($\left.G^{\prime}, F^{\prime}, Y, \Phi^{\prime}\right)$ is a configuration of type 2 and, by the induction hypothesis, there is a Φ^{\prime}-colouring φ of G^{\prime}. Consider the list $\Phi_{1}=\Phi\left(V\left(G^{\prime}\right), \varphi\right)$ for $T=G-V\left(G^{\prime}\right)$. Then $\Phi_{1}\left(x_{1}\right) \neq \Phi_{1}(x)$ and we infer from Lemma 1.7 that T is Φ_{1}-colourable. Hence G is Φ-colourable.

Therefore, in both cases we have established that G is Φ-colourable. Thus Lemma 4.4 is proved.

4.2.3. Proof of Lemma 4.1 (c)

Suppose on the contrary that $d(y) \geqslant 4$ for every $y \in Y$ and $d(T) \geqslant 4$ for every $T \in \mathscr{C}$. To arrive at a contradiction, we show that G is Φ-colourable.

Since G is Φ-critical, we infer from Lemma 1.6 that $\mathscr{C} \subseteq \mathscr{T}_{k}$. Furthermore, by the assumption of Lemma 4.1(c), every component T of $G(X)$ is an ε_{k}-hypergraph and, therefore, $V(T) \subseteq W=W^{k}(G(X))=X$.

Let X_{n} denote the set of all non-separating vertices of $G(X)$. Then $d_{G(X)}(x)=d_{G}(x)=$ $k-1$ for all $x \in X-X_{n}$, and $d_{G(X)}(x)=d_{G}(x)-1=k-2$ for all $x \in X_{n}$. Consequently, for every $x \in X_{n}$, there is exactly one edge $e_{x} \in E(G)-E(G(X))$ containing x. Clearly, if $x \in X_{n}$, then $e_{x} \cap X=\{x\}$ and, moreover, $y \in N_{X}^{v}(x: G)$ iff $y=v\left(e_{x}\right)$.

Let E^{\prime} be the set of all edges $e \in E(G)$ satisfying $e \cap X=\emptyset$ and $e \cap Y \neq \emptyset$. For every edge $e \in E^{\prime}$, choose a vertex $v^{\prime}(e) \in e-Y$ provided that $e-Y \neq \emptyset$.

Next, we construct the hypergraph G_{1} as follows. Let $V\left(G_{1}\right)=X \cup Y$ and let $E\left(G_{1}\right)=E(G(X)) \cup E^{1} \cup E^{2}$ where

$$
E^{1}=\left\{e \cap Y\left|e \in E^{\prime} \&\right| e \cap Y \mid \geqslant 2\right\}
$$

and

$$
E^{2}=\left\{\{x, y\} \mid x \in X_{n} \& y=v\left(e_{x}\right) \in Y\right\} .
$$

For $x \in X$, let

$$
N_{x}=N_{X}^{v}(x: G)=\left\{y \in Y \mid\{x, y\} \in E\left(G_{1}\right)\right\} .
$$

Then $\left|N_{x}\right|=1$ if $x \in X_{n}$ and $\left|N_{x}\right|=0$ if $x \in X-X_{n}$. Since G is Φ-critical, there is a Φ colouring φ of $G^{\prime}=G-X-Y$. Now, we define a list Φ_{1} for the hypergraph G_{1} as follows. For a vertex $y \in Y$, let

$$
\Phi_{1}(y)=\Phi(y)-\left\{\varphi\left(v^{\prime}(e)\right) \mid e \in E^{\prime} \& e \cap Y=\{y\}\right\} .
$$

For a vertex $x \in X$, let

$$
\Phi_{1}(x)=\Phi(x)-\left\{\varphi\left(v\left(e_{x}\right)\right)\right\}
$$

if $x \in X_{n}$ and $v\left(e_{x}\right) \notin Y$, and let $\Phi_{1}(x)=\Phi(x)$ otherwise, that is if $x \in X-X_{n}$ or $x \in X_{n}$ and $v\left(e_{x}\right) \in Y$.

Our aim is to show that G_{1} is Φ_{1}-colourable. If this is true, then there is a $\Phi_{1^{-}}$ colouring φ_{1} of G_{1} and $\varphi \cup \varphi_{1}$ is a Φ-colouring of G, a contradiction. Note that if e is an edge of G, then e is an edge of $G^{\prime}=G-X-Y$, or $e \in E^{\prime}$, or $e \cap X \in E(G(X)) \subseteq E\left(G_{1}\right)$, or $e=e_{x}$ for some vertex $x \in X_{n}$.

To prove that G_{1} is Φ_{1}-colourable, we use Lemma 4.4. First, we need some notation. For $Z \subseteq X$, let $N(Z)=\bigcup_{x \in Z} N_{x}$, and, for a set of blocks \mathscr{B} of $G(X)$, let $X(\mathscr{B})$ be the set of all vertices contained in some block of \mathscr{B}.

Consider an arbitrary component $T \in \mathscr{C}$. Since T is an ε_{k}-hypergraph, $V(T) \subseteq W$ and, therefore, $|N(V(T))|=d(T) \geqslant 4$. Let S denote the set of all vertices x of T such that $N_{x} \neq \emptyset$ and let R denote the set of all non-separating vertices of T. Then $S \subseteq R$. From Lemma 4.1(a) it follows that, for every vertex $y \in Y$, there are at most two vertices $x, x^{\prime} \in V(T)$ such that $N_{x}=N_{x^{\prime}}=\{y\}$. This implies, in particular, that $|N(Z)| \geqslant 4$ provided that $|Z \cap S| \geqslant 7$.

Let \mathscr{B}_{1} denote the set of all blocks B of T such that $V(B) \cap(R-S) \neq \emptyset$, i.e., B contains a non-separating vertex x of T such that $N_{x}=\emptyset$.

We claim that there is a set $\mathscr{B}=\mathscr{B}_{T}$ of blocks of T such that all but at most one block of \mathscr{B} belong to \mathscr{B}_{1} and $|N(X(\mathscr{B}))| \geqslant 4$. If some end-block B of T is not in \mathscr{B}_{1}, then $V(B) \cap R \subseteq S$ and, since B is a K_{k-1} and $k \geqslant 9,|V(B) \cap R|=k-2 \geqslant 7$. This implies that the claim is true for $\mathscr{B}=\{B\}$.

Now, assume that every end-block of T belong to \mathscr{B}_{1} and $\left|N\left(\mathscr{B}_{1}\right)\right| \leqslant 3$. Since $|N(V(T))| \geqslant 4$, there is a block B of T not contained in \mathscr{B}_{1}. Let $\mathscr{B}=\mathscr{B}_{1} \cup\{B\}$. Since $\emptyset \neq V(B) \cap R \subseteq S$ and T has at least $|V(B)-R|$ end-blocks, we conclude that B is a K_{k-1} and $|X(\mathscr{B}) \cap S| \geqslant|V(B)|=k-1 \geqslant 8$ and, therefore, $|N(X(\mathscr{B}))| \geqslant 4$. This proves our claim.

Next, let $F=F(\mathscr{C}, Y)$ be the bipartite graph such that $N(T: F)=N\left(X\left(\mathscr{B}_{T}\right)\right)$ for every $T \in \mathscr{C}$. Then $d_{F}(T) \geqslant 4$ for every $T \in \mathscr{C}$ and, by Lemma 3.2, there is a subgraph F^{\prime} of F such that $d_{F^{\prime}}(T)=2$ for every $T \in \mathscr{C}$ and $d_{F^{\prime}}(y) \leqslant d_{F}(y)-2$ for every $y \in Y$ with $d_{F}(y) \geqslant 4$ and $d_{F^{\prime}}(y) \leqslant 2$ for every $y \in Y$ with $d_{F}(y) \geqslant 3$.

For every component $T \in \mathscr{C}$, the set $N\left(T: F^{\prime}\right)$ consists of two distinct vertices $y_{1}(T), y_{2}(T)$ and, moreover, there are two distinct vertices $x_{1}(T), x_{2}(T) \in X\left(\mathscr{B}_{T}\right)$ such that $N_{x_{i}(T)}=\left\{y_{i}(T)\right\}$ for $i=1,2$. Let F_{1} be the subgraph of G_{1} with the same vertex set as G_{1} and with $E\left(F_{1}\right)=\left\{\left\{x_{i}(T), y_{i}(T)\right\} \mid T \in \mathscr{C} \& i=1,2\right\}$. Then it is easy to check that $\left(G_{1}, F_{1}, Y, \Phi_{1}\right)$ is a configuration of type 2 . Therefore, by Lemma 4.4, G_{1} is Φ_{1}-colourable. Hence, Lemma 4.1(c) is proved.

4.3. Proof of Theorem 1.9

In this subsection, let G be a hypergraph not containing a K_{k}, and let Φ be a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. Suppose that G is Φ-critical.

Let $L=\left\{x \in V(G) \mid d_{G}(x)=k-1\right\}, H=\left\{x \in V(G) \mid d_{G}(x) \geqslant k\right\}, W=W^{k}(G(L))$ and $L^{\prime}=L-W$. Furthermore, let

$$
E_{1}=\{e \in E(G)| | e \cap L \mid=1\} \quad \text { and } \quad E_{2}=\{e \in E(G)| | e \cap L \mid \geqslant 2\} .
$$

Let \mathscr{C} be the set of all components of $G(L)$ and let \mathscr{D} be the set of all components of $G(W)$. By Lemma $1.6, H \neq \emptyset$ and $\mathscr{C}, \mathscr{D} \subseteq \mathscr{T}_{k}$. Obviously, $W=W^{k}(G(W))$ and, therefore, every member of \mathscr{D} is an ε_{k}-hypergraph. This implies, in particular, that every member of \mathscr{D} is an ε_{k}-subcomponent of some member in \mathscr{C}.

Denote by v an arbitrary L-mapping of G and let v^{\prime} be a W-mapping of G such that $v^{\prime}(e)=v(e)$ for all $e \in E_{W} \cap E_{L}$. Then $N_{L}^{v}(x: G) \subseteq N_{W}^{v^{\prime}}(x: G)$ for every $x \in W$ and, therefore, $d_{W}^{v^{\prime}}(y) \geqslant d_{L}^{v}(y)$ for every $y \in H$.

Let ϱ, σ and τ_{c} be defined as in Lemma 1.8 and, for $y \in H$, let

$$
\tau_{c}(y)=d_{G[H]}(y)+\left(k-c-\frac{2}{k-1}\right)\left(d_{G}(y)-k\right)
$$

Then, we have

$$
\sigma=\sigma(G(L))=\sum_{T \in \mathscr{C}} \sigma(T) \quad \text { and } \quad \tau_{c}=\sum_{y \in H} \tau_{c}(y) .
$$

Since $\mathscr{C} \subseteq \mathscr{T}_{k}$, it follows from Lemma 2.3 that

$$
\sigma \geqslant \sum_{T \in \mathscr{C}}\left(\sigma^{*}(T)+s(T) \alpha_{k}+2-\alpha_{k}\right)
$$

provided that $k \geqslant 6$. For $x \in L$, let $d_{1}(x)=\left|\left\{e \in E_{1} \mid x \in e\right\}\right|$. If the vertex $x \in L$ belongs to a component $T \in \mathscr{C}$, then, by Lemma 1.6,

$$
\begin{equation*}
d_{1}(x)=k-1-d_{T}(x)=d_{G}(x)-d_{G(L)}(x)=\left|N_{L}^{v}(x: G)\right| . \tag{3}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\sigma \geqslant \sum_{x \in L^{\prime}} \alpha_{k} d_{1}(x)+\sum_{T \in \mathscr{G}}\left(s(T) \alpha_{k}+2-\alpha_{k}\right) \tag{4}
\end{equation*}
$$

provided that $k \geqslant 6$. For an edge $e \in E_{1}=E_{L}(G)$, let x_{e} denote the vertex satisfying $e \cap L=\left\{x_{e}\right\}$. For a vertex $y \in H$, define

$$
d^{1}(y)=\mid\left\{e \in E_{1} \mid y \in e \text { and }\left(x_{e} \in L-W \text { or } y \neq v(e)\right)\right\} \mid
$$

and

$$
d^{2}(y)=\left|\left\{e \in E_{2} \mid y \in e\right\}\right| .
$$

It follows from (3) that

$$
\sum_{y \in H}\left(d^{1}(y)+d^{2}(y)\right)+\sum_{x \in W} d_{1}(x)=\sum_{e \in E_{1} \cup E_{2}}|e \cap H| .
$$

Since $\left|E_{1}\right|=\sum_{x \in L} d_{1}(x)$, this implies that

$$
\begin{equation*}
\sum_{y \in H}\left(d^{1}(y)+d^{2}(y)\right)=\sum_{e \in E_{1} \cup E_{2}}|e \cap H|+\sum_{x \in L^{\prime}} d_{1}(x)-\left|E_{1}\right| . \tag{5}
\end{equation*}
$$

Furthermore, for $y \in H$, we have $d_{L}^{v}(y)=\left|\left\{x \in W \mid y \in N_{L}^{v}(x: G)\right\}\right|$ and, therefore,

$$
\begin{equation*}
d_{G}(y)=d^{1}(y)+d^{2}(y)+d_{L}^{v}(y)+d_{G[H]}(y) . \tag{6}
\end{equation*}
$$

Let $H^{\prime}=\left\{y \in H \mid d_{G}(y)=k\right\}$ and let

$$
\begin{equation*}
S=\varrho+\sigma+\sum_{y \in H^{\prime}} \tau_{c}(y)=\sum_{e \in E_{1} \cup E_{2}}|e \cap H|-\left|E_{1}\right|+\sigma+\sum_{y \in H^{\prime}} d_{G[H]}(y) \tag{7}
\end{equation*}
$$

Next, define the bipartite graph $F=F(A, B)$ as follows:
(a) $B=H^{\prime}$ and A is the disjoint union of the sets A_{1}, A_{2} and A_{3}.
(b) $A_{1}=\mathscr{C}$ and a component $T \in A_{1}$ is joined to a vertex $y \in B$ in F if and only if $y \in N_{L}^{v}(x: G)$ for some $x \in W^{k}(T)=W \cap V(T)$.
(c) For each vertex $y \in B$, let $A_{2}(y)$ be a set of $d^{1}(y)+d^{2}(y)$ vertices which are all joined to y in F. Let A_{2} be the disjoint union of all these sets $A_{2}(y), y \in B$.
(d) For each vertex $y \in B$, let $A_{3}(y)$ be a set of $d_{G[H]}(y)$ vertices which are all joined to y in F. Let A_{3} be the disjoint union of all these sets $A_{3}(y), y \in B$.
Now, we prove the two parts (Cases 1 and 2) of Theorem 1.9.
Case 1: $k \geqslant 6, \Phi(x)=\{1, \ldots, k-1\}$ for every $x \in V(G)$ and $c=(k-5) \alpha_{k}$. We have to show that $\varrho+\sigma+\tau_{c} \geqslant c|H|$. Since for $y \in H-H^{\prime}$ we have $\tau_{c}(y) \geqslant k-c+$ $\frac{2}{k-1} \geqslant c$, it is sufficient to show that $S \geqslant c\left|H^{\prime}\right|$. The proof of this statement is based on Lemma 4.1 where $X=L, \quad Y=H^{\prime}$ and v is the given L-mapping of G.

Consider the bipartite graph $F=F(A, B)$. If $T \in A_{1}$, then $d_{F}(T)=d(T)$. If $y \in B=$ H^{\prime}, then Lemma 4.1(a) implies that $\left|N(y: F) \cap A_{1}\right|=d(y) \geqslant d_{L}^{v}(y)-1$ and, by (6), we conclude that

$$
d_{F}(y) \geqslant d_{L}^{v}(y)-1+d^{1}(y)+d^{2}(y)+d_{G[H]}(y)=d_{G}(y)-1=k-1 .
$$

Furthermore, we infer from (4), (5) and (7) that

$$
\begin{aligned}
S \geqslant & \sum_{e \in E_{1} \cup E_{2}}|e \cap H|-\left|E_{1}\right|+\sum_{x \in L^{\prime}} \alpha_{k} d_{1}(x)+\sum_{T \in \mathscr{G}}\left(s(T) \alpha_{k}+2-\alpha_{k}\right) \\
& +\sum_{y \in H^{\prime}} d_{G[H]}(y) \\
\geqslant & \alpha_{k}\left|A_{2}\right|+\sum_{T \in \mathscr{C}}(s(T)+3) \alpha_{k}+\left|A_{3}\right| \\
\geqslant & \alpha_{k}\left(\left|A_{2}\right|+\sum_{T \in \mathscr{C}}(s(T)+3)+\left|A_{3}\right|\right) .
\end{aligned}
$$

Now, we apply Lemma 3.4 to $F=F(A, B)$ where $R=k-1, d=4$ and $a(x)=1$ if $x \in A_{2} \cup A_{3}$ and $a(x)=s(T)+3$ if $x=T \in A_{1}$. If $(R-d)|B| \leqslant \sum_{x \in A} a(x)$, then the above inequality for S implies

$$
S \geqslant \alpha_{k} \sum_{x \in A} a(x) \geqslant \alpha_{k}(k-5)|B|=c\left|H^{\prime}\right|
$$

Otherwise, by Lemma 3.4, there are non-empty subsets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B=H^{\prime}$ such that for $F^{\prime}=F\left[A^{\prime} \cup B^{\prime}\right]$ we have $d_{F^{\prime}}(x)>a(x)$ for every $x \in A^{\prime}$ and $d_{F^{\prime}}(y)>d=4$ for
every $y \in B^{\prime}$. Since every vertex of $A_{2} \cup A_{3}$ has degree 1 in F, we have $A^{\prime} \subseteq A_{1}=\mathscr{C}$. This gives a contradiction to Lemma 4.1(b).

Case 2: $k \geqslant 9,|\Phi(x)|=k-1$ for every $x \in V(G)$ and $c=\frac{1}{3}(k-4) \alpha_{k}$. We have to show that $\varrho+\sigma+\tau_{c} \geqslant c|H|$. Since $\tau_{c}(y) \geqslant c$ for every $y \in H-H^{\prime}$, it is sufficient to show that $S \geqslant c\left|H^{\prime}\right|$. The proof of this statement is based on Lemma 4.1 where $X=W, Y=H^{\prime}$ and v^{\prime} is the W-mapping of G obtained from the given L-mapping v.

Let $F^{*}=F^{*}\left(A^{*}, B\right)$ be the bipartite graph obtained from $F-A_{1}$ by adding the set $A_{1}^{*}=\mathscr{D}$ where $T \in \mathscr{D}$ and $y \in B$ are joined by an edge in F^{*} iff $y \in N_{W}^{v^{\prime}}(x: G)$ for some vertex $x \in W^{k}(T)=W \cap V(T)$. Since every ε_{k}-hypergraph $T \in \mathscr{D}$ is an ε_{k}-subcomponent of some member in \mathscr{C}, we infer from (4), (5) and (7) that

$$
\begin{aligned}
S & \geqslant \sum_{e \in E_{1}}(|e \cap H|-1)+\sum_{e \in E_{2}}|e \cap H|+\sum_{x \in L^{\prime}} \alpha_{k} d_{1}(x)+\sum_{T \in \mathscr{O}} \alpha_{k}+\sum_{y \in H^{\prime}} d_{G[H]}(y) \\
& \geqslant \alpha_{k}\left|A_{2}\right|+\alpha_{k}\left|A_{1}^{*}\right|+\left|A_{3}\right| \geqslant \alpha_{k}\left|A^{*}\right| .
\end{aligned}
$$

Since $d_{W}^{v^{\prime}}(y) \geqslant d_{L}^{v}(y)$ for every $y \in H$, we conclude from (6) and Lemma 4.1(a), similarly to Case 1 , that $d_{F}(y) \geqslant k-1$ for every $y \in B$. Now, we apply Lemma 3.4 to F^{*} where $R=k-1, d=3$ and $a(x)=3$ for every $x \in A^{*}$. If $(R-d)|B| \leqslant 3\left|A^{*}\right|$, then we obtain

$$
S \geqslant \alpha_{k}\left|A^{*}\right| \geqslant \frac{1}{3}(k-4) \alpha_{k}|B|=c\left|H^{\prime}\right| .
$$

Otherwise, by Lemma 3.4, there are non-empty subsets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B=H^{\prime}$ such that for $F^{\prime}=F^{*}\left[A^{\prime} \cup B^{\prime}\right]$ we have $d_{F^{\prime}}(x)>3$ for every $x \in A^{\prime}$ and $d_{F^{\prime}}(y)>3$ for every $y \in B^{\prime}$. Since every vertex of $A_{2} \cup A_{3}$ has degree 1 in F^{*}, we have $A^{\prime} \subseteq A_{1}^{*}=\mathscr{D}$. This gives a contradiction to Lemma 4.1(c). Therefore, Theorem 1.9 is proved.

5. Concluding remarks

The main result of this paper is that $2 f_{k}(n) \geqslant g_{k}(n, c)$ where $c=(k-5) \alpha_{k}$ and $k \geqslant 6$. Our method of proof yields two restrictions for the possible values of the constant c , namely $c \leqslant k-2 /(k-1)$ (see Lemma 1.8) and $c \leqslant \frac{1}{2}(k-2 /(k-1)$) (see the proof of Theorem 1.9, the part where we show that $\tau_{c}(y) \geqslant c$ provided that $\left.d_{G}(y)>k\right)$. For integers p, k satisfying $k \geqslant 4$ and $2 \leqslant p \leqslant k$, let

$$
c_{k, p}=f_{k}(k+p)-\frac{1}{2} g_{k}\left(k+p, k-\frac{2}{k-1}\right)
$$

and

$$
h_{k, p}(n)=\frac{1}{2} g_{k}\left(n, k-\frac{2}{k-1}\right)+c_{k, p}=\frac{1}{2}\left(k-1+\frac{k-3}{k-1}\right) n+c_{k, p} .
$$

We claim that if $n \geqslant k+2$ and $n \equiv p-1 \bmod (k-1)$ where $2 \leqslant p \leqslant k$, then there is a k-critical graph with n vertices and $h_{k, p}(n)$ edges implying that

$$
\begin{equation*}
2 f_{k}(n) \leqslant 2 h_{k, p}(n)=g_{k}\left(n, k-\frac{2}{k-1}\right)+2 c_{k, p} . \tag{8}
\end{equation*}
$$

For $n=k+p$, we have $h_{k, p}(n)=f_{k}(n)$ and the claim is evidently true. Now, assume $n \equiv p-1 \bmod (k-1)$. If G is a k-critical graph with n vertices and $h_{k, p}(n)$ edges, then we apply the Hajós construction (see [11] or [12]) to G and K_{k}. This results in a k-critical graph with $n+k-1$ vertices and

$$
m=|E(G)|+\binom{k}{2}-1
$$

edges. By an easy calculation, we then obtain

$$
m=h_{k, p}(n)+\binom{k}{2}-1=h_{k, p}(n+k-1) .
$$

This proves our claim.
Ore [20] (see also [12, Problem 5.3]) conjectured that equality holds in (8). In [10] Gallai proved that

$$
2 f_{k}(k+p)=(k-1)(k+p)+p(k-p)
$$

provided that $2 \leqslant p \leqslant k-1$ and in [13] it was proved that $f_{k}(2 k)=k^{2}-3$. Ore's conjecture implies, in particular, that

$$
\lim _{n \rightarrow \infty} \frac{2 f_{k}(n)}{n}=k-\frac{2}{k-1} .
$$

Some further results concerning list critical graphs and hypergraphs with few edges can be found in $[14,15]$.

References

[1] O.V. Borodin, A criterion of choosability of graphs with degree size list assignments, in: Abstracts of IV All-Union Conference on Theoretical Cybernetics, Novosibirsk, 1977, pp. 127-128 (in Russian).
[2] O.V. Borodin, Problems of colouring and of covering the vertex set of a graph by induced subgraphs, Ph.D. Thesis, Institute of Mathematics, Novosibirsk, 1979 (in Russian).
[3] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.
[4] W.A. Deuber, A.V. Kostochka, H. Sachs, A shorter proof of Dirac's theorem on the number of edges in chromatically critical graphs, Diskretnyi Analiz Issledovanie Operacii 3 (4) (1996) 28-34 (in Russian).
[5] G.A. Dirac, Note on the colouring of graphs, Math. Z. 54 (1951) 347-353.
[6] G.A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc. 7 (3) (1957) 161-195.
[7] G.A. Dirac, The number of edges in critical graphs, J. Reine Angew. Math. 268/269 (1974) 150-164.
[8] P. Erdös, A.L. Rubin, H. Taylor, Choosability in graphs, Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXVI (1979) 125-157.
[9] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 165-192.
[10] T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 373-395.
[11] G. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin-Luther-Univ. HalleWittenberg Math.-Naturw. Reihe 10 (1961) 116-117.
[12] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, 1995.
[13] A.V. Kostochka, M. Stiebitz, Excess in colour-critical graphs, in: Graph Theory and Combinatorial Biology, Balatonlelle (Hungary), 1996, Bolyai Society, Mathematical Studies, Vol. 7, Budapest, 1999, pp. 87-99.
[14] A.V. Kostochka, M. Stiebitz, On the number of edges in colour-critical graphs and hypergraphs, Combinatorica 20 (2000) 521-530.
[15] A.V. Kostochka, M. Stiebitz, A list version of Dirac's theorem on the number of edges in colourcritical graphs, J. Graph Theory 39 (2002) 165-167.
[16] A.V. Kostochka, M. Stiebitz, B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 191 (1998) 125-137.
[17] M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica 17 (1997) 401-426.
[18] H.V. Kronk, J. Mitchem, On Dirac's generalization of Brooks' theorem, Canad. J. Math. 24 (1972) 805-807.
[19] L. Lovász, Combinatorial Problems and Exercises, Akad. Kiadó, Budapest, 1979.
[20] O. Ore, The Four Colour Problem, Academic Press, New York, 1967.
[21] M. Stiebitz, Proof of a conjecture of T. Gallai concerning connectivities properties of colour-critical graphs, Combinatorica 2 (1982) 315-323.
[22] V.G. Vizing, Colouring the vertices of a graph with prescribed colours, Metody Diskretnogo Analiza Teorii Kodov Skhem 29 (1976) 3-10 (in Russian).
[23] J. Weinstein, Excess in critical graphs, J. Combin. Theory Ser. B 18 (1975) 24-31.

[^0]: E-mail address: michael.stiebitz@mathematik.tu-ilmenau.de (M. Stiebitz).
 ${ }^{1}$ Research supported in part by Grant 99-01-00581 from the Russian Foundation of Fundamental Research and by the Grant Intas-Open-97-1001.
 ${ }^{2}$ Research supported by the Grant Intas-Open-97-1001.

