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Abstract

A graph G is called k-critical if it has chromatic number k, but every proper subgraph of G
is (k — 1)-colourable. We prove that every k-critical graph (k>=6) on n>k + 2 vertices has at
least 3 (k—1+ (k_()(,’fﬁ)n edges where ¢ = (k — 5)(3 — zyjr—)- This improves earlier
bounds established by Gallai (Acad. Sci. 8 (1963) 165) and by Krivelevich (Combinatorica 17
(1999) 401).
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A graph G is k-critical for a positive integer k if G is not (k — 1)-colourable but
every proper subgraph of G is (k — 1)-colourable. Then every k-critical graph has
chromatic number k£ and every k-chromatic graph contains a k-critical subgraph.
The importance of the notion of criticality is that problems for k-chromatic graphs
may often be reduced to problems for k-critical graphs, whose structure is more
restricted. Critical graphs were first defined and used by Dirac [5] in 1951. In the
present paper a new lower bound for the number of edges in a k-critical graph on n
vertices is established.
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The complete graph K} is an example of a k-critical graph and for k = 1,2 it is the
only one. The only 3-critical graphs are the odd circuits, so for the remainder of this
paper we shall restrict our attention to the case k>4. Then there are k-critical graphs
on n vertices for all n>k except for n =k + 1. For n=k + 2, let f;(n) denote the
minimum number of edges possible in a k-critical graph on n vertices. Since every k-
critical graph has minimum degree at least k — 1, we have 2f(n) = (k — 1)n. Brooks’
theorem [3] implies

2fc(m)=(k— )n+ 1,
and Dirac [6] proved
2fi(m)=(k — )n+k — 3.

In [7], he also gave a complete description of the extremal cases. Dirac’s proof was
rather long. Shorter and more elegant proofs were found by Kronk and Mitchem
[18], Weinstein [23] and, for the result in [7], by Deuber et al. [4]. In [13], the authors
proved

2fi(n)=(k — )n+2(k — 3)

provided that n#2k — 1. For a given constant ¢>0, let

k—3

gk(n,c) = <k 1 Jr(k—c)(k— 1)+k—3> n.

In his fundamental paper [9] Gallai characterized the class of graphs that are
subgraphs of some k-critical graph G induced by the set of vertices having degree
k—1 in G. Based on this result, he proved 2fi(n)>gr(n,0). Recently, this lower
bound was improved by Krivelevich [17] to 2f;(n) = gi(n,2). Krivelevich [17] also
presents some interesting applications of his lower bound on the number of edges in
critical graphs. In what follows, let

R 1
RN TE=)

The following theorem is one of the main results of this paper.

Theorem 1.1. If k=6 and n=k + 2, then 2fi(n) = gi(n, (k — 5)o).
1.1. Terminology

Concepts and notation not defined in this paper will be used as in standard
textbooks. Though the main objects of our study are graphs, it is convenient to
define the central concepts for hypergraphs.

A hypergraph G = (V,E) consists of a finite set V' = V(G) of vertices and a set
E = E(G) of subsets of V, called edges, each having cardinality at least two. An edge
e with |e| >3 is called a hyperedge and an edge e with |e| = 2 is called an ordinary
edge. A graph is a hypergraph in which each edge is ordinary.

Let G be a hypergraph. The order of G is |V(G)|. The degree dg(x) of a vertex
xe V(G) is the number of the edges in G containing x. If dg(x) = r for every vertex
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xeV(G), then G is called r-regular. Furthermore, let d(G) =3,y do(x).
Clearly, if G is a graph, then d(G) = 2|E(G)|.

If H and G are hypergraphs with V(H)< V(G) and E(H)< E(G), then H is said
to be a subhypergraph of G.

Let G be a hypergraph and X < V'(G). The subhypergraph G[X] of G induced by
X is defined as follows: V(G[X]) = X and E(G[X]) = {e€E(G) | e< X}. Further-
more, let G(X) denote the hypergraph with V(G(X)) =X and E(G(X)) =
{enX |ecE(G) &|lenX|>2}. Further, let G—X =G[V(G)—X] and G\X =
G(V(G) - X). For MSE(G), let G— M = (V(G),E(G) — M). Clearly, G[X] is a
subhypergraph of G(X) and, if G is a graph, then G[X] = G(X). Note that in general
G(X) is not a subhypergraph of G.

A subset X of V(G) will be called a cligue of G if G[X] is a complete graph. A
clique of G with p vertices is also said to be a p-clique of G. As usual, K,, denotes the
complete graph on n vertices. For an edge e, let {e) be the hypergraph (e, {e}).

For a graph G and a vertex xe V(G), let N(x : G) be the neighbourhood of x in G,
that is the set of all vertices ye V(G) such that {x,y}eE(G). Obviously, dg(x) =
IN(x: G)|.

Now consider a hypergraph G and a set X < V(G). Then the set of all edges
e€ E(G) satisfying [en X| = 1 is denoted by Ex(G) and in case of X = {x} also by
E.(G). By an X-mapping of G we mean a mapping v that assigns to every edge
e€Ex(G) a vertex v(e)ee — X. For an X-mapping v and a vertex xe X, let

NY(x:G)={yeV(G)|y=rv(e) &enX = {x} for some ec Ex(G)}.

Clearly, Ny (x:G)=V(G) — X and dg(x)=>dgx)(x) + [Ny(x: G)|. Furthermore,
dg(x) = |Ex(G)| and, provided that G is a graph, N} (x: G) = N(x: G) — X.

1.2. Main results

For the proof of Theorem 1.1 we shall use the concept of list colouring. Consider a
hypergraph G and assign to each vertex x of G a set ®(x) of colours (positive
integers). Such an assignment @ of sets to vertices in G is referred to as a list for G. A
@-colouring of G is a mapping ¢ of V(G) into the set of colours such that ¢(x) e @(x)
for all xe V(G) and |{¢(x) | xee}|=2 for each e E(G). If G admits a d-colouring,
then G is said to be @-colourable. In the case where @(x)={l,...,k} for all
xeV(G), we also use the terms k-colouring and k-colourable, respectively. The
chromatic number of G denoted by y(G) is the least number k for which G is k-
colourable. If y(G) = k, then G is called k-chromatic. The list colouring concept was
introduced, independently, by Vizing [22] and by Erdés et al. [8].

Let G be a hypergraph and let @ be a list for G. We say that G is @-critical if G is
not ¢-colourable but every proper subhypergraph of G is @-colourable. In the case
where @(x) = {1, ...,k — 1} for all xe V(G), we also use the term k-critical. Then G
is k-critical if and only if y(G’) <y(G) = k for every proper subhypergraph G’ of G.

The following theorem is one of the main results of this paper. In particular, it
implies Theorem 1.1.
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Theorem 1.2. Let G be a hypergraph not containing a Ky, and let ® be a list for G
satisfying |®(x)| = k — 1 for every xe V(G). If G is ®-critical, then

A0z VO0) = (k=14 o =1 =3) V(O

provided that k=9 and ¢ =1(k —4)o; or k=6, &(x)={1,....,k — 1} for every
xeV(G) and ¢ = (k — 5)o.

Theorem 1.2 is an immediate consequence of Theorem 1.9 in Section 1.4 and this
result is proved in Section 4. The proof of the next result is given in Section 2. For k-
critical graphs, this result was proved by Gallai [9] in 1963.

Theorem 1.3. Assume that k>4 and G +# K}, is a @-critical hypergraph where @ is a list
for G satisfying |®(x)| = k — 1 for every xe V(G). Then d(G)=gx(|V(G)|,0).

Theorem 1.3 is interesting only for &-critical hypergraphs containing a Kj.
Obviously, if a k-critical hypergraph G contains a K, then G = Kj.. However, the list
version of this statement is not true. To see this, let ¥>2 be an integer and let G
denote the hypergraph whose vertex set is the disjoint union of r sets A4, ..., 4, such
that G[4,] = Ky fori =1, ...,rand E(G) = J._, E(G[A4;])u{e} where en4; = {y;}
for i =1, ...,r. Furthermore, define the list @ for the hypergraph G by

B(x) = {1,k =1} if xeV(G) = {»1, ...}
{2,....k} if xe{yi,...,»}-

Then |@(x)| =k — 1 for all xe V(G) and it is easy to check that G is P-critical.
Clearly, G is a hypergraph of order n = rk containing r copies of a K and d(G) =
(k—Dn+r.

In the next subsection we establish some basic results about list-critical
hypergraphs.

1.3. Gallai trees and bad pairs

Let G be a connected hypergraph. A vertex x of G is called a separating vertex of G
if G\{x} is non-empty and disconnected. An edge e of G is called a bridge of G if
G —{e} = (V(G),E(G) — {e}) has precisely |e| components. By a block of G we
mean a maximal connected subhypergraph B of G such that no vertex of B is a
separating vertex of B. Any two distinct blocks of G have at most one vertex in
common and, obviously, a vertex of G is a separating vertex of G iff it is contained in
more than one block of G. An end-block of G is a block that contains at most one
separating vertex of G. Clearly, every non-empty hypergraph has at least one end-
block.

The above statements about the block structure are well known for graphs. For
hypergraphs, the proof of these statements is left to the reader.
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By a brick we mean a hypergraph of the form {e) for some edge ¢, or an odd
circuit (consisting only of ordinary edges), or a complete graph. A connected
hypergraph all of whose blocks are bricks is called a Gallai tree; a Gallai forest is a
hypergraph all of whose components are Gallai trees.

By a bad pair we mean a pair (G, ®) consisting of a non-empty connected
hypergraph G and a list @ of G such that |®(x)| >dg(x) for all xe V(G) and G is not
®d-colourable.

Lemma 1.4 (Kostochka et al. [16]). If (G,®) is a bad pair, then the following
statements hold.

() |@(x)| = dg(x) for all xe V(G).

(b) Every hyperedge e of G is a bridge of G and, therefore, {e) is a block of G.
(c) If G has no separating vertex, then ®(x) is the same for all xe V(G).

(d) G is a Gallai tree.

For graphs, Lemma 1.4 was proved, independently, by Borodin [1,2] and by Erdds
et al. [8]. Proofs of statements (a) and (c) in the graph version based on a sequential
colouring argument were given by Vizing [22] and by Lovasz [19]. For a short proof

of Lemma 1.4 based on the following simple reduction idea the reader is referred
to [16].

Remark 1.5. Let G be a hypergraph, @ be a list for G, X < V(G), and let v be an X-
mapping of G. Furthermore, let ¥ = V(G) — X and let ¢ be a ®-colouring of G[Y].
For the hypergraph G' = G(X) = G\Y, define the list & by

' (x) = &(x) — {o(y) |yeNy(x : G)}

for every xe V(G'). In what follows, we denote @ by ®(Y,v,¢) and in case of
Y = {y} and ¢(y) = a also by ®(y,a). Then it is straightforward to show that the
following statements hold.

(a) If G’ is @'-colourable, then G is P-colourable.

(b) If |®(x)| = dg(x) + p for xe V(G'), then | (x)|=dg (x) + p.

() If (G,®) is a bad pair, then (G',®') is a bad pair provided that G’ is
connected.

Lemma 1.6. Let G be a ®-critical hypergraph where @ is a given list for G, H =
{yeV(G)|de(y)>|®(»)|} and L = V(G) — H. Furthermore, let X be a non-empty
subset of L, let v be an X-mapping of G, and let F = {e€eE(G) ||lenX|=2&e —
X #0}. Then the following statements hold:

(a) dg(x) = |D(x)| for every xeL.

(b) G(X) is a Gallai forest.

(©) dg(x) = dgx)(x) + [Ny (x : G)| for every xe X.

(d) If xe L, then lené'| =1 for every two distinct edges e, e € E.(G).
(e) If e, eF and e#¢', then en X #e' N X.
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(f) If eeF, then en X is a bridge of G(X).

(2) If |®(x)| =k — 1 for every xe V(G) (k=1), then H is non-empty or G is a K or
k=3 and G is an odd circuit or k =2 and G = {e). Furthermore, if G(X)
contains a Ky, then G = K.

Proof. In order to prove Lemma 1.6, it is sufficient to consider the case where G(X)
is connected. Let Y = V' (G) — X. Since G is &-critical, there is a @-colouring
¢ of G[Y]. Now consider the list @ = @(Y,v,p) for the connected hypergraph
G' = G\Y = G(X). Then, because X =L, we have

B(x)| > do(x) = de (x) + [N} (x: G)l,
and, therefore,
@' (x)| = |®(x)] — [Ny (x : G)|=de(x)

for all xe X. Furthermore, G’ is not @'-colourable. Consequently, (G', ®') is a bad
pair. Then, by Lemma 1.4, G’ is a Gallai tree and |®'(x)| = dg (x) for all xeX
implying that |®(x)| = dg(x) = dg (x) + [Ny (x : G)| for all xeX. Thus (a)—(c) are
proved.

For the proof of (d), suppose that, for some xe L, there are two distinct edges
e, € E(G) such that |ene'|>2. Then, for the set X’ = {x}, there exists an X’-
mapping v of G such that v'(e) = v'(¢'). Consequently, we have dg(x)>dgx)(x) +
IN%.(x : G)|, a contradiction to (c).

Clearly, statement (e) is an immediate consequence of (d). For the proof of (f), let
¢=enX for every ec F. Then ¢ is an edge of G(X) for all eeF.

Now, suppose that €is not a bridge of G’ = G(X) for some e€ F. Then, because of
(b), € is an ordinary edge of G', i.e. €= {xy,x2} with x,x,€X and, therefore,
G = G' — {é&} is a connected hypergraph. Let & be the list for G such that &(x) =
@ (x) if x#x; and ®(x;) = ¥ (x1) — {@(y)} for some yeen Y. Then |®(x)|>dx(x)
for all xeX = V(G') and |®(x2)|>dz(x2). Therefore, by Lemma 1.4, G is &-
colourable implying that G is ®-colourable. This contradiction proves (f).

Finally, suppose that |®(x)| = k — 1 for every xe V(G). If H = 0, then G = G(L)
and, since G is @-critical, G is connected. Therefore, by (a) and (b), Gis a (k — 1)-
regular Gallai tree. Since every block of a Gallai tree is regular, this implies that G
consists of one block. Consequently, G is a K or kK = 3 and G is an odd circuit or
k=2and G = {e) for some hyperedge e. If G(X) contains a K}, then we argue as
follows. By (a), the maximum degree of G(X) is at most k — 1. Consequently, by (b),
one block B of G(X) is a Ki. Then, by (d), every edge of B belongs to G and,
therefore, B is a subhypergraph of G. Since every vertex of B has degree k — 1 in G,
this implies that B is a component of G. Then, since G is ®-critical, we infer that
G = B = Kj. This proves (g). O

For k-critical graphs, statement (b) of Lemma 1.6 is due to Gallai [9] and the first
statement of (g) is equivalent to the well-known theorem of Brooks [3].
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Following Gallai, a vertex x of a @-critical hypergraph G is called a high vertex if
dg(x)>|P(x)|, otherwise x is called a low vertex of G. For this reason, we always
write H and L for the corresponding sets of vertices.

Let G be an arbitrary Gallai tree. The set of all blocks of G is denoted by 4(G). If
Be#(G), then B is regular and we say that B is a block of type b if B is (b — 1)-
regular. Clearly, if Be #(G) is a block of type b, then b>1 and B = K}, or b = 3 and
B is an odd circuit, or b =2 and B = <{e) for some edge e. Two distinct blocks
which have a vertex in common (they cannot have more than one vertex in common)
are called adjacent.

Let %(G) denote the set of all mappings u that assign to every block Be 4(G) of
type b a set u(B) of b — 1 colours such that u(B) nu(B') = () for any two adjacent
blocks B, B'€ #(G). For a given mapping ue%(G), define the list @ = ¢, for the
Gallai tree G by @(x) = |Ju(B) where B runs through all blocks of G containing the
vertex x€ V(G). The graph version of the following result was proved by Borodin
[1,2] and by Erdés et al. [8].

Lemma 1.7. Let (G, ®) be a bad pair. Then & = ®,, for some ue 4 (G). This implies, in
particular, that ®(x) = ®(y) provided that x and y are two non-separating vertices of G
contained in the same block of G.

Proof (By induction on the number m of blocks of G). For m =1, Lemma 1.7
follows from Lemma 1.4.

Now assume m>1. Let G; be an end-block of G and let x denote the only
separating vertex of G contained in G;. Let G, = G — (V(G)) — {x}). Clearly, G, is a
Gallai tree with 4(G,) = 4(G) — {G,}.

For i = 1,2, let M; denote the set of all colours ae ®(x) such that there is no @-
colouring ¢ of G; with ¢(x) = a. If there is a colour ae ®(x) — M| — M>, then, for
i = 1,2, there is a @-colouring ¢; of G; with ¢,(x) = a. Consequently, ¢, U@, is a @-
colouring of G. This contradiction shows that ®(x) = M, U M,. Fori = 1,2, define a
list @; for the hypergraph G; by

o= {201 b

Clearly, for i=1,2, the hypergraph G; is not @;-colourable and, moreover,
|®;(y)|=dg,(y) for all yeV(G;)—{x}. Therefore, by Lemma 1.4, |M; =
|®;(x)| <dg,(x). Since

[Mi| + [Ma| = [Myo M| = [®(x)| = di(x) = da, (x) + da, (%),

this implies that |M;| = dg,(x) for i = 1,2 and M; n M, = 0. Hence (G;, @;) is a bad
pair and, by the induction hypothesis, ®; = @, for some wu;e%(G;). Then the
mapping u with u(G) = u;(Gy) and u(B) = u»(B) for all Be #(G,) belongs to %(G)
and & =¢,. O
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1.4. Basic idea

The next lemma tells us how we can find a lower bound for the degree sum of a
list-critical hypergraph.

Lemma 1.8. Assume that k=4 and G # K}, is a ®-critical hypergraph where @ is a list
for G satisfying |®(x)| =k — 1 for every xe V(G). Furthermore, let L = {xe V(G) |

de(x) =k —1}, H={xeV(G)|dg(x)=k}, E| ={ecE(G)||enL|=1} and E,
= {e€E(G)||lenL|=2}. Finally, let

0= (enH| - 1)+ lenH],

eekE) ecek,

o= (k=24 2 )il - Gy

and

v = d(GH)) + <k_ _%) S (doly) — ),

yeH

where  0<c<k—7% is a given constant. If g9+ o+7t.=c|H|, then
G

d(G)Zg(IV(G)], ¢).

Proof. Let n=|V(G)| and y =3, _,(dG(y) — k). Then

(k 2+k2 >|L| d(G(L)) and
t. = d(G[H]) + (k— c—%)y.

From Lemma 1.4 we conclude that H#0 and n=|L|+|H|. If |L|=0,
then d(G)=kn=gi(n,c). If |L|>1, then d(G(L)) = (k — 1)|L| — |E;| and we infer
that

Y do(y) =d(GIH]) + Y [enH]

yeH eeE\VE,

=d(G[H]) + (k = DIL| = d(G(L)) + o
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Since ¢ + 0 + t.=c|H| and every vertex in L has degree kK — 1 in G, this implies, on
the one hand, that

d(G) =(k =1L+ > dg(y)

yeH

=d(G[H]) +2(k — 1)|L| — d(G(L)) + ¢

—d(G[H)) + o+ 0+ |L| (k_ka

2 2
> ¢ A o -
> c|H| /(k ¢ k—l) +|L|(k k—l)

2 2
cny(kcm> +|L|(kcm).

On the other hand,
d(G)=(k—1)n+|H|+y=kn—|L| +7y.

Therefore,

d(G)(l+k—c—k—il)>(c+k(k—c—%))n.

Since k — ¢ — 72;>0, this is equivalent to

k-3
(k —c)(k — 1)+k—3>” = g(n, c).

d(G)= (k -1+
Thus Lemma 1.8 is proved. O

Consider a k-critical graph G#Kj for some integer k>4. Furthermore, let
L, H, 9, o and 1, be defined as in Lemma 1.8. By this lemma, ¢ + o + 1. > c|H|
implies d(G) =g (|V(G)|,¢). For k-critical graphs, this fact was already known to
Gallai [9]. Clearly, in the graph case we have ¢ = 0, 7,20 and, moreover, Gallai [9]
proved that if ¢, is the number of components of G[L], then ¢>2¢;. Consequently,
0+ 0+ 1,20 and, therefore, d(G)=gx(|V(G)|,0). Krivelevich [17] observed that if
cy 1s the number of components of G[H], then t.>d(G[H]) = 2|E(G[H])|=2|H| —
2¢y and, therefore, ¢ + 0 + t.=2¢p + 2|H| — 2¢p. Since ¢, — ¢y =0 by a result from
[21], this implies that ¢ + o + t.>2|H| and, therefore, d(G) =g, (|V(G)|,2).

The statement ¢>2c¢; holds also if G#K} is a ®-critical graph for some list @
satisfying |@(x)| =k — 1 for all xe V(G) (see Section 2). However, the statement
¢ — ¢y =0 1s not true in this case.

As an immediate consequence of Lemma 1.8 we obtain that for the proof of
Theorem 1.2 it suffices to prove the following result.

Theorem 1.9. Let G be a hypergraph not containing a Ky, and let @ be a list for G
satisfying |®(x)| =k —1 for every xeV(G). Let L, H, E,, E,, 0, ¢ and t. be
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defined as in Lemma 1.8. If G is ®-critical, then
o+o+1.=2clH|

provided that k=9 and ¢ =Yk —4)oy or k=6, &(x)={1, ...,k — 1} for every
xeV(G) and ¢ = (k — 5)ay.

The proof of Theorem 1.9 is given in Section 4. In Section 2 we give a
generalization of Gallai’s result concerning ¢ and establish some lower bounds for
this parameter. In Section 3 we prove some auxiliary results about bipartite graphs.
Section 4 is mainly devoted to the proof of Lemma 4.1 which is the key lemma for
the proof of Theorem 1.9.

2. Lower bounds for ¢ and &,-hypergraphs

Let k=4 be a given integer, and let
2
=k—-2+-—01.
=k 2t
For an arbitrary hypergraph F and xe V(F), define o(x : F) = ry — dp(x) and
o(F)= > o(x:F)=|V(F)r—d(F).

xeV(F)

Let 7 denote the set of all Gallai trees distinct from K} and with maximum degree
at most k — 1. For Te 7 and some end-block B of T, let T =T — (V(B) — {x})
where x is the only separating vertex of 7 contained in B (if there is no such vertex,
then 7= B and an arbitrary vertex of B may be taken).

Lemma 2.1. Let T€ T and k=4. Then the following statements hold:

(a) If Be#B(T), then a(B) =2 if B= Kj._1 and o(B) =ry otherwise.
(b) If B is an end-block of T e Ty, then o(T) = o(Tp) + 6(B) — 1.

Proof. Let Be #(T) be a block of type b, that is B is a brick and Bis (b — 1)-regular
for some <k — 1. Then 1<b<k -1, B= K, and
= if 1<b<<k -2,

O'(B)b(rkb+l){2 S h— k1

or b =3, Bisan odd circuit of order at least five and o(B) = |V(B)|(rx — 2) =5(rx —
2)=ry, or b=2, B= ey and o(B) = |e|(rx — 1) =r,. This proves (a). Statement
(b) follows from the fact that 7 and B have exactly one vertex in common. [J

Consider an arbitrary Gallai tree Te 7. Let xe V(T) and let By, ..., B; be the
blocks of T containing x where B; is of type b; (i =1, ...,1). Then x is said to be of
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type (by, ...,b;) in T. Let 7 denote the set of all Gallai trees from .7 that do not
have a block of type 2. For an integer b>1, let #(h) =2 — %

Let TeZ ) and k>6. Clearly, if T contains a block B of type k — 1, then
T = B =K. For a vertex xe V(T) of type (by, ..., b;) in T, define

i .
o(x: T) = o(x:T)+> ., tb;)—2 if T;é{(,kh
0 otherwise.

Furthermore, let

J(T)= > d(x:T).

xeV(T)

Lemma 2.2. If Te 7 and k=6, then

@) o(T)=d(T)+ 2, and
(b) o' (x: T)=ar(k — 1 —dr(x)) for every xe V(T) provided that T # K.

Proof. We prove statement (a) by induction on the number m of blocks of 7. First,
assume m = 1. Then T is a complete graph of order » where 1 <b<k — 1 and b#2 or
T is an odd circuit. If T' = Kj_;, then ¢/(T) = 0 and, by Lemma 2.1(a), o(7) =2 =
o(T)+2. If T = K, with 1<b<k —2 and b#2, then ¢'(T) = o(T) + (t(b) — 2)b =
o(T)—2. If T is an odd circuit of order p=3, then ¢/(T) = o(T) + (2(3) = 2)p =
a(T) — (2/3)p<a(T) — 2. This settles the case m = 1.

Next, assume m=2. Let B be some end-block of 7" and let x be the only separating
vertex of T contained in B. Suppose that B is a block of type b and x is of
type (b1, ..., b;) in T where b; = b. Since T € 7, has at least two blocks, no block of
T is a Ki_y. Furthermore, 7/ = Tpe 7, and x is of type (by,...,b—1) in T
Consequently,

-1
o(x:T)=r.—dp(x)+ Z t(b;) — 2,

i=1
o'(x: B) =rp —dp(x) +t(b)) =2

and

/
o'(x: T)=r —dr(x)+ Y _ t(b;) - 2.

i=1

Since dr(x) = dp(x) + dp(x), this implies that
o(T)=6(T")+d(B)+0d'(x:T)—d'(x:T')—d'(x: B)

=d(T")+ ' (B) —rr +2.
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Then, by the induction hypothesis and Lemma 2.1(b), we infer that
o(T)=6"(T")+0'(B) —ri+2
o(T")—2+a(B)—2—r+2
=o(T) - 2.

Thus (a) is proved. For the proof of (b), consider an arbitrary vertex xe V(T).
Suppose that x is of type (by, ..., b;) in T. Then, since T €7 and T # Kj_;, we have

1<b;<k —2and b;#2 for i =1, ...,m. Furthermore, dr(x) = Zﬁzl(bi - 1)<k -1
and we have to show that

o(x:T)=ri—dr(x +Zr o (k — 1 —dp(x)). (1)

Let

M=(1—ock)<k—1—zl:b ‘1>+Z(2__>

i=1
By an easy calculation, it then follows that (1) is equivalent to
2
M=3 - —— 2
k—1 )
First, consider the case / = 1. Then
M = (1 - ock)(k— bl) +2— 2/b1.

For b; = 1, this yields M = (1 — o, )(k — 1). Then, in case of k=7 we have M >3,
and in case of k = 6 we have M = (1/2+1/20)5 =55/20and 3 —2/(k — 1) = 13/5.
Hence (2) is satisfied for by = 1. If 3<b; <k — 2, then M is a monotone decreasing
function of b, and we infer that
M= —o)k—(k—=2)+2-2/(k-2)
2 2 2
=1 2 — =3- .
M TSS 17255 R S R

This settles the case / = 1. Next, consider the case / = 2. Then 3<b;,b, and b; +
by<k + 1. Hence —2/b; —2/b;= — 4/3. Therefore, in case of b; + b, <k we have

2 2 1 8
—(1— -z S e R
R O R R Y

and in case of by + b, = k + 1 we have

2 2 2 2 2
S - > PR — - — -
M>(2 b1)+(2 k+1b1>/<2 k2>+(2 3)>3 1
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Consequently, (2) holds for / = 2. Finally, consider the case />3. Then b; >3 and,
therefore,

M= 23: 2 2 =3(2 2) - 4
= - bi = 3 = .
Hence (2) holds for all />1 and, therefore, (b) is proved. [

For a hypergraph G and an integer p>2, let W?(G) denote the set of all vertices of
G that belong to some (p — 1)-clique of G. If Ge 7, then W**1(G) = ) and, for
every (k — 1)-clique X of G, G(X) = G[X] is a block of G.

Following Gallai, G is called an &-hypergraph if Ge 7 and W*(G) = V(G). For
k=5, a hypergraph G is an g;-hypergraph iff Ge 7 and every separating vertex of G
is of type (kK — 1,2) and every non-separating vertex of G is of type k — 1.

If a component G’ of G(W*(G)) is an ¢-hypergraph, then G’ is said to be an &-
subcomponent of G.

Obviously, if Te 7, then every vertex of W*(T) is of type (k — 1,2) or of type
k — 1 and the g-subcomponents of T are precisely the components of T(W*(T)).
The number of all g.-subcomponents of 7 is denoted by s(7T').

Let TeJ . For a vertex xe V(T), define

o ) — w(k — 1 —dr(x)) if xeV(T)— W5T),
ol T) = 0 otherwise.

Furthermore, let

o*(T) = Z o*(x: T).

xeV(T)

Lemma 2.3. If Te T and k=6, then o(T)=0*(T) + s(T)oy. + 2 — 0.

Proof. We prove Lemma 2.3 by induction on the number m of blocks of type 2 in 7.
If m=0, then Te7,, s(T)<1, and, by Lemma 2.2, o(T)>¢*(T) +2>0*(T) +
(T + 2 — og.

Now assume m>1. Let B be an arbitrary block of T that is of type 2. Then
B = (e) where ec E(T) is a bridge of T. Let e = {x, ..., x,} where p>2 and, for
i=1,...,p,let T; denote the component of T — {e} containing the vertex x;. Assume
that x;e W*(T;) for i = 1,...,l and x;e V(T;) — W*(T;) fori=1+1,...,p. Then

o*(T) =) o*(T}) — eulp — 1),
i=1

and, moreover,

p , if ] —
S(T) = L S(Th) if =0,
Pos(Ty) =141 if [>1.
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Consequently, using the induction hypothesis, we conclude that

I
Q
/—.}\e
3
_|_
2
)
|
=
KR
;
I
/@\
}ﬂ
_|_
=
\}
|
KR
Z
|
=

> 0*(T) + os(T) +p — o

~—  ~—

> 0*(T) + ogs(T) + 2 — o.

This proves Lemma 2.3. [

Lemma 2.4. Let TeT and k=4. Then o(T)=2 if T is an e-hypergraph and
a(T)=ry otherwise.

Proof (By induction on the number m of blocks of 7). For m = 1, Lemma 2.4 is an
immediate consequence of Lemma 2.1.

Now assume m> 1. If T is an ¢,-hypergraph, then 7'z is not an ¢-hypergraph for
any end-block B of T and, by the induction hypothesis and Lemma 2.1,
6(T)=20(Tp) + o(B) —ry,=0(B)=2.

If T is not an ¢-hypergraph, then we argue as follows. First, consider the case
where T has a block B of type 2. Then B = {e) where ee E(T) is a bridge of T. For
xee, let T\ denote the component of T — {e} containing x. Since T is not an &-
hypergraph, T is not an ¢,-hypergraph for at least one xee. Furthermore, r, >k —
2>2. Therefore, by the induction hypothesis,

o(T) = o(Tx) — le|>2(e| = 1) + i — le| > 1.

Xee

Now, consider the case where T has no block of type 2. Then no block of Tis a Kj._;.
Let B be an end-block of 7. Then T is not an ¢-hypergraph and, by the induction
hypothesis and Lemma 2.1, 6(T") = o(T's) + 0(B) — rr >ry. This completes the proof
of Lemma 2.4. [

Proof of Theorem 1.3. Assume that k>4 and G # K} is a @-critical hypergraph where
¢ is a list for G satisfying |®(x)|=k—1 for every xeV(G). Let L=
{xeV(G)|dg(x) = k — 1}. Then, by Lemma 1.6, each component of G(L) belongs
to J . Therefore, by Lemma 2.4, o(G(L))>0. Consequently, by Lemma 1.8,
d(G)>g(IV(G)].0). O
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3. Bipartite graphs

Let G be a graph. An edge {x,y} of G is also denoted by xy or yx. We denote by
F =F(A4,B) a bipartite graph satisfying V(F)=AuUB, AnB=0 and E(F)<
{xy|xeA and ye B}. For an integer x, let [ x| denote the upper integer part of x.

Lemma 3.1. Let F = F(A, B) be a bipartite graph, let r =1 be an integer, and let B, be
the set of all vertices of B having degree at least v in F. Then there is a subgraph F' of F
such that

@) dp(x)< [diﬁ] for every xe A,
(b) dr(y) =1 for every ye B, and dp/(y) = 0 for every ye B — B,.

Proof. For every vertex xe 4, there is a partition {Ny, ..., N, } of N(x: F) into
My = [@] subsets satisfying 1 <|N}|<rfori=1,...,m,. Now, replace in F every
vertex xe A by m = m, new vertices x(j), ..., X(,») and join x(; to every vertex in Ny
by an edge (i =1, ...,m,). This results in a bipartite graph H = H(A’, B) such that
dy(x')<r for every x'€ A’ and dy(y) = dr(y) for every yeB.

Consider an arbitrary set SSB, and let N(S) =J,.g N(x: H). Let m be the
number of all edges x'ye E(H) satisfying ye S and x'e N(S)= A4’. On the one hand,
m>=r|S| and, on the other hand, m<r|N(S)|. Consequently, |N(S)|>|S|. Now,
Hall’s theorem yields that there is a matching M in H that covers all vertices in B,
i.e., McE(H) and for the graph H' = (V(H), M) we have dy(y) = 1 for every
y€B, and dy(y) =0 for every ye B — B,.

Let F’ be the graph with V(F') = AUB and E(F') = {xye E(F) | x;yeM for
1 <i<my}. Then dp(x)<m, = [@] for every xe A, dr(y) =1 for every yeB,,
and dp(y) = 0 for every ye B— B,. O

Lemma 3.2. Let F = F(A, B) be a bipartite graph and, for r=1, let B, be the set of all
vertices of B having degree at least r in F. Assume that dp(x) =4 for every xe A. Then
there is a subgraph F' of F such that

(a) dp(x) =2 for every xe A,
(b) dp(y)<dr(y) — 2 for every ye By, and
(c) dr(y)<dp(y) — 1 for every ye Bj.

Proof. Because of Lemma 3.1, there is a subgraph H of F such that dy(x) < [dFT(”]
for every xe A, dy(y) =1 for every ye By, and dy(y) = 0 for every ye B — By. Let
F=F — E(H) and let B; be the set of all vertices of B having degree at least 3 in F.
Obviously, B; = B3 U B,. Then Lemma 3.1 implies that there is a subgraph H of F

such that dj(x) < |'d“§x>] for every xe A, dy(y) = 1 for every ye By, and dy(y) =0

for every ye B — Bs.
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Let G=F—E(H)=F — E(H)— E(H). Then, for yeB,, we have dg(y) =
dr(y) — 2, and, for ye B3, we have dg(y) = dr(y) — 1. Let xe A. Since dr(x)>4,
we have dp(x) =dp(x) —dp(x)=>dp(x) — [dFTm] >3 and, therefore, dg(x)=

di(x
dp(x) = dy(x) >dy(x) = [57] 22

Consequently, there is a subgraph F’ of G satisfying (a)—(c). Thus Lemma 3.2 is

proved. O

Lemma 3.3. Let r=3 be an integer. Let F = F(A, B) be a bipartite graph and let 2 be
a mapping that assigns to every vertex x€ A a partition ?(x) of N(x : F). Assume that
dp(x)=|2(x)| + 273 for every xe A. Then there is a subgraph F' of F such that the
following statements hold:

(@) If xe A, then dp(x) =2 and N(x : F')S N for some N € P(x).
(b) If yeB and dp(y) =s where 3<s<r, then dp/(y)<dp(y) — s+ 3.

Proof (By induction on r and |E(F)|). A subgraph F’ of F satisfying the conditions
(a) and (b) of Lemma 3.3 is called a good subgraph of F with respect to £ and r. Let
F, = Fi(A4, B) be a subgraph of F and define 2, by

21(x) ={NAN(x:F))|Ne?(x) & NnN(x: F)#0}

for every x € A. In this case we write 2 = 2|F). It is easy to check that if F’ is a good
subgraph of F; with respect to 2| = 2|F; and r, then F' is a good subgraph of F
with respect to 2 and r.

We have to show that there is a good subgraph of F with respect to 2 and r
provided that dr(x)>|2(x)| + 2" for every xe A. For r = 3 this is evident. Now
assume r=>4.

First, assume that, for some xe A4, there is a set NeZ(x) such that N = {y}.
Let Fi = F — {xy} and 2, = P|F,. Then dp, (x) = dr(x) — 1=>|2(x)| +2"3 -1 =
|21(x)| + 2% and, by the induction hypothesis, there is a good subgraph F’
of Fi with respect to 2 and r. Then F’ is a good subgraph of F with respect to 2
and r.

Now, assume that |[N|>2 for every N e Z(x) and every xe 4. If dp(x)>|2(x)| +
2'=3 for some xe A, then let F; = F — {xy} and 2| = 2|F, where ye Nr(x). Since
dr, (x)=|2(x)| + 273 = |21(x)| + 2"73, it then follows from the induction hypoth-
esis that there is a good subgraph F’ of F| with respect to #2| and r. Then F’ is a good
subgraph of F with respect to £ and r.

If dp(x) = |2(x)| + 23 for every xe A4, then we argue as follows. Since every set

of 2(x) has at least two elements, |2(x)| <2 and, therefore, dp(x) <22 for every
x€A. By Lemma 3.2, there is a subgraph H of F such that d(x) < [@] < |'2"4’2'| =
274 for every xe 4 and dy(y) = 1 for every ye B with dr(y)=>r. Let F=F — E(H)
and 2 = P|F. Then, for every xed, dx(x)=dr(x)—dy(x)=|P(x)| +2 3 -
24 = |2(x)| + 274> |2(x)| + 2'*. Therefore, by the induction hypothesis, there
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is a good subgraph F’ of F with respect to 2 and r — 1. Then F’ is a good subgraph
of F with respect to 2 and r— 1. If yeB and dp(y) =r, then dy(y) =1 and,
therefore, dp(y) =r — 1 implying that dp(y)<ds(y) — (r— 1)+ 3 =dp(y) —r+ 3.
Consequently, F’ is a good subgraph of F with respect to 2 and r. Thus Lemma 3.3
is proved. [

Remark. Lemma 3.3 remains valid if the condition dr(x)>|2(x)| + 22 is replaced
by dp(x)=|2(x)| + m, where ms, my, ... is a sequence of integers satisfying ms = 1
and m, — |'2’,'—”'| >m,_, for r=4. For r =5, the case we are interested in, this gives
ms = 4,

Lemma 3.4. Let F = F(A, B) be a bipartite graph, let R, d be integers with R=d > 1
and, for every xe A, let a(x)>=1 be an integer. Assume that dr(y) = R for every y€ B.
Then

(R—d)BI< Y alx)

xeAd

or there are non-empty subsets A’ = A and B' = B such that for F' = F[A" U B'] we have
dp (x)>a(x) for every xe A" and d (y)>d for every ye B

Proof. For ze V(F) and Z<V(F), let d(z: Z) = [N(z : G) nZ|. Define a sequence
By=0, A\,B, Ay, By, ... of sets as follows. For i>1, let

A;i={xeAd|d(x:B— Bi_1)<a(x)}
and
B, {veB|d(y: 4)> R~ d}.

Then, for every i>1, we have 4,5A4;,1=A and B,=B; ., SB. Let A'=A4—
U4;, B =B—\JB;, and F' = F[A'UB.

If A’ contains a vertex x, then d(x : B— B;_;)>a(x) for every i>1 implying that
dp(x) = d(x: B)>a(x) and, hence, B'#0. If B contains a vertex y, then d(y:
A;)<R —d for every i=1 and, therefore, dr(y: |JA4;) <R —d. This implies that
dp(y)=d(y:A)=dy:4)—dly:UJ4:))>R— (R—d)=d and, hence, A #0.
Consequently, A'#0 iff B'#0 and, moreover, Lemma 3.4 is true if 4’ or B is
non-empty. Otherwise, both sets 4’ and B’ are empty and, therefore, 4 = J 4; and
B=B;. Let E = {xyeE(F)|xeA; and ye B— B;_; for some i>1}. Then

(R—d)|B|<|E|< ) alx).

xeAd

Thus Lemma 3.4 is proved. [
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4. List critical hypergraphs
4.1. The key lemma

The proof of Theorem 1.9 is mainly based on the following technical lemma.
Recall that if G is a hypergraph and p>2 is an integer, then W?(G) denotes the set of
all vertices of G that belong to some (p — 1)-clique of G.

Lemma 4.1. Let G be a hypergraph not containing a Ky, and let @ be a list for G
satisfying  |®(x)|=k—1 for every xeV(G). Furthermore, let L=
{xeV(G)|do(x)=k—1}, X<L, Y<{yeV(G)|des(y) =k} and let W=
W*(G(X)). Denote by € the set of all components of G(X) and let v be an X-
mapping of G. For ye Y and T €%, define

d(y)=|{Te%|yeNy(x: Q) for some xe WnV(T)},

d(T)=|{yeY |yeNy(x: G) for some xe WnV(T)}|
and

dy(y) = {xe W |yeNy(x: G)}|.
If G is &-critical, then the following statements hold:

(@) d(y)=dy(y) — 1 for every ye Y provided that k=5.

(b) d(y)<4 for some ye Y or d(T)<s(T) + 3 for some T €% provided that &(x) =
{1, ...,k — 1} for every xe V(G) and k=5.

(c) d(y)<3 for some ye Y or d(T)<3 for some T €€ provided that every member of
€ is an g-hypergraph and k=9.

The proof of this result is given in Section 4.2. In Section 4.3 we use Lemma 4.1 to
prove Theorem 1.9.

4.2. Proof of Lemma 4.1

Let G be a hypergraph, ze V(G), and let @ be a list for G. We call (G,z, &,k) a
configuration of type 1 if the following conditions hold:

(al) G#K} and every component of G — {z} belongs to 7.
(a2) dg(z)<k and z is contained only in ordinary edges of G.
(@3) |P(z)|=ds(z) — 1 and |®(x)|=dg(x) for all xe V(G) — {z}.

The proof of Lemma 4.1(a) is based on the following result.

Lemma 4.2. Let (G,z,®,k) be a configuration of type 1 where k=5, let m be the
number of components of G — {z} and let W = W*(G — {z}). Furthermore, let N, =
{xeV(G)|{z,x}€E(G)} and W.= N.nW. Assume that V(T)nW.#0 for every
component T of G — {z}. If G is not ®-colourable, then m=|W,| — 1.
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Proof. Consider a possible counterexample (G, z, @, k) such that | V(G)| is minimum.
Let T4, ..., T,, denote the components of G — {z}. Then, by (al), T;e T for i =
1, ...,m. Furthermore, fori =1, ...,m, let d; = |V(T;) n W.| where d\ = d>r = --- = d,,.
Thend,>land m<|W,| —2=d, + --- +d,, — 2. We claim that m = 1 and d; =3 or
m:2andd1 :d2:2.

Obviously, if m =1, then d;>3. Now, assume m=2. Let T =T,,. Then
|®(x)|=dg(x)=dr(x) for all xe V(T). Since there is a vertex xe V(T)n W., we
have |®(x)|>dr(x) for this vertex x. Therefore, by Lemma 1.4, there is a @-
colouring ¢ of T. Let G'=G—V(T)=G\V(T) and & = &(V(T),v,¢) (see
Remark 1.5). Then @'(x)=@(x) for all xeV(G)—{z} and &'(z) = P(z) —
{o(x)|xeV(T)nN.}. Since G is not @P-colourable, G’ is not @'-colourable.
Moreover, it is easy to check that (G, z, @', k) is a configuration of type 1 satisfying
the assumption of Lemma 4.2. Therefore, m — 1 =Z|W.nV(G")| -1 =d, + -+ +
dy—1 — 1 implying that m =2 and d; = d, = 2. This proves our claim. Now, we
consider two cases.

Case 1: m=2 and d) =d, =2. Let ie{1,2} and let G; = G[V(T;)u{z}]. For
xeV(Gi) — {z}, we have |@(x)| = dg(x) = dg,(x). Since z has exactly two neighbours
in the Gallai tree T; = G; — {z} € 7 that belong to (k — 1)-cliques of T; and every
(k — 1)-clique of T; is a block of T;, we conclude that G; is not a Gallai tree and
[0(2)| > do(2) — 1> da, (7).

Let M; be the set of all colours @€ @(z) such that ¢(z) #a for every @-colouring ¢ of
G;. Since G is not @-colourable, MU M, = @(z). From |P(z)| = ds(z) — 1 = dg, (z) +
dg,(z) — 1 we conclude that |M;|>dg,(z) for some i, say i = 1. Now, let @' be the list
for Gy with @'(x) = @(x) for xe V(Gy) — {z} and &'(z) = M,. Since G| is a connected
hypergraph but not a Gallai tree, we infer from Lemma 1.4 that G, is @'-colourable.
This implies that there is a @-colouring ¢ of G| with ¢(z) e M;, a contradiction.

Case2:m=1land d,>3. Then T = G — {z} € 7. Since G is not P-colourable, we
may assume that |@(x)| = dg(x) for all xe V(G) — {z}. Let B be an arbitrary end-
block of T and let X be the set of all non-separating vertices of 7" that belong to B.
Consider a vertex ue X. Since |@(u)| = dg(u)>1, there is a colour ae®@(u). Let
G = G\{u} and @ = &(u,a). Then G’ is not @'-colourable and (G',z, ¢ k) is a
configuration of type 1. If no vertex of B belongs to W., then W.nV(G') =
W.nV(G) and, therefore, (G, z, &', k) is a smaller counterexample, a contradiction.
Hence |V(B)nW.|=1. Since dg(x)<k —1 for all vertices x of the Gallai tree
T € T, this implies that Bis a Kj_;.

Let ye V(B)n W.. Since dg(y) <k — 1, we have |®(y)| = dg(y) =k — 1 and ye X.
We claim that X < I7.. Suppose, on the contrary, that there is a vertex xe X — W-.
Then |®(x)| = dg(x) = k — 2 and, therefore, there is a colour ae @(y) — P(x). Since
|®(z)|=dg(z) — 1=d, — 1 =2, there is a colour be @(z) with b#a. Let &' = @(z,b).
Then T = G — {z} = G\{z} is not @'-colourable and |’ (u)|=dr(u) for all ue V(T).
Therefore, (T,®') is a bad pair and @'(x)#®'(y), a contradiction to Lemma 1.7.
This proves our claim, i.e., X < I¥..

If B is the only block of 7T, then X = V(B) = V(T) and, therefore G = K}, a
contradiction to (al). Hence, there is an end-block B'# B of T. For the set X’ of all
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vertices of B’ that are non-separating vertices of 7', we have X’ < W.. Since k> 5, this
yields dg(z) = |X |+ |X'|=2(k — 2) =k + 1, a contradiction to (a2).

Thus in both cases 1 and 2 we arrive at a contradiction. This proves
Lemma 4.2. O

4.2.1. Proof of Lemma 4.1(a)

Consider a vertex ye Y. By Lemma 1.6, G(X) is a Gallai forest and so every
component of G(X) belongs to 7. Denote by %’ the set of all components T of
G(X) such that yeN%(x: G) for some vertex xe WX(T) = W V(T). Clearly,
d(y) = |¢'|.

Let X' = |J V(T) where the union is taken over all Te%’. Then G(X’) is a Gallai
forest and, for W' = W*(G(X")), we have W' = X'~ W. Since there is no edge
in G having a vertex in common with both X’ and X — X', the set Ex(G) is the
disjoint union of Ey(G) and Ey_x/(G). Therefore, v is an X'-mapping of G and
Ny (x: G) = Ny(x:G) for all xe X'

Let Ny, ={xeX'|yeNy(x:G)} and W, =N,nW. Then W, =N,nW’' and
d%(y) = |W,|. Furthermore, let

E'={ecEy(G)|y=v(e)}
and

E*={ecE(G)|enX =0 &yee}.
Then |N,| = |E’| since otherwise there are two distinct edges e, e’ € E(G), for some
vertex xe X' L, satisfying |ené’|>2, a contradiction to Lemma 1.6. For all edges
ee Ex/(G)UE®*, choose a vertex v'(e)ee such that v'(e) =v(e) for all eeE' and
v'(e)#y for all ee E*.

Let G) be the hypergraph obtained from the Gallai forest G’ = G(X’) by adding
the vertex y and joining y to every vertex in N, by an ordinary edge. Since G is ®-

critical, there is a @-colouring ¢ of the subhypergraph G, = G — (X' u{y}) of G.
Now, define the list @, of G| as follows. For xe X', let

®1(x) = B(x) — {o(t/(e)) | xeee Ex (G) — E'}
and let
®i(y) = 2(») — {o(V(¢)) | ec E*}.

If ee E(G), then e E(G,), or en X' € E(Gy), or ec Ex/(G)u E*. This implies that
@U@, is a P-colouring of G for every @;-colouring ¢, of G;. Therefore, since G is
not @-colourable, Gj is not @;-colourable. Furthermore, for xe X' =L,

|@1(x)|>da(x) — {e€ E(G) | xeee Ex/(G) — E'}>dq, (x)
and, since |®(y)| =k — 1 =ds(y) — 1,
21| =da(y) = 1 = [E¥|>dg, (y) - 1.

If G # Ky, then, clearly, (Gy,y, ®1,k) is a configuration of type 1 and, by Lemma
42, d(y) = |€'|=|Wy| = 1 = dx(y).
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Now, consider the case G| = K. Then G,(X’) = G(X’) is a Ki_; and, by Lemma
1.6, X" is a (k — 1)-clique of G. Since G does not contain a K}, this implies that there
is a vertex xe X’ such that {x,y}eE(G,) — E(G). Consequently, there is an edge
ee Ex/(G) such that x,yee, y = v(e) and |e| =3. Let y'ee — {x,y}. Remove the edge
{x,y} from G and, for the resulting graph G/, define the list ¢} by @) (u) = @, (u) for
all ueV(G))—{x} and @(x) = @1(x) — {¢(¥)}. Then [P)(u)|>dg (u) for all
ueV(Gy) = V(Gy). Since G is connected but not a Gallai tree, we infer from
Lemma 1.4 that there is a @)-colouring ¢’ of G| and, therefore, puU ¢’ is a @-
colouring of G, a contradiction. This completes the proof of Lemma 4.1(a). [

Lemma 4.3. Assume that k=4 and (T,®) is a bad pair satisfying Te T and
®d(u)<={l,....k — 1} for every ue V(G). If x and y are two non-separating vertices of
T contained in the same gi-subcomponent of T, then ®(x) = ®(y).

Proof. By Lemma 1.7, & = @, for some mapping ue % (G). If x,y are contained in
the same block, then the statement is evident. Otherwise, there is a sequence
By, By, ..., By of blocks of T such that xe V(By), yeV(By+1), Boiv1isa Ky for
i=0,...,/ and By is a block of type 2 for i=1,...,1 and V(B;)nV(B;s1)#0 for
i=1,...,2[. Then u(B;)nu(Biy)=0 for i=1,...,2l. Since u(B)<={1,....k—
1}, |u(Bait1)] = k — 2 and |u(By;)| = 1, we infer that u(B;) = u(By+1) and, there-
fore, &(x) = &(y). O

4.2.2. Proof of Lemma 4.1(b)

Suppose on the contrary that d(y)=5 for every yeY and d(T)>=s(T) + 4 for
every Te%. By Lemma 1.6, G(X) is a Gallai forest not containing a K; and with
maximum degree at most k — 1. Consequently, € <7 .

Let F = F(A, B) be the bipartite graph with 4 = % and B = Y where, for every
T €%, the neighbourhood N(T : F) consists of all vertices ye Y such that ye N} (x :
G) for some xe W*(T) = WA V(T). Then dp(y) = d(y) =5 for every ye B= Y and
dp(T)=d(T)=s(T)+ 4 for every TeA =%.

For Te A, let Z(T) be a partition of N(F : T) such that for every Ne Z(T) there
is an gg-subcomponent 7" of T with

Nc{yeY|yeNi(x: G) for some xe WK(T') = V(T")}.

Then dp(T)=5(T) + 4= |P(T)| + 4 for every T € A. Therefore, since dp(y) =5 for all
ye B, we infer from Lemma 3.3 that there is a subgraph F’ of F such that, for every
TeA, dp(T)=2 and N(T:F)=N for some NeP(T) and, for every
YeB, dp(y)<dr(y) —2.

Now let G’ be the hypergraph obtained from the subhypergraph G — X of G by
adding the ordinary edges N(T : F’) for all Te%. If ye Y, then dg(y) = k and, by
the construction of F’, dg(y) <k — 2. Since G is P-critical, there is a @-colouring ¢
of G- X —Y =G —Y.Forevery ye Y, we have |®(y)| =k — 1 =dg(y) + 1. This
implies that ¢ can be extended to some ®-colouring ¢’ of G'.
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Let G* = G\V(G') = G(X) and let &* = &(V(G'),v,¢’) (see Remark 1.5). Then
G* is not ®*-colourable and, since |®(x)| = dg(x), we have |@*(x)| >dg=(x) for every
xe X . Consequently, there is a component T of G(X), such that (T, ®,) is a bad pair
where @ is the restriction of @* to 7. Consider the two vertices y;, > of N(T : F').
Then there is a g-subcomponent T’ of T and two vertices x;, x, in V(7") such that
yie Ny (x; : G) for i = 1,2. Since every vertex of T€.7; has degree k — 1 in G and T"
is an g-subcomponent of 7', it follows that dr(x;) = dr(x;) = k — 2. Consequently,
X1,X; are two distinct non-separating vertices of 7. Moreover, ®(x;) = @(x;) —
{' )} ={1,....,k =1} = {¢@'(n)} for i =1,2. Since ¢'(y1)#¢'(y2), this implies
@) (x1) # P (x2), a contradiction to Lemma 4.3. This completes the proof of Lemma
4.1(b). O

Let G be a hypergraph, let F be a subhypergraph of G, Y= V(G), and let @ be a
list for G. Then we call (G,F,Y,®) a configuration of type 2 if the following
conditions hold:

(bl) G — Y is a Gallai forest and |®(x)|=dg(x) for every xe V(G) — Y.

(b2) |®(y)|=dgy(y) +dp(y) + 1 for every ye Y.

(b3) Every edge of G intersecting both Y and V(G) — Y is an ordinary edge. For
xeV(G) =Y, let Ny ={yeY|{x,y}€E(G)}.

(b4) F is a graph and, for every component 7 of G — Y, there are two edges
{x1,»1}, {x2,y2}€E(F) such that xj,x, are two distinct non-separating
vertices of T, y1,y, are two distinct vertices of Y and, for i=1,2, Ny, =
{»i}. Furthermore, if B; (i = 1,2) is the only block of T containing x;, then
By = B, or, for some ie {1,2}, there is a non-separating vertex x of T such that
xeV(B;) and N, = 0.

Lemma 4.4. If (G, F,Y,®) is a configuration of type 2, then G is ®-colourable

Proof (By induction on m=|V(G)—-Y|). If m=0, then G=G[Y] and
|®(y)|=ds(y) + 1 for every ye V(G) implying that G is @-colourable.

Now assume m > 1. Then let 7 be a component of G — Y and let {x1, 1}, {x2, 12}
be the two edges of F given by condition (b4). For i = 1,2, let B; be the only block of
T containing x;. Let ' =G — V(T) = G\V(T) and F' = F — V(T). We consider
two cases.

Case 1: B = B,. First, assume ®(x|) = @(x;). Let G* be the hypergraph obtained
from G’ by adding the edge {y;,»>}. Then (G*, F', Y, ®) is a configuration of type 2
and, by the induction hypothesis, there is a @-colouring ¢ of G'. Consider the list
& =d(V(G), ) for T=G— V(G), that is

P'(x) = D(x) — {@(y) | yENL}

for all xe V(T). Note that, by (b3), every edge of G containing xe V'(T) belongs to T
or is an ordinary edge. By (b2), |®'(x)|>dr(x) for all xe V(T). Consequently, if T is
not @’'-colourable, then (T, @') is a bad pair and, since N,, = {y;} and @(y1)#¢(12),
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we have @'(x1)#®'(x,), a contradiction to Lemma 1.7. Therefore, T is @'-colourable
implying that G is ¢-colourable.

Now, assume ®@(x)#®(x,), say ae®(x;) — D(xy). Let &' be the list obtained
from @ by removing colour a from ®(y;). Then (G', F', Y, ®') is a configuration of
type 2 and, by the induction hypothesis, there is a @'-colouring ¢ of G'. Consider the
list &, = &(V(G), ) for T = G — V(G). Then |®'(x)|=>dr(x) for all xe V(T) and
@ (x1)# P (x2). Consequently, by Lemma 1.7, T is @;-colourable and, therefore, G
is @-colourable.

Case 2: By # B,. Then, by (b4), one of these two blocks, say B;, contains a non-
separating vertex x of T such that N, = (. We may assume that |®(x)| = dg(x).
Then |®(x;)|=dg(x1) >dg(x) and, therefore, there is a colour ae @(x;) — @(x). Let
@' be the list obtained from @ by removing colour a from @(y1). Then (G', F', Y, ®')
is a configuration of type 2 and, by the induction hypothesis, there is a @'-colouring
¢ of G'. Consider the list &, = ®(V(G'), ¢) for T = G — V(G'). Then & (x1) # P (x)
and we infer from Lemma 1.7 that T is &;-colourable. Hence G is #-colourable.

Therefore, in both cases we have established that G is @-colourable. Thus Lemma
4.4 is proved. [

4.2.3. Proof of Lemma 4.1(c)

Suppose on the contrary that d(y) >4 for every ye Y and d(T) >4 for every T€%.
To arrive at a contradiction, we show that G is @-colourable.

Since G is @-critical, we infer from Lemma 1.6 that ¥ =.7 . Furthermore, by the
assumption of Lemma 4.1(c), every component 7 of G(X) is an &-hypergraph and,
therefore, V(T)= W = WK(G(X)) = X.

Let X, denote the set of all non-separating vertices of G(X). Then dgx)(x) = dg(x) =
k —1forallxe X — X, and dg(x)(x) = dg(x) — 1 = k — 2 for all xe X,,. Consequently,
for every xe X, there is exactly one edge e, € E(G) — E(G(X)) containing x. Clearly, if
x€X,, then e,n X = {x} and, moreover, ye N} (x : G) iff y = v(ey).

Let E’ be the set of all edges ee E(G) satisfying en X = 0 and en Y #0. For every
edge ec E’, choose a vertex v/(e)ee — Y provided that e — Y #0.

Next, we construct the hypergraph G; as follows. Let V(G;) = XU Y and let
E(G)) = E(G(X))UE"UE? where

E'={enY|ecE &|enY|>2}

and
E*={{x,y}|xeX, &y =v(e,)eY}.

For xe X, let
Ny=Ny(x:G)={yeY|{x,y}€E(G))}.

Then |N,| = 1if xe X, and |Ny| = 0 if xe X — Xj,. Since G is P-critical, there is a -
colouring ¢ of G' = G — X — Y. Now, we define a list @, for the hypergraph G; as
follows. For a vertex ye Y, let

Di(y) = D(y) — {o(v'(e)) [ee E' &enY = {y}}.
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For a vertex xe X, let
P1(x) = &(x) — {p(v(ex))}

if xe X, and v(ey)¢ Y, and let @, (x) = &(x) otherwise, that is if xe X — X, or xe X,
and v(ey)eY.

Our aim is to show that Gy is ®@;-colourable. If this is true, then there is a @;-
colouring ¢, of G; and ¢ U ¢, is a @-colouring of G, a contradiction. Note that if e is
an edge of G, then e is an edge of G=G—-X-Y, or ecE, or
enXeE(G(X))=E(G)), or e = e, for some vertex x€X,,.

To prove that G; is @;-colourable, we use Lemma 4.4. First, we need some
notation. For Z< X, let N(Z) = J,., Nx, and, for a set of blocks # of G(X), let
X (%) be the set of all vertices contained in some block of 4.

Consider an arbitrary component 7T e€%. Since T is an g-hypergraph, V(T)= W
and, therefore, |[N(V(T))| = d(T)=4. Let S denote the set of all vertices x of T such
that N, #0 and let R denote the set of all non-separating vertices of 7. Then SSR.
From Lemma 4.1(a) it follows that, for every vertex ye Y, there are at most two
vertices x,x’e V(T) such that N, = Ny = {y}. This implies, in particular, that
|IN(Z)| =4 provided that |ZnS|>7.

Let %, denote the set of all blocks B of T such that V(B)n (R — S)#0, i.e., B
contains a non-separating vertex x of T such that N, = §.

We claim that there is a set Z = % of blocks of T such that all but at most one
block of % belong to 4, and |[N(X(%))|=4. If some end-block B of T is not in 4,
then V(B)NnR<S and, since B is a K| and k=9, |V(B)nR| =k —2>7. This
implies that the claim is true for # = {B}.

Now, assume that every end-block of T belong to %, and |N(%;)|<3. Since
IN(V(T))| =4, there is a block B of T not contained in %,. Let # = %, U {B}. Since
0#V(B)nR<S and T has at least |V (B) — R| end-blocks, we conclude that B is a
Ki_i and | X (%)~ S|=|V(B)| = k — 1 =8 and, therefore, |N(X(%))|>4. This proves
our claim.

Next, let F = F(%, Y) be the bipartite graph such that N(T : F) = N(X(%r)) for
every Te®%. Then dp(T)>4 for every T €% and, by Lemma 3.2, there is a subgraph
F' of F such that dp(T) = 2 for every T€% and dp(y)<dr(y) — 2 for every ye Y
with dr(y) >4 and dr(y) <2 for every ye Y with dr(y)=3.

For every component T €%, the set N(T : F') consists of two distinct vertices
y1(T),y2(T) and, moreover, there are two distinct vertices x(7T),x2(T)e X (%)
such that Ny, = {y:(T)} for i = 1,2. Let F; be the subgraph of G; with the same
vertex set as Gy and with E(F)) = {{x;(T),y/(T)}| Te% &i = 1,2}. Then it is easy
to check that (Gy, Fy, Y, ®;) is a configuration of type 2. Therefore, by Lemma 4.4,
G is @ -colourable. Hence, Lemma 4.1(c) is proved. [

4.3. Proof of Theorem 1.9

In this subsection, let G be a hypergraph not containing a K, and let @ be a list for
G satisfying |@(x)| = k — 1 for every xe V(G). Suppose that G is @-critical.



398  A.V. Kostochka, M. Stiebitz | Journal of Combinatorial Theory, Series B 87 (2003) 374-402

Let L = {xeV(G)|ds(x) =k -1}, H={xeV(G)|ds(x)=k}, W=WFG(L))
and L' = L — W. Furthermore, let

E, ={ecE(G)||lenL| =1} and E,={ecE(G)|lenL|=2}.

Let % be the set of all components of G(L) and let & be the set of all components of
G(W). By Lemma 1.6, H#0 and %,2<.7 . Obviously, W = W*(G(W)) and,
therefore, every member of & is an g,-hypergraph. This implies, in particular, that
every member of & is an g-subcomponent of some member in €.

Denote by v an arbitrary L-mapping of G and let v/ be a W-mapping of G such
that v'(e) = v(e) for all ee Eyy nEr. Then N} (x:G)S Ny, (x: G) for every xe W
and, therefore, d¥,(y)=>d}(y) for every ye H.

Let ¢, o and 7. be defined as in Lemma 1.8 and, for ye H, let

) = don )+ (k= e 2 ) (dalr) ~ )
Then, we have
c=0(GL)=)Y o(T) and .= ().
Te® yeH
Since ¥ < 7, it follows from Lemma 2.3 that
o= (6*(T) + s(T)ou +2 — o)
Te®

provided that k>6. For xe L, let d,(x) = [{e€ E| | xee}|. If the vertex xe L belongs
to a component 7 €%, then, by Lemma 1.6,

di(x) =k — 1 —dr(x) = dg(x) — dgr)(x) = [NL(x : G)]. (3)
Consequently,
o= Z oyedy (x Z Toy +2 — o) (4)
xel Te?

provided that k>6. For an edge ee E; = E;(G), let x, denote the vertex satisfying
enL = {x.}. For a vertex ye H, define

d'(y) = |{ecE|yee and (x,eL — W or y#u(e))}|
and

d*(y) = [{ee 2| yee}|.
It follows from (3) that

D@+ + D dilx)= D lenH].

yeH xeW eeEyVE),
Since |Ei| =3, di(x), this implies that

D AW+ = Y lenH|+ Y di(x) - |E. (5)

yeH eeE\VE, xel’
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Furthermore, for ye H, we have dj (y) = |[{xe W |yeN}(x: G)}| and, therefore,

do(y) = d'(y) + d*(v) + dy (») + deym (v)- (6)
Let H = {yeH|dg(y) = k} and let
S=o+0+ > w()= > lenH|—|E|+0c+ ) dam®). (7)
yeH' eecE\VE; yeH'

Next, define the bipartite graph F = F(A, B) as follows:

(a) B= H' and A is the disjoint union of the sets 4, A4, and A45.

(b) A1 = % and a component T € A, is joined to a vertex ye B in F if and only if
yeN!(x: G) for some xe WK(T) = W V(T).

(¢) For each vertex ye B, let A>(y) be a set of d'(y) + d?(p) vertices which are all
joined to y in F. Let A, be the disjoint union of all these sets 4,(y), yeB.

(d) For each vertex ye B, let 43(y) be a set of dg()(y) vertices which are all joined
to y in F. Let A3 be the disjoint union of all these sets A3(y), yeB.

Now, we prove the two parts (Cases 1 and 2) of Theorem 1.9.

Case 1: k=6, &(x) ={l,...,k— 1} for every xe V(G) and ¢ = (k — 5)oy.. We
have to show that ¢ + o + t.>c¢|H|. Since for ye H — H' we have t.(y) =k —c+
2= c, itis sufficient to show that S>¢|H’|. The proof of this statement is based on
Lemma 4.1 where X = L, Y = H' and v is the given L-mapping of G.

Consider the bipartite graph F = F(A4,B). If Te A, then dp(T) = d(T). If ye B =
H', then Lemma 4.1(a) implies that |[N(y: F)nA| = d(y)=dj(y) — 1 and, by (6),
we conclude that

dp(y)2d;(y) = 1 +d' (v) + d*(v) + dgu (v) = dg(y) =1 =k — L.

Furthermore, we infer from (4), (5) and (7) that

S> Y JenH|—|E|+ > oxdi(x) + > (s(T)ou +2 — o)

eeE\VE, xel’ Te®
+ > doun(y)
yeH'
> o Aa| + Y (S(T) + 3)ou + |43
Te?
ak<|A2|+Z )+3) +|A3|>
Te?

Now, we apply Lemma 3.4 to F = F(4,B) where R=k—1, d =4 and a(x) =1 if
xeA,udsand a(x) =s(T)+3if x=TeAd,. If (R—d)|B|<) .., a(x), then the
above inequality for S implies
S>o Y alx) >k — 5)|B| = c|H'|.
xeAd

Otherwise, by Lemma 3.4, there are non-empty subsets A’ A4 and B'< B = H' such
that for F' = F[A' U B'] we have dp(x)>a(x) for every xe A" and dp(y) >d = 4 for
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every ye B'. Since every vertex of 4,uU A3 has degree 1 in F, we have A/’ 4, = .
This gives a contradiction to Lemma 4.1(b).

Case 2: k=9, |®(x)| =k —1 for every xe V(G) and ¢ =i(k — 4)oy. We have
to show that ¢ + o + 1. =c|H]|. Since 7.(y)=c¢ for every ye H — H', it is sufficient
to show that S>c|H'|. The proof of this statement is based on Lemma 4.1
where X = W, Y = H' and ¢' is the W-mapping of G obtained from the given
L-mapping v.

Let F* = F*(A4*, B) be the bipartite graph obtained from F — 4, by adding the set
A} = % where T e Z and ye B are joined by an edge in F* iffyeNLV‘,'/(x : G) for some
vertex xe WK(T) = W A V(T). Since every ¢.-hypergraph T €% is an g,-subcompo-
nent of some member in €, we infer from (4), (5) and (7) that

S= Z (lenH|—1) + Z lenH| + Z ogedy (x) + Z o + Z deim (v)

eek) eeEy xel’ Te yeH'

> oy| Ao| + o |AT] + [A3] = o 4|

Since dY,(y)=d}(y) for every yeH, we conclude from (6) and Lemma 4.1(a),
similarly to Case 1, that dr(y) =k — 1 for every ye B. Now, we apply Lemma 3.4 to
F*where R=k — 1, d =3 and a(x) = 3 for every xe A*. If (R — d)|B| <3| A4*|, then
we obtain

S>ou|A*| =1k — 4)oy|B| = c|H'|.

Otherwise, by Lemma 3.4, there are non-empty subsets A’ 4 and B'= B = H' such
that for F' = F*[A’ U B'] we have dr(x)>3 for every xe A’ and dp (y) >3 for every
yeB'. Since every vertex of 4> U A3 has degree 1 in F*, we have A’ AT = &. This
gives a contradiction to Lemma 4.1(c). Therefore, Theorem 1.9 is proved. [

5. Concluding remarks

The main result of this paper is that 2f;(n) =gx(n,¢) where ¢ = (k — 5)ay and
k>=6. Our method of proof yields two restrictions for the possible values of the
constant ¢, namely ¢<k —2/(k — 1) (see Lemma 1.8) and ¢<}(k —2/(k — 1)) (see
the proof of Theorem 1.9, the part where we show that t.(y)>c provided that
dg(y)>k). For integers p, k satisfying k>4 and 2<p<k, let

! 2
ckp = Jilk +p) =5 9k (k +pk — m)

and

1 2 1 k-3
hk"p(l’l) :Egk (’/lak_ﬁ) + Ckp = E(k_ 1 +k7 1>”+Ck,p~
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We claim that if n>k 4+ 2 and n = p — 1 mod (k — 1) where 2<p<k, then there is a
k-critical graph with n vertices and /i ,(n) edges implying that

ka(n) <2/’1k7[, (l’l) = gk (n, k— %) + 2Ck,p. (8)

For n = k + p, we have hy ,(n) = fi(n) and the claim is evidently true. Now, assume
n=p—1mod (k—1). If Gis a k-critical graph with n vertices and A ,(n) edges,
then we apply the Hajos construction (see [11] or [12]) to G and Kj. This results in a
k-critical graph with n + k — 1 vertices and

k

m = |E(G)| + ) -1

edges. By an easy calculation, we then obtain
k
m = hyp(n) + 5] l=hp(n+k—1).

This proves our claim.
Ore [20] (see also [12, Problem 5.3]) conjectured that equality holds in (8). In [10]
Gallai proved that

ik +p) = (k= 1)(k+p) + p(k —p)

provided that 2<p<k — 1 and in [13] it was proved that f;(2k) = k? — 3. Ore’s
conjecture implies, in particular, that

fim ) 2

n— oo n k—l

Some further results concerning list critical graphs and hypergraphs with few edges
can be found in [14,15].
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