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Abstract

We show that a planar graph with girth at least 20t�2
3
has circular chromatic number at most

2þ 1
t
; improving earlier results. This follows from a general result establishing homomorph-

isms into special targets for graphs with given girth and given maximum average degree. Other

applications concern oriented chromatic number and homomorphisms into mixed graphs with

colored edges.
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1. Introduction

Circular coloring, introduced by Vince [13], is a model for coloring the vertices of
graphs that provides a more refined measure of coloring difficulty than the ordinary
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chromatic number. A ðk; dÞ-coloring of a graph G is a map f :VðGÞ-f0;y; k � 1g
such that dpjfðuÞ � fðvÞjpk � d for every edge uvAEðGÞ; a graph having such a
coloring is ðk; dÞ-colorable. Note that a ðk; 1Þ-coloring is an ordinary proper
k-coloring.

The circular chromatic number wcðGÞ of a graph G is the infimum of k
d
over all pairs

ðk; dÞ such that G is ðk; dÞ-colorable. A ðk; dÞ-coloring is ‘‘circular’’ in the sense that
we may view the k colors as points on a circle, and the requirement for ðk; dÞ-coloring
is that the colors on adjacent vertices must be at least d positions apart on the circle.
Zhu [15] provides a thorough survey of results on circular chromatic number.
We call wc a refined measure of coloring because wðGÞ � 1owcðGÞpwðGÞ for every

graph G; as proved in [13] and again in [2]. A 3-chromatic graph is not 2-colorable, but
if its circular chromatic number is near 2, then it is somehow ‘‘just barely’’ not 2-

colorable. For odd cycles, wcðC2tþ1Þ ¼ 2þ 1
t
: If G contains C2tþ1; then wcðGÞX2þ 1

t
:

By the theorem of Grötzsch [7], every triangle-free planar graph is 3-colorable. In
generalizing this to circular chromatic number, we ask what threshold on girth is

needed to force the circular chromatic number to be at most 2þ 1
t
: A relaxation for

planar graphs of a conjecture of Jaeger [9] on nowhere-zero flows states the following:

Conjecture 1.1. For every positive integer t; every planar graph with girth at least 4t

has circular chromatic number at most 2þ 1
t
:

When t ¼ 1; Conjecture 1.1 reduces to Grötzsch’s Theorem. The conjecture is
sharp if true, as shown by DeVos [5]. The example of DeVos consists of 4t � 1 paths
of length 2t � 1 with a common endpoint, plus a cycle of length 4t � 1 through the
vertices on the opposite ends of the paths. The graph has girth 4t � 1; but it has no
ð2t þ 1; tÞ-coloring (the color on the central vertex cannot appear on the peripheral
cycle, and with this restriction that cycle cannot be colored). Thus the circular

chromatic number exceeds 2þ 1
t
:

Nešetřil and Zhu [12] and Galuccio, Goddyn, and Hell [6] proved that every

planar graph with girth at least 10t � 4 has circular chromatic number at most 2þ 1
t
:

In [6] there are also analogous bounds for all surfaces. The odd girth of a graph is the
minimum length of its odd cycles; Klostermeyer and Zhang [10] showed that for

circular chromatic number at most 2þ 1
t
it suffices to have odd girth at least 10t � 4;

via the ‘‘Folding Lemma’’.
Zhu [14] improved the bound from 10t � 4 to 8t � 3: We further lower this

threshold to 20t�2
3

: Our result applies in a more general setting for which we interpret

ðk; dÞ-colorings as homomorphisms. A homomorphism from G into H is a map
f :VðGÞ-VðHÞ such that adjacent vertices in G are mapped into adjacent vertices
inH: LetHðk; dÞ be the circulant graph with vertex set f0;y; k � 1g in which i and j

are adjacent if and only if dpji � jjpk � d: Every ðk; dÞ-coloring of a graph G is a
homomorphism from G into Hðk; dÞ:
We actually consider a still more general setting that also applies to oriented

homomorphisms and to homomorphisms into mixed graphs with colored edges and
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arcs. Other applications include a new upper bound on the girth of planar graphs
with oriented chromatic number greater than 5. In particular, we show that for every
orientation of a planar graph with girth at least 13, there is a homomorphism into
some tournament with five vertices. This was known previously for girth at least 14
via a lengthy proof [4], but the improvement to 13 is an easy consequence of our
main theorem.
Our original motivation was the result of Zhu on Conjecture 1.1. To see how our

theorem improves his threshold from 8t � 3 to 20t�2
3

; we first state the relevant special

case of our theorem. For graphs with given girth and given upper bound on the
average degree of all subgraphs, we prove the existence of homomorphisms into
special targets. For this example, we are interested in the target Hð2t þ 1; tÞ:

Theorem 1.2. If gX6t � 2 and do2þ 3
5t�2; then every graph with girth g whose

subgraphs all have average degree at most d is ð2þ 1
t
Þ-colorable.

Corollary 1.3. If G is a planar graph G with girth at least 20t�2
3

; then G is ð2þ 1
t
Þ-

colorable.

Proof. Since 20t�2
3

46t � 2; Theorem 1.2 applies if we can show that every subgraph
of G has average degree less than 2þ 3

5t�2: It suffices to show this bound for G itself,

since every subgraph has girth at least as large as the girth of G:
We may assume that G is 2-connected, since we can combine ð2t þ 1; tÞ-colorings

of blocks. Let n;m; f be the numbers of vertices, edges, and faces in some planar
embedding of G: By summing face-lengths, the bound on girth yields fp6m=
ð20t � 2Þ: With d denoting the average degree, we have m ¼ dn=2: Using Euler’s

Formula, we have 2 ¼ n � m þ fpmð2
d
� 1þ 3

10t�1Þ: Since the factor in parentheses
must be positive, we obtain 10t�4

10t�1o
2
d
; that is, do2þ 3

5t�2: &

The argument of Corollary 1.3 holds equally well for graphs embeddable on the
projective plane. For graphs embeddable on the torus or Klein bottle, it also works

when the girth is strictly greater than 20t�2
3

:

Section 2 introduces definitions and notation and states the main result. In Section
3, we apply the result to graphs embedded in surfaces, to circular chromatic number,
to oriented chromatic number of graphs with large girth, and to homomorphisms of
planar graphs with colored edges. We prove the main result in Section 4 using a
discharging argument.

2. t-Expansive s-graphs

Since we are interested in applications to both graphs and digraphs, we use a
model that incorporates both and is still more general. A mixed graph is a common
generalization of multigraphs and multidigraphs that allows both ordered pairs
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(arcs) and unordered pairs (edges) of vertices in the edge set. We augment such a
structure by allowing a fixed coloring of the edges and arcs.

Definition. Let s denote a pair ðs1; s2Þ of nonnegative integers. An s-graph is a mixed
graph without loops in which the arcs are colored from the set f�1;y;�s1g and the
edges are colored from the set f1;y; s2g; in such a way that two edges or two arcs do
not have the same color if they have the same two endpoints.

In the applications discussed in Section 3, we will only consider the cases where s is
ð0; 1Þ or ð1; 0Þ or ð0; tÞ: A ð0; 1Þ-graph is a simple undirected graph, and a ð1; 0Þ-
graph is an orientation of such a graph. A ð1; 2Þ-graph has arcs of color �1 and
edges of colors 1 and 2. The notion of homomorphism extends to s-graphs; a
homomorphism from an s-graph G to an s-graph H is a map from VðGÞ into VðHÞ
such that the image of an edge or forward arc with color c in G is an edge or forward
arc with color c in H:
A walk (of length t) in an s-graph is a list ðv0; e1; v1;y; et; vtÞ such that each ei is an

edge or an arc, and for each i the endpoints of ei are vi�1 and vi: The edges or arcs of
a walk need not be distinct, and arcs need not be followed from tail to head. A walk
with first vertex v and last vertex w is a v;w-walk.
The pattern of a walk of length t is the list ðC1;y;CtÞ; where Ci is the pair ðci; siÞ

consisting of the color ci of ei and a sign si defined by

si ¼
þ if ei is undirected or vi is the head of ei;

� if vi is the tail of ei:

�

In particular, the element ‘‘ð�2;�Þ’’ in the pattern of a walk means that the
corresponding step is an arc with color �2 traversed from head to tail. For an s-
graph G; the patterns of length t are the t-tuples ðC1;y;CtÞ such that Ci ¼ ðci; siÞ
with ciAf�s1;y;�1; 1;y; s2g and si ¼ þ if ci40 and siAfþ;�g if cio0: The set
of patterns is determined by s:

Definition. An s-graph G is t-nice if for all v;wAVðGÞ (not necessarily distinct) and
every pattern of length t; there is a v;w-walk with this pattern.

When s ¼ ð0; 1Þ; an s-graph G is essentially just an undirected graph, and there is
only one pattern of length t: Since v; v-walks are needed, no s-graph is 1-nice. The
complete graph Kn is 2-nice as a ð0; 1Þ-graph if nX3: No bipartite graph is t-nice for
any t; since a v;w-walk of length t can exist only when t has the same parity as the
distance from v to w: The odd cycle C2kþ1 is 2k-nice, since from a fixed vertex v every
vertex can be reached by a path of even length at most 2k; and such a walk can be
increased to length 2k by repeating edges. On the other hand, C2kþ1 is not ð2k � 1Þ-
nice, because a path of odd length from a vertex to itself must traverse the full cycle,
and then its length is at least 2k þ 1:

Remark 2.1. Every t-nice s-graph is also ðt þ 1Þ-nice.
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Proof. Let G be a t-nice s-graph; note that tX2: Given vertices v and w in G and a
pattern ðC1;y;Ctþ1Þ; there is a walk of length 1 with pattern C1 from v to some
vertex u; since G is t-nice. Again since G is t-nice, there is a u;w-walk with pattern
ðC2;y;Crþ1Þ: Together, these form a v;w-walk of length t þ 1 with pattern
ðC1;y;Crþ1Þ: &

A graph is nice if it is t-nice for some t: Nice graphs were used implicitly in [11].
They were explicitly studied and characterized in [8]. In [8] it was also shown that
minimal graphs that are homomorphic images of all planar s-graphs with girth at
least g are nice.

For another example, let C2n denote the directed graph whose vertices are the

congruence classes modulo n and whose arcs are the ordered pairs of the form
ði; i þ 1Þ and ði; i þ 2Þ: This is an s-graph for s ¼ ð1; 0Þ: There are 2t patterns of

length t; but to show that C2n is not ðn � 2Þ-nice we only need to show failure for one
pattern and one pair of vertices. A walk whose pattern has only plus-signs follows

only forward arcs. We claim that C2n has no such walk of length n � 2 from vertex 0
to vertex n � 3: The total upward motion in n � 2 steps that each add þ1 or þ2 is at
least n � 2 and at most 2n � 4: Since no value in this range is congruent to n � 3
modulo n; the needed walk does not exist. On the other hand, C2n is ðn � 1Þ-nice. This
is easiest to show (see Example 2.3) by using a stronger concept that we introduce
next.

Definition. A vertex vAVðHÞ is a ðc; sÞ-successor of a setW of vertices in an s-graph
H if for some wAW there is an edge or arc with endpoints w and v that has color c

and sign s when viewed from w to v: An s-graphH with n vertices is t-expansive if for
all nonempty WCVðHÞ and every pair ðc; sÞ; the number of ðc; sÞ-successors of W

is at least minfn; jW j þ n�1
t
g:

A vertex in W may be a ðc; sÞ-successor of W : In a ð0; 1Þ-graph G; the number of
successors of W is the number of vertices of G having neighbors in W : No bipartite
graph is t-expansive, because a largest partite set does not have enough successors.
We formalize t-expansiveness for the two examples that we discussed earlier and will
apply later.

Example 2.2. As a ð0; 1Þ-graph, the undirected cycle C2kþ1 is 2k-expansive.

Proof. When jW jp2k we need only jW j þ 1 successors. The elements of W have
distinct successors in the clockwise direction. Since the total number of vertices is
odd, when jW jo2k þ 1 there is a vertex v on the cycle such that veW but the vertex
w that is two positions later in the clockwise direction belongs to W : Now the
common neighbor of v and w is a successor of W that we have not already
counted. &

Example 2.3. As a ð1; 0Þ-graph, the digraph C2n is ðn � 1Þ-expansive.
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Proof. Recall that the arcs are the pairs of the form ði; i þ 1Þ and ði; i þ 2Þ;modulo n:
Here ðc; sÞ can be ð�1;þÞ or ð�1;�Þ; seeking out-neighbors of W or in-neighbors
of W in the digraph, respectively. By symmetry, we consider only ð�1;þÞ:
As in Example 2.2, we need only jW j þ 1 successors. For each iAW ; the vertex i þ 1
is a successor; this yields jW j successors. If jW jon; then there exists i such that iAW

and i þ 1eW ; and now i þ 2 is a successor of W that we have not already
counted. &

By starting withW ¼ fvg and using t applications of the definition of t-expansive,
it follows that from each vertex v in a t-expansive s-graph, we can reach every vertex
(including v) via a walk of length t with a specified pattern. Hence every t-expansive
s-graph is t-nice. The more detailed statement below is what we need from this
concept; again it is immediate from the definition of t-expansive.

Remark 2.4. Let v be a vertex in a t-expansive s-graph H with n vertices. For every
pattern ðC1;y;ClÞ of length l; the number of vertices w such that H contains a
v;w-walk of length l with pattern ðC1;y;ClÞ is at least 1þ ðn � 1Þl=t:

For ordinary graphs, we say that a graph G is H-colorable if there is a
homomorphism from G into H; this reduces to ordinary k-colorability when H ¼
Kk: We use the term H-colorable for s-graphs in the same way. When H is an s-
graph, an s-graph G is critically non-H-colorable if G is not H-colorable but every
proper subgraph of G is H-colorable.
The skeleton of an s-graph G is the multigraph obtained from G by ignoring the

orientations of its arcs and erasing all colors. Our main result is the following.

Theorem 2.5. Let H be a t-expansive s-graph. Let G be an s-graph whose skeleton

has girth g and has no subgraph with average degree more than d: If gX3t � 2 and

do2þ 6
5t�4; then G has a homomorphism into H:

Since every subgraph of an H-colorable s-graph is also H-colorable, an equivalent
phrasing of Theorem 2.5 is that if H is a t-expansive s-graph, and G is a critically
non-H-colorable s-graph whose skeleton has girth at least 3t � 2; then the average
vertex degree of the skeleton is at least 2þ 6

5t�4:

3. Applications

In this section we present several applications of Theorem 2.5. We begin by
considering graphs embedded on surfaces. Note that all graphs embeddable in the
plane also embed on higher surfaces.

Corollary 3.1. Let H be a t-expansive s-graph, and let G be a critically non-H-
colorable s-graph of order n: If the skeleton of G embeds on the projective plane, then
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its girth is less than 10t�2
3 : If it embeds on the torus or Klein bottle, then its girth is at

most 10t�2
3

:

Proof. Let m be the number of edges in the skeleton of G: If the claimed conclusion
fails, then the girth g of the skeleton is at least 3t � 2; and Theorem 2.5 applies. With
average degree at least 2þ 6

5t�4; we have mX
5t�1
5t�4 n: Let f be the number of faces in an

embedding of the skeleton on a surface of Euler characteristic N: Since fgp2m;
Euler’s Formula yields

2� N ¼ n � m þ fpm
5t � 4
5t � 1� 1þ

2

g

� �
¼ m

2

g
� 3

5t � 1

� �
:

For the surfaces mentioned, Np2: Hence 2
g
X

3
5t�1; with equality possible only when

N ¼ 2: &

We review the application to circular coloring described in Corollary 1.3, using the
more general language.

Corollary 3.2. Let t be a positive integer. If G is a projective planar graph with girth at

least 20t�2
3

; or a graph embedding on the torus or Klein bottle with girth greater than
20t�3
3

; then wcðGÞp2þ 1
t
:

Proof. The conclusion is equivalent to the existence of a C2tþ1-coloring of G: By
Remark 2.2, C2tþ1 is 2t-expansive as a ð0; 1Þ-graph. Since taking subgraphs cannot
reduce girth, Corollary 3.1 implies that G has no subgraph that fails to be C2tþ1-
colorable. &

The bound of Corollary 3.2 generalizes easily for other surfaces. Next we apply
Corollary 3.1 to oriented coloring.

Definition. The oriented chromatic number of a simple graph G is the minimum k

such that every orientation of G admits a homomorphism into some simple digraph
with k vertices.

The target digraph can be different for different orientations of G; and we may
assume that in each case the target is an orientation of Kk:
In [3,4,11], bounds on the oriented chromatic number of planar graphs with given

girth were considered. It was proved in [11] that there are planar graphs with
arbitrarily large girth having oriented chromatic number 5, and that every planar
graph with girth at least 16 has oriented chromatic number at most 5. It was also
mentioned that oriented chromatic number exceeds 5 for some planar graph with
girth 7. The question then is what is the minimum threshold g such that all planar
graphs with girth at least g have oriented chromatic number at most 5. In [4], the
threshold 16 was reduced to 14 by a somewhat lengthy argument. Corollary 3.1
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yields an immediate strengthening to 13 and applies also for three additional
surfaces.

Corollary 3.3. Every graph with girth at least 13 that embeds on the torus or Klein

bottle has oriented chromatic number at most 5. In fact, every orientation of such a

graph has a homomorphism into the same 5-vertex regular tournament C25 :

Proof. The orientations of a simple graph G are precisely the ð1; 0Þ-graphs with
skeleton G: If some orientation of G is not C25-colorable, then there is a critical such

digraph D; and its girth is as large as that of G: By Remark 2.3, C25 is 4-expansive. By

Corollary 3.1, the girth of D is at most 40�23 ; which is less than 13. &

Let Ma denote the family of all graphs such that the average degree of every
subgraph is strictly less than a: Theorem 2 in [3] says that every graph inM16=7 with

girth at least 11 admits a homomorphism into the octahedron K2;2;2: Since a planar

n-vertex graph with girth g has at most g
g�2 ðn � 2Þ edges, it follows that every planar

graph with girth at least 16 has average degree less than 16=7 and hence is K2;2;2-

colorable. The proof of Theorem 2 in [3] takes more than 3 pages. However, a
stronger version of its corollary for planar graphs follows directly from Theorem 2.5.

Corollary 3.4. If G is a planar graph with girth at least 13, then G is K2;2;2-colorable.

Proof. Theorem 2.5 applies, since K2;2;2 is 5-expansive, 13 ¼ 3 	 5� 2; and 2þ 6
5t�4 ¼

16
7
when t ¼ 5: &

Finally, we apply the edge-partitioning aspect of Theorem 2.5. In connection with
questions in group theory, Alon and Marshall [1] studied homomorphisms of graphs
with colored edges. Given a t-edge-coloring of a simple graph G; let lðG; cÞ be the
least number of vertices in an edge-colored graph H such that there is a coloring-
preserving homomorphism from G into H: In our terminology, this is a
homomorphism of s-graphs, where s ¼ ð0; tÞ: Alon and Marshall discussed the
maximum of lðG; cÞ when G is planar and c uses at most t colors. We obtain an
upper bound for planar graphs with sufficiently large girth.

Corollary 3.5. Let G be a planar graph with girth at least 20t�2
3

: For every coloring of G

with at most t colors, there is a color-preserving homomorphism from G into an edge-

colored graph with 2t þ 1 vertices. The same image always suffices: a coloring of K2tþ1
in which each color class is a spanning cycle.

Proof. It is well known that the complete graph K2tþ1 decomposes into t

Hamiltonian cycles. Let H denote the ð0; tÞ-graph obtained by coloring the ith
cycle in the decomposition of K2tþ1 with color i: We obtain that H is 2t-expansive,
since for each item in a pattern, we can apply Remark 2.2 to the cycle in the
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corresponding color. By Corollary 3.1, every t-edge-colored planar graph with girth

at least 20t�2
3
is H-colorable. &

4. The main result

We will break the proof of Theorem 2.5 into several lemmas. Throughout this
section, fixH as a t-expansive s-graph with n vertices, and let G be a critically non-H-
colorable s-graph whose skeleton has girth at least 3t � 2: We develop various
properties of the skeleton to show that its average vertex degree is large. We begin by
introducing convenient notation.

Let G̃ denote the skeleton of G: We use dðG̃Þ for the minimum degree of G̃ and

dðvÞ for the degree in G̃ of a vertex v:
If dðvÞ ¼ 1; then fvg can have only one ðc; sÞ-successor. Since H is t-expansive, we

conclude that dðG̃ÞX2:

Definition. A thread in a graph G̃ is a path whose internal vertices have degree 2 in G̃:
Two vertices are weak neighbors or weakly adjacent if they are the endpoints of a
thread (this includes adjacent vertices, since threads may have no internal vertices).

Our approach in proving the lemmas is as follows. If the desired conclusion fails,
then from G we delete some vertices to obtain a subgraph G0: By the criticality of G;
G0 is H-colorable. Using the t-expansiveness of H; we extend the resulting
homomorphism from G0 into H to obtain an H-coloring of G; thus producing a
contradiction.

Lemma 4.1. Every thread in G̃ has length at most t � 1:

Proof. Otherwise, let P be a u; v-thread of length t in G̃; and let G0 be the s-graph
obtained from G by deleting the internal vertices of P: Since tX2; G0 is a proper
subgraph of G: Criticality of G yields an H-coloring f of G0: Let ðC1;y;CtÞ be the
pattern of P: By the definition of t-nice, H contains a fðuÞ;fðvÞ-walk with pattern
ðC1;y;CtÞ: By defining f on the internal vertices of P using the vertices of this walk
in succession, we extend f to an H-coloring of G; which is impossible. &

Corollary 4.2. No three vertices of G̃ with degree at least 3 are pairwise weakly

adjacent, and no two threads have the same set of endpoints.

Proof. Otherwise, by Lemma 4.1, G̃ has a cycle of length at most 3t � 3: &

Definition. When u and v are weakly adjacent, let luv denote the length of a shortest

u; v-thread. Let Y ¼ fvAVðG̃Þ: dðvÞX3g: A weak neighbor u of v is a weak Y-

neighbor if uAY ; otherwise it is a weak 2-neighbor.
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For vAVðG̃Þ; let NY ðvÞ denote the set of weak Y -neighbors of v in G̃: For vAY ; let
f ðvÞ ¼ �t þ

P
uANY ðvÞ ðt � lvuÞ:

The next two lemmas place lower bounds on f ðvÞ and on
P

uANY ðvÞ f ðuÞ: The
motivation for doing this is as follows. If f ðvÞ is small, then v has few weak Y -
neighbors or has long threads to them. Both conditions tend to reduce the average
vertex degree. Since we want a lower bound on the average vertex degree in G; it
helps to place lower bounds on values of f :

Lemma 4.3. If vAY ; then f ðvÞX1:

Proof. Let G0 be the s-graph obtained from G by deleting v and all its weak 2-
neighbors. By the minimality of G; there is an H-coloring f of G0: Suppose that the
desired inequality fails; we extend f to an H-coloring of G:
Consider uANY ðvÞ: Let Pu be the u; v-thread in G: Let W0 ¼ fug; and for i40 let

Wi be the set of vertices at which the ith vertex of P could be embedded in extending

f along Pu: Since H is t-expansive, jWijX1þ n�1
t

i: Letting i ¼ lvu; we conclude that

at most n�1
t
ðt � lvuÞ vertices of H are excluded from serving as the image of v in an

extension of f to Pu:
If some vertex of H is allowed by Pu for all uANY ðvÞ; then f extends to G: Hence

we conclude that

n � 1
t

X
uANY ðvÞ

ðt � lvuÞXn4n � 1;

which yields
P

uANY ðvÞ ðt � lvuÞ4t and hence f ðvÞ40: Now f ðvÞX1 follows from the
integrality of f ðvÞ: &

Lemma 4.4. If vAY ; then
P

uANY ðvÞ f ðuÞXt þ 1:

Proof. Say that a vertex uANY ðvÞ is v-free if f ðuÞpt � luv: Let G0 be obtained from G

by deleting the vertex v; the v-free vertices, and all their weak 2-neighbors. By the
criticality of G; there is an H-coloring f of G0:
By Corollary 4.2, f is defined on all of NY ðuÞ � fvg for each uANY ðvÞ: If u is

v-free, then as in Lemma 4.3 the vertices of NY ðuÞ � fvg exclude at most
n�1

t

P
yANY ðuÞ�fvg ðt � lyuÞ vertices of H from serving as the image of u in an

extension of f along the threads from NY ðuÞ � fvg to u: By the definition of f ; this

quantity equals n�1
t
ð f ðuÞ þ lvuÞ: Since u is v-free, we have f ðuÞ þ lvupt; and the

number of vertices excluded from serving as the image of u is at most n � 1: In
particular, at least one is available. Accounting for the possibility that f ðuÞ þ lvu is

strictly less than t; we compute that at least 1þ n�1
t
ðt � lvu � f ðuÞÞ vertices of H are

available for the image of u:
In extending the homomorphism along the thread from u to v; the number of

possible images for the current vertex increases by at least n�1
t
with each of the lvu
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steps, because H is t-expansive. By the time we reach v; there are thus at least

1þ n�1
t
ðt � f ðuÞÞ vertices available for the image of v in an extension of f to all the

weak neighbors of u: The number of vertices forbidden from being the image is at

most n � 1� n�1
t
ðt � f ðuÞÞ; which equals n�1

t
f ðuÞ:

When uANY ðvÞ is not v-free, fðuÞ is fixed. In this case, as in Lemma 4.3, at least
1þ n�1

t
lvu vertices of H can serve as the image of v in an extension of f to the

u; v-thread, and at most n�1
t
ðt � lvuÞ vertices are excluded. Since t � lvuof ðuÞ; fewer

than n�1
t

f ðuÞ vertices are excluded.
Since G has noH-coloring, every vertex ofH must be excluded from serving as the

image of v in at least one of these extensions. This requires n�1
t

P
uANY ðvÞ f ðuÞXn:

Since every f ðuÞ is an integer, we have
P

uANY ðvÞ f ðuÞXt þ 1: &

We complete the proof using a discharging argument. We treat dðvÞ as an initial
‘‘charge’’ on the vertex vAVðG̃Þ:We will move charge from vertex to vertex, without
changing the total, to obtain a new charge d�ðvÞ such that

d�ðvÞX2þ 4dðvÞ � 2
5t

for all vAVðG̃Þ: ð1Þ

Let p ¼ jVðG̃Þj and m ¼ jEðG̃Þj: If (1) holds, then

2m ¼
X

vAVðG̃Þ

d�ðvÞX
X

vAVðG̃Þ

2þ 4dðvÞ � 2
5t

� �
¼ 1� 1

5t

� �
2p þ 4

5t
2m;

and hence 5t�1
5t

pp5t�4
5t

m: This makes the average degree of G̃ at least 2ð5t�1Þ
5t�4 ; which

equals 2þ 6
5t�4: Hence it suffices to obtain d� so that (1) holds.

Discharging Rules. Given a multigraph G̃ with dðuÞ denoting the degree of vertex u

as an initial charge, define an adjusted charge d�ðuÞ for each uAVðG̃Þ by the
following operations:

R1. Every vAY gives each weak 2-neighbor the amount 35t:

R2. Every vAY gives each weak Y -neighbor the amount 3f ðvÞþðtþ1ÞðdðvÞ�3Þ
5tdðvÞ :

Lemma 4.5. Every vAY receives from its weak Y -neighbors at least tþ1
5t
:

Proof. If every uANY ðvÞ sends v at least f ðuÞ
5t
; then v receives from NY ðvÞ at least

1
5t

P
uANY ðvÞ f ðuÞ: By Lemma 4.4,

P
uANY ðvÞ f ðuÞXt þ 1:

Hence we may assume that 3f ðuÞþðtþ1ÞðdðuÞ�3Þ
5tdðuÞ of ðuÞ

5t
for some uANY ðvÞ: This requires

dðuÞX4: Hence we can cancel dðuÞ � 3 after clearing fractions to obtain f ðuÞ4t þ 1:
When f ðuÞXt þ 1; the formula in R2 yields that u by itself gives v at least tþ1

5t
: For

yANY ðvÞ; we have dðyÞX3 and f ðyÞX1 (by Lemma 4.3), so all other amounts sent to
v are nonnegative. &
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Lemma 4.6. Inequality (1) holds for the charge d� obtained for G̃ via the Discharging

Rules.

Proof. If dðvÞ ¼ 2; then v sends out nothing and receives 3
5t
from each of its two weak

Y -neighbors. Thus d�ðvÞ ¼ 2þ 6
5t ¼ 2þ

4dðvÞ�2
5t :

Now consider vAY : Vertex v sends out 3
5t

P
wANY ðvÞ ðlvw � 1Þ to its weak 2-

neighbors and 3f ðvÞþðtþ1ÞðdðvÞ�3Þ
5t

to its weak Y -neighbors. By Lemma 4.5, v also

receives at least tþ1
5t
from its weak Y -neighbors. Since also f ðvÞ ¼ �t þ

P
ðt � lvwÞ by

definition, we obtain (with each sum running over wANY ðvÞ)

d�ðvÞX dðvÞ � 3

5t

X
ðlvw � 1Þ � 3f ðvÞ þ ðt þ 1ÞðdðvÞ � 4Þ

5t

¼ dðvÞ � 3

5t
�t þ

X
ðt � lwv þ lvw � 1Þ

h i
� ðt þ 1ÞðdðvÞ � 4ÞÞ

5t

¼ dðvÞ
5t

½5t � 3ðt � 1Þ � ðt þ 1Þ
 þ 1

5t
½3t þ 4ðt þ 1Þ
 ¼ ðt þ 2ÞdðvÞ þ 7t þ 4

5t
:

Since dðvÞX3 and tX2; we have

ðt þ 2ÞdðvÞ þ 7t þ 4 ¼ðt þ 2ÞdðvÞ � 3ðt � 2Þ þ ð10t � 2Þ

¼ tðdðvÞ � 3Þ þ 2dðvÞ þ 6þ ð10t � 2ÞX4dðvÞ þ 10t � 2:

Therefore, ðtþ2ÞdðvÞþ7tþ4
5t

X2þ 4dðvÞ�2
5t

; which completes the proof of the lemma and

also the theorem. &
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[12] J. Nešetřil, X. Zhu, On bounded tree-width duality of graphs, J. Graph Theory 23 (1996)

151–162.

[13] A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551–559.

[14] X. Zhu, Circular chromatic number of planar graphs of large odd girth, Electron. J. Combin. 8 (2001)

# R25.

[15] X. Zhu, Circular chromatic number: a survey, Discrete Math. 229 (2001) 371–410.

ARTICLE IN PRESS
O.V. Borodin et al. / Journal of Combinatorial Theory, Series B 90 (2004) 147–159 159


	Homomorphisms from sparse graphs with large girth
	Introduction
	t-Expansive s-graphs
	Applications
	The main result
	References


