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Abstract: Let R (G) denote the minimum integer N such that for every
bicoloring of the edges of KN, at least one of the monochromatic subgraphs
contains G as a subgraph. We show that for every positive integer d and
each ,0<  <1, there exists k� k (d,  ) such that for every bipartite graph
G� (W,U;E ) with the maximum degree of vertices in W at most d and
jU j � jW j, R (G )�k jW j. This answers a question of Trotter. We give also
a weaker bound on the Ramsey numbers of graphs whose set of vertices of
degree at least d� 1 is independent.ß 2001 John Wiley & Sons, Inc. J Graph Theory 37: 198±
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1. INTRODUCTION

The classical Ramsey number R�k; l� is the minimum positive integer N such that
for every graph H on n vertices, H contains either a complete subgraph on k
vertices or an independent set on l vertices. More generally, for arbitrary graphs G

and H, de®ne R�G;H� to be the minimum positive integer N such that in every
bicoloring of edges of KN with, say red and blue colors, there is either a red copy
of G or a blue copy of H. Burr and Erdo}s [2] conjectured that for every d,

there exists k � k�d� such that R�G;G� � kjV�G�j �1�

(a) for every graph G with maximum degree at most d;
(b) for every d-degenerate graph G.

The ®rst conjecture was proved by Chvatal, RoÈdl, SzemereÂdi, and Trotter [4],
and the second (which is much stronger) is still wide open. Chen and Schelp [3]
proved the conjecture for planar graphs and, more generally, for so called
k-arrangeable graphs. RoÈdl and Thomas [5] proved that graphs with no
Kp-subdivisions are p8-arrangeable, which implies that for every p, the graphs
with no Kp-subdivisions have linearly bounded Ramsey number. Also, Alon [1]
proved that (1) holds if G � �W;U; E� is a bipartite graph and the degree of every
vertex in W is at most two. We present here a simple lemma which implies the
following two results.

Theorem 1. Let a real 0 <  < 1 and a positive integer d � 3 be ®xed and let

k � k�d; � � d2expf d
1ÿge. Let n be suf®ciently large and let G � �W ;U; E� be a

bipartite graph with the bipartition �W ;U� and such that jW j � n, jUj � n, and

deg�w� � d for every w 2 W : �2�

If n is suf®ciently large, then for any bicoloring of the edges of Kkn;kn, there exists
a monochromatic copy of G.

Theorem 2. Let a positive integer d be ®xed and n be suf®ciently large. Let
G � �V ;E� be a graph with jV j � n, and such that the set U of vertices of degree
at least d � 1 in G is an independent set. Let k � k�d; n� � expf6d � 6d2

�������
ln n
p g.

Then R�G;G� � kn. In particular, for every " > 0, there exists C � C�d; "� such
that for every graph G � �V ;E� with the independent set of vertices of degree at

least d � 1,

R�G;G� � CjV�G�j1�":

Theorem 1 con®rms the conjecture by Trotter that (1) holds if G is a crown.
Theorem 2 shows that in a wider class, the Ramsey number is not far from linear.
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2. MAIN LEMMA

Lemma 1. Let a positive integer d be ®xed and n be suf®ciently large. Suppose
that positive integers m � 2, l � 4; and kn satisfy the inequalities

k

2

� �l

� 6�nk�d �3�

and

1

6
kn2ÿl > mÿ 1: �4�

Then for every subgraph H � �V1;V2; E� of the complete bipartite graph Kkn;kn

with the bipartition �V1;V2� and such that jEj � �kn�2=2, there exists M � V1

with jMj � m with the property that for every d-element subset D of M, the
number of vertices of H adjacent to all vertices in D is at least n.

Proof. Call a d-tuple fx1; . . . ; xdg of vertices in V1 poor if jN�x1� \ � � � \
N�xd�j < n. An l-tuple fy1; . . . ; ylg of vertices in V2 will be called bad if it is
contained in the set N�x1� \ � � � \ N�xd� for some poor d-tuple fx1; . . . ; xdg of
vertices in V1. Other l-tuples of vertices in V2 will be called good. By the
de®nition, the number of bad l-tuples in V2 is at most

jV1j
d

� �
nÿ 1

l

� �
< kdnd�l=l !:

It follows that the number b of pairs �x;L� such that x 2 V1 and L � N�x� is a bad
l-tuple is estimated as follows

b < kn kdnd�l=l! � kd�1nd�l�1=l!: �5�
On the other hand, the total number of pairs �x; L� such that x 2 V1 and L � N�x�
is an l-tuple, is at least X

x2V1

deg x

l

� �
:

Under condition that
P

x2V1
deg x � �kn�2=2, the last sum is at least

jV1j b0:5knc
l

� �
. Hence

X
x2V1

deg x

l

� �
� jV1j �0:5knÿ l�l

l!
� 2 � �0:5kn�l�1

l!
1ÿ 2l

kn

� �l

� 2 � �0:5kn�l�1

l!
1ÿ 2l2

kn

� �
:
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Since due to (4), 2l < kn
6�mÿ1� � kn

6
, we have

1ÿ 2l2

kn
� 1ÿ 2l�1

kn
> 1ÿ 2kn

6kn
� 2

3
:

Therefore,

X
x2V1

deg x

l

� �
>
�0:5kn�l�1

l!
:

It follows that the number g of pairs �x;L� such that x 2 V1 and L � N�x� is a
good l-tuple, is at least

�0:5kn�l�1

l!
ÿ kd�1nd�l�1

l!
>

nl�1k

l!
0:5�k=2�l ÿ �nk�d
� �

:

By (3), g � 1
3
�0:5kn�l�1=l!.

There exists a good l-tuple L0 � N�x� participating in at least g � kn
l

ÿ �ÿ1
such

pairs. We have

g
kn
l

ÿ � � �0:5kn�l�1

3l!

l!

�kn�l �
1

6
kn2ÿl:

By (4), the last expression is greater than mÿ 1. It follows that there is a subset M
of V1 with jMj � m such that L0 � N�x� for every x 2 M. Since L0 is good, none
of the d-tuples of elements of M is poor. This proves the lemma.

3. APPLICATIONS OF THE LEMMA

Proof of Theorem 1. Let k � d2expf d
1ÿge. Let H1 and H2 be two subgraphs

of the complete bipartite graph Kkn;kn with bipartition �V1;V2� whose union is
Kkn;kn. We may assume that jE�H1�j � jE�H2�j and hence jE�H1�jj � �kn�2=2. Set
l � b�1ÿ � log2 nc and m � dn e. Then conditions (3) and (4) are satis®ed.
Thus, by Lemma 1, there exists M � V1 with jMj � m with the property that for
every d-element subset D of M, the number of vertices of H adjacent to all
vertices in D is at least n. Now we construct embedding f : W [ U ! M [ V2 of
G � �W ;U; E� into the subgraph of H1 induced by M [ V2 in a greedy manner.
Let f be an arbitrary 1±1 mapping of U to M. We extend this mapping to
w1;w2; . . . wn-elements of W and de®ne f -images as follows: For i � 1; 2; . . . n

consider D�wi� � f �NG�wi��. Since jD�wi�j � d there are at least n vertices in V2

adjacent to each vertex in D�wi�. We choose for f �wi� any of them not used as
f �wj� for j < i. Theorem 1 is proved.
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Instead of proving Theorem 2 directly, we ®rst derive a more general state-
ment. Let H�s; n; d� denote the family of graphs G � �V;E� on at most n vertices
such that there exists a partition V � V1 [ � � � [ Vs�1 with the properties:

(a) every Vi is an independent set;
(b) for every i � 1; . . . ; s and every v 2 Vi, the degree of v in Gÿ V1 ÿ � � �
ÿViÿ1 is at most d.

For example, H�0; n; d� is the family of graphs without edges on at most n

vertices and H�1; n; d� is the family of bipartite graphs on at most n vertices in
which all the vertices of one of the parts have degrees at most d.

Let F�s; t; n; d� be the smallest positive integer such that for every
G1 2 H�s; n; d� and every G2 2 H�t; n; d�,

R�G1;G2� � nF�s; t; n; d�:

Theorem 3. Let a positive integer d � 3 be ®xed. For every non-negative
integers s and t with s� t � 1, and for suf®ciently large n,

F�s; t; n; d� � 10 expf2�s� t ÿ 1��1� d
�������
ln n
p

�g:

In particular, for every " > 0; there exists n0 � n0�s; t; d; "� such that for every

n > n0;

F�s; t; n; d� � n":

Proof of Theorem 3. We prove the theorem for a ®xed d by induction on
s� t. Clearly, for any s � 1 and t � 1,

F�s; 0; n; d� � F�0; t; n; d� � 1:

Suppose that the theorem is proved for all pairs �s0; t0� with s0 � t0 < s� t and
assume that s � 1 and t � 1. Consider arbitrary graphs G1 2 H�s; n; d� and
G2 2 H�t; n; d�.

Set

k � b5expf2�s� t ÿ 1��1� d
�������
ln n
p

�gc and N � kn: �6�

Consider red-blue coloring of edges of K2N and let H1;H2 with V�H1� �
V�H2� � V�K2N� be the subgraphs consisting of red and blue edges respectively.
Let V�K2N� � U [W be an arbitrary partition with jUj � jW j � kn. We may
assume that at least half of edges connecting U with W belongs to E�H1�. Set

l �
�������
ln n
p

; and m � 10n expf2�s� t ÿ 2��1� d
�������
ln n
p

�g:
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We will prove that these parameters satisfy conditions of Lemma 1. Indeed, we
can assume that for n � n0�d�,

5 expf2�1� d
�������
ln n
p

�g < n=6:

Then for k de®ned by (6), we have k < �n=6�s�tÿ1
and hence

k

2

� �l

��expf2�s� t ÿ 1��1� d
��������
ln n
p

�g�
�����
ln n
p
� n2�s�tÿ1�d� n�s�tÿ1�dnd>6dkdnd:

Similarly, for n � n0�d�,

1

6
kn2ÿl >

n

6
expf2�s� t ÿ 1��1� d

�������
ln n
p

� ÿ
�������
ln n
p

g>
> 10n expf2�s� t ÿ 2��1� d

�������
ln n
p

�g> mÿ 1:

Applying Lemma 1, we get that there exists M � U with jMj � m with the
property that for every d-element subset D of M, the number of vertices in W

adjacent in H1 to all vertices in D is at least n.
Let a partition of V�G1� verifying that G1 2 H�s; n; d� be the partition

V�G1� � X1 [ . . . [ Xs�1. Let G01 � G1 ÿ X1. Then G01 2 H�sÿ 1; n; d�. By the
induction assumption, R�G01;G2� � m. It follows that either H1�M� contains a
copy of G01 or H2�M� contains a copy of G2. In the latter case, we are done, so we
assume that there exists an embedding f of G01 into H1�M�. Now (similarly to the
proof of Theorem 1) we embed vertices of X1 into W in a greedy manner. Let
x1; . . . ; xp be the vertices in X1; note that p < n. Consecutively, for i � 1; . . . ; p,
we do the following. Consider D�xi� � f �NG1

�xi��. Since jD�xi�j � d, there are at
least n vertices in W adjacent in H1 to each vertex in D�xi�. We choose for f �xi�
any of them not used as f �xj� for j < i. Theorem is proved.

Proof of Theorem 2. Let Xd�1 be any maximal (by inclusion) independent
set in G containing all vertices of degree at least d � 1. By the maximality of
Xd�1, the maximum degree of Gÿ Xd�1 is at most d ÿ 1, and hence V�G� n Xd�1

can be partitioned into d independent sets X1; . . . ;Xd. It follows that
G 2 H�d; n; d�. Thus, by Theorem 3,

R�G;G� � 10 n expf2�2d ÿ 1���1� d
�������
ln n
p

��g:

This proves the theorem.

Remark. Note that replacing 2-coloring by r-coloring one can verify straight-
forward extensions of Theorems 1, 2, and 3.
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Note added in proof: It was recently observed by Shi Lingsheng in [6] that as a
consequence of Theorem 1 and Lemma 1, one can derive that the Ramsey number
of a t-dimensional cube R�Qt� � mc; where m � 2t and c > 0:

Indeed, with the choice of d, l and m as in Theorem 1, (3) is satis®ed if

1



1

ln 2
ÿ 1

� �
ln�mÿ 1� � ln 6

d
� ln 2� 1� d

1ÿ  ; �1�

while (4) holds true.
Thus for example, setting  � 1

5
; d � t; and m � 2t; one can see that

R�Qt� � mc holds, where c � 7: By a careful optimization of constants, c �
��
5
p �3

2

is proved in [6].
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