On Graphs with Small Ramsey Numbers

A. V. Kostochka ${ }^{1,2}$ and V. Rödl ${ }^{\mathbf{3}}$
${ }^{1}$ INSTITUTE OF MATHEMATICS
NOVOSIBIRSK-90, 630090, RUSSIA
${ }^{2}$ UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801
${ }^{3}$ DEPT. OF MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY, ATLANTA

GEORGIA 30322

Received December 21, 2000

Abstract

Let $R(G)$ denote the minimum integer N such that for every bicoloring of the edges of K_{N}, at least one of the monochromatic subgraphs contains G as a subgraph. We show that for every positive integer d and each $\gamma, 0<\gamma<1$, there exists $k=k(d, \gamma)$ such that for every bipartite graph $G=(W, U ; E)$ with the maximum degree of vertices in W at most d and $|U| \leq|W|^{\gamma}, R(G) \leq k|W|$. This answers a question of Trotter. We give also a weaker bound on the Ramsey numbers of graphs whose set of vertices of degree at least $d+1$ is independent. © 2001 John Wiley \& Sons, Inc. J Graph Theory 37: 198204, 2001

Keywords: Ramsey numbers; bipartite graphs

This work was partially supported by the grant RM1-181 of the Cooperative Grant Program of the Civilian Research and Development Foundation.
Contract grant sponsor: Russian Foundation for Fundamental Research.
Contract grant number: 99-01-00581.
Contract grant sponsor: NSF.
Contract grant number: DMS-9704114.
Correspondence to: V. Rödl.
© 2001 John Wiley \& Sons, Inc.

1. INTRODUCTION

The classical Ramsey number $R(k, l)$ is the minimum positive integer N such that for every graph H on n vertices, H contains either a complete subgraph on k vertices or an independent set on l vertices. More generally, for arbitrary graphs G and H, define $R(G, H)$ to be the minimum positive integer N such that in every bicoloring of edges of K_{N} with, say red and blue colors, there is either a red copy of G or a blue copy of H. Burr and Erdős [2] conjectured that for every d,

$$
\begin{equation*}
\text { there exists } k=k(d) \text { such that } R(G, G) \leq k|V(G)| \tag{1}
\end{equation*}
$$

(a) for every graph G with maximum degree at most d;
(b) for every d-degenerate graph G.

The first conjecture was proved by Chvatal, Rödl, Szemerédi, and Trotter [4], and the second (which is much stronger) is still wide open. Chen and Schelp [3] proved the conjecture for planar graphs and, more generally, for so called k-arrangeable graphs. Rödl and Thomas [5] proved that graphs with no K_{p}-subdivisions are p^{8}-arrangeable, which implies that for every p, the graphs with no K_{p}-subdivisions have linearly bounded Ramsey number. Also, Alon [1] proved that (1) holds if $G=(W, U ; E)$ is a bipartite graph and the degree of every vertex in W is at most two. We present here a simple lemma which implies the following two results.

Theorem 1. Let a real $0<\gamma<1$ and a positive integer $d \geq 3$ be fixed and let $k=k(d, \gamma)=\left\lceil 2 \exp \left\{\frac{d}{1-\gamma}\right\}\right\rceil$. Let n be sufficiently large and let $G=(W, U ; E)$ be a bipartite graph with the bipartition (W, U) and such that $|W| \leq n,|U| \leq n^{\gamma}$, and

$$
\begin{equation*}
\operatorname{deg}(w) \leq d \quad \text { for every } \quad w \in W \tag{2}
\end{equation*}
$$

If n is sufficiently large, then for any bicoloring of the edges of $K_{k n, k n}$, there exists a monochromatic copy of G.

Theorem 2. Let a positive integer d be fixed and n be sufficiently large. Let $G=(V, E)$ be a graph with $|V| \leq n$, and such that the set U of vertices of degree at least $d+1$ in G is an independent set. Let $k=k(d, n)=\exp \left\{6 d+6 d^{2} \sqrt{\ln n}\right\}$. Then $R(G, G) \leq k n$. In particular, for every $\varepsilon>0$, there exists $C=C(d, \varepsilon)$ such that for every graph $G=(V, E)$ with the independent set of vertices of degree at least $d+1$,

$$
R(G, G) \leq C|V(G)|^{1+\varepsilon}
$$

Theorem 1 confirms the conjecture by Trotter that (1) holds if G is a crown. Theorem 2 shows that in a wider class, the Ramsey number is not far from linear.

2. MAIN LEMMA

Lemma 1. Let a positive integer d be fixed and n be sufficiently large. Suppose that positive integers $m \geq 2, l \geq 4$, and $k n$ satisfy the inequalities

$$
\begin{equation*}
\left(\frac{k}{2}\right)^{l} \geq 6(n k)^{d} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{6} k n 2^{-l}>m-1 \tag{4}
\end{equation*}
$$

Then for every subgraph $H=\left(V_{1}, V_{2} ; E\right)$ of the complete bipartite graph $K_{k n, k n}$ with the bipartition $\left(V_{1}, V_{2}\right)$ and such that $|E| \geq(k n)^{2} / 2$, there exists $M \subset V_{1}$ with $|M| \geq m$ with the property that for every d-element subset D of M, the number of vertices of H adjacent to all vertices in D is at least n.

Proof. Call a d-tuple $\left\{x_{1}, \ldots, x_{d}\right\}$ of vertices in V_{1} poor if $\mid N\left(x_{1}\right) \cap \cdots \cap$ $N\left(x_{d}\right) \mid<n$. An l-tuple $\left\{y_{1}, \ldots, y_{l}\right\}$ of vertices in V_{2} will be called bad if it is contained in the set $N\left(x_{1}\right) \cap \cdots \cap N\left(x_{d}\right)$ for some poor d-tuple $\left\{x_{1}, \ldots, x_{d}\right\}$ of vertices in V_{1}. Other l-tuples of vertices in V_{2} will be called good. By the definition, the number of bad l-tuples in V_{2} is at most

$$
\binom{\left|V_{1}\right|}{d}\binom{n-1}{l}<k^{d} n^{d+l} / l!
$$

It follows that the number b of pairs (x, L) such that $x \in V_{1}$ and $L \subset N(x)$ is a bad l-tuple is estimated as follows

$$
\begin{equation*}
b<k n k^{d} n^{d+l} / l!=k^{d+1} n^{d+l+1} / l!. \tag{5}
\end{equation*}
$$

On the other hand, the total number of pairs (x, L) such that $x \in V_{1}$ and $L \subset N(x)$ is an l-tuple, is at least

$$
\sum_{x \in V_{1}}\binom{\operatorname{deg} x}{l}
$$

Under condition that $\sum_{x \in V_{1}} \operatorname{deg} x \geq(k n)^{2} / 2$, the last sum is at least $\left|V_{1}\right|\binom{\lfloor 0.5 k n\rfloor}{ l}$. Hence

$$
\begin{aligned}
\sum_{x \in V_{1}}\binom{\operatorname{deg} x}{l} & \geq\left|V_{1}\right| \frac{(0.5 k n-l)^{l}}{l!}=2 \cdot \frac{(0.5 k n)^{l+1}}{l!}\left(1-\frac{2 l}{k n}\right)^{l} \\
& \geq 2 \cdot \frac{(0.5 k n)^{l+1}}{l!}\left(1-\frac{2 l^{2}}{k n}\right)
\end{aligned}
$$

Since due to (4), $2^{l}<\frac{k n}{6(m-1)} \leq \frac{k n}{6}$, we have

$$
1-\frac{2 l^{2}}{k n} \geq 1-\frac{2^{l+1}}{k n}>1-\frac{2 k n}{6 k n}=\frac{2}{3}
$$

Therefore,

$$
\sum_{x \in V_{1}}\binom{\operatorname{deg} x}{l}>\frac{(0.5 k n)^{l+1}}{l!}
$$

It follows that the number g of pairs (x, L) such that $x \in V_{1}$ and $L \subset N(x)$ is a good l-tuple, is at least

$$
\frac{(0.5 k n)^{l+1}}{l!}-\frac{k^{d+1} n^{d+l+1}}{l!}>\frac{n^{l+1} k}{l!}\left(0.5(k / 2)^{l}-(n k)^{d}\right)
$$

By (3), $g \geq \frac{1}{3}(0.5 k n)^{l+1} / l!$.
There exists a good l-tuple $L_{0} \subset N(x)$ participating in at least $g \cdot\binom{k n}{l}^{-1}$ such pairs. We have

$$
\frac{g}{\binom{k n}{l}} \geq \frac{(0.5 k n)^{l+1}}{3 l!} \frac{l!}{(k n)^{l}}=\frac{1}{6} k n 2^{-l}
$$

By (4), the last expression is greater than $m-1$. It follows that there is a subset M of V_{1} with $|M|=m$ such that $L_{0} \subset N(x)$ for every $x \in M$. Since L_{0} is good, none of the d-tuples of elements of M is poor. This proves the lemma.

3. APPLICATIONS OF THE LEMMA

Proof of Theorem 1. Let $k=\left\lceil 2 \exp \left\{\frac{d}{1-\gamma}\right\}\right\rceil$. Let H_{1} and H_{2} be two subgraphs of the complete bipartite graph $K_{k n, k n}$ with bipartition $\left(V_{1}, V_{2}\right)$ whose union is $K_{k n, k n}$. We may assume that $\left|E\left(H_{1}\right)\right| \geq\left|E\left(H_{2}\right)\right|$ and hence $\left|E\left(H_{1}\right)\right| \mid \geq(k n)^{2} / 2$. Set $l=\left\lfloor(1-\gamma) \log _{2} n\right\rfloor$ and $m=\left\lceil n^{\gamma}\right\rceil$. Then conditions (3) and (4) are satisfied. Thus, by Lemma 1, there exists $M \subset V_{1}$ with $|M| \geq m$ with the property that for every d-element subset D of M, the number of vertices of H adjacent to all vertices in D is at least n. Now we construct embedding $f: W \cup U \rightarrow M \cup V_{2}$ of $G=(W, U ; E)$ into the subgraph of H_{1} induced by $M \cup V_{2}$ in a greedy manner. Let f be an arbitrary $1-1$ mapping of U to M. We extend this mapping to $w_{1}, w_{2}, \ldots w_{n}$-elements of W and define f-images as follows: For $i=1,2, \ldots n$ consider $D\left(w_{i}\right)=f\left(N_{G}\left(w_{i}\right)\right)$. Since $\left|D\left(w_{i}\right)\right| \leq d$ there are at least n vertices in V_{2} adjacent to each vertex in $D\left(w_{i}\right)$. We choose for $f\left(w_{i}\right)$ any of them not used as $f\left(w_{j}\right)$ for $j<i$. Theorem 1 is proved.

Instead of proving Theorem 2 directly, we first derive a more general statement. Let $\mathcal{H}(s, n, d)$ denote the family of graphs $G=(V, E)$ on at most n vertices such that there exists a partition $V=V_{1} \cup \cdots \cup V_{s+1}$ with the properties:
(a) every V_{i} is an independent set;
(b) for every $i=1, \ldots, s$ and every $v \in V_{i}$, the degree of v in $G-V_{1}-\cdots$ $-V_{i-1}$ is at most d.

For example, $\mathcal{H}(0, n, d)$ is the family of graphs without edges on at most n vertices and $\mathcal{H}(1, n, d)$ is the family of bipartite graphs on at most n vertices in which all the vertices of one of the parts have degrees at most d.

Let $F(s, t, n, d)$ be the smallest positive integer such that for every $G_{1} \in \mathcal{H}(s, n, d)$ and every $G_{2} \in \mathcal{H}(t, n, d)$,

$$
R\left(G_{1}, G_{2}\right) \leq n F(s, t, n, d)
$$

Theorem 3. Let a positive integer $d \geq 3$ be fixed. For every non-negative integers s and t with $s+t \geq 1$, and for sufficiently large n,

$$
F(s, t, n, d) \leq 10 \exp \{2(s+t-1)(1+d \sqrt{\ln n})\} .
$$

In particular, for every $\varepsilon>0$, there exists $n_{0}=n_{0}(s, t, d, \varepsilon)$ such that for every $n>n_{0}$,

$$
F(s, t, n, d) \leq n^{\varepsilon}
$$

Proof of Theorem 3. We prove the theorem for a fixed d by induction on $s+t$. Clearly, for any $s \geq 1$ and $t \geq 1$,

$$
F(s, 0, n, d)=F(0, t, n, d)=1
$$

Suppose that the theorem is proved for all pairs $\left(s^{\prime}, t^{\prime}\right)$ with $s^{\prime}+t^{\prime}<s+t$ and assume that $s \geq 1$ and $t \geq 1$. Consider arbitrary graphs $G_{1} \in \mathcal{H}(s, n, d)$ and $G_{2} \in \mathcal{H}(t, n, d)$.

Set

$$
\begin{equation*}
k=\lfloor 5 \exp \{2(s+t-1)(1+d \sqrt{\ln n})\}\rfloor \quad \text { and } \quad N=k n \tag{6}
\end{equation*}
$$

Consider red-blue coloring of edges of $K_{2 N}$ and let H_{1}, H_{2} with $V\left(H_{1}\right)=$ $V\left(H_{2}\right)=V\left(K_{2 N}\right)$ be the subgraphs consisting of red and blue edges respectively. Let $V\left(K_{2 N}\right)=U \cup W$ be an arbitrary partition with $|U|=|W|=k n$. We may assume that at least half of edges connecting U with W belongs to $E\left(H_{1}\right)$. Set

$$
l=\sqrt{\ln n}, \quad \text { and } m=10 n \exp \{2(s+t-2)(1+d \sqrt{\ln n})\}
$$

We will prove that these parameters satisfy conditions of Lemma 1. Indeed, we can assume that for $n \geq n_{0}(d)$,

$$
5 \exp \{2(1+d \sqrt{\ln n})\}<n / 6
$$

Then for k defined by (6), we have $k<(n / 6)^{s+t-1}$ and hence

$$
\left(\frac{k}{2}\right)^{l} \geq(\exp \{2(s+t-1)(1+d \sqrt{\ln n})\})^{\sqrt{\ln n}} \geq n^{2(s+t-1) d} \geq n^{(s+t-1) d} n^{d}>6^{d} k^{d} n^{d}
$$

Similarly, for $n \geq n_{0}(d)$,

$$
\begin{aligned}
\frac{1}{6} k n 2^{-l} & >\frac{n}{6} \exp \{2(s+t-1)(1+d \sqrt{\ln n})-\sqrt{\ln n}\}> \\
& >10 n \exp \{2(s+t-2)(1+d \sqrt{\ln n})\}>m-1
\end{aligned}
$$

Applying Lemma 1 , we get that there exists $M \subset U$ with $|M| \geq m$ with the property that for every d-element subset D of M, the number of vertices in W adjacent in H_{1} to all vertices in D is at least n.

Let a partition of $V\left(G_{1}\right)$ verifying that $G_{1} \in \mathcal{H}(s, n, d)$ be the partition $V\left(G_{1}\right)=X_{1} \cup \ldots \cup X_{s+1}$. Let $G_{1}^{\prime}=G_{1}-X_{1}$. Then $G_{1}^{\prime} \in \mathcal{H}(s-1, n, d)$. By the induction assumption, $R\left(G_{1}^{\prime}, G_{2}\right) \leq m$. It follows that either $H_{1}(M)$ contains a copy of G_{1}^{\prime} or $H_{2}(M)$ contains a copy of G_{2}. In the latter case, we are done, so we assume that there exists an embedding f of G_{1}^{\prime} into $H_{1}(M)$. Now (similarly to the proof of Theorem 1) we embed vertices of X_{1} into W in a greedy manner. Let x_{1}, \ldots, x_{p} be the vertices in X_{1}; note that $p<n$. Consecutively, for $i=1, \ldots, p$, we do the following. Consider $D\left(x_{i}\right)=f\left(N_{G_{1}}\left(x_{i}\right)\right)$. Since $\left|D\left(x_{i}\right)\right| \leq d$, there are at least n vertices in W adjacent in H_{1} to each vertex in $D\left(x_{i}\right)$. We choose for $f\left(x_{i}\right)$ any of them not used as $f\left(x_{j}\right)$ for $j<i$. Theorem is proved.

Proof of Theorem 2. Let X_{d+1} be any maximal (by inclusion) independent set in G containing all vertices of degree at least $d+1$. By the maximality of X_{d+1}, the maximum degree of $G-X_{d+1}$ is at most $d-1$, and hence $V(G) \backslash X_{d+1}$ can be partitioned into d independent sets X_{1}, \ldots, X_{d}. It follows that $G \in \mathcal{H}(d, n, d)$. Thus, by Theorem 3,

$$
R(G, G) \leq 10 n \exp \{2(2 d-1)[(1+d \sqrt{\ln n})]\}
$$

This proves the theorem.
Remark. Note that replacing 2 -coloring by r-coloring one can verify straightforward extensions of Theorems 1, 2, and 3.

Note added in proof: It was recently observed by Shi Lingsheng in [6] that as a consequence of Theorem 1 and Lemma 1, one can derive that the Ramsey number of a t-dimensional cube $R\left(Q_{t}\right) \leq m^{c}$, where $m=2^{t}$ and $c>0$.

Indeed, with the choice of d, l and m as in Theorem 1, (3) is satisfied if

$$
\begin{equation*}
\frac{1}{\gamma}\left(\frac{1}{\ln 2}-1\right) \ln (m-1) \geq \frac{\ln 6}{d}+\ln 2+\frac{1+d}{1-\gamma} \tag{1}
\end{equation*}
$$

while (4) holds true.
Thus for example, setting $\gamma=\frac{1}{5}, d=t$, and $m=2^{t}$, one can see that $R\left(Q_{t}\right) \leq m^{c}$ holds, where $c \leq 7$. By a careful optimization of constants, $c=\frac{\sqrt{5}+3}{2}$ is proved in [6].

References

[1] N. Alon, Subdivided graphs have linear Ramsey numbers, J Graph Theory 18(4) (1984), 343-347.
[2] S. A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, in: "Infinite and finite sets", Vol.1, Colloquia Mathematica Soc. Janos Bolyai, 10, North-Holland, Amsterdam-London (1975), 214-240.
[3] G. Chen and R. H. Schelp, Graphs with linearly bounded Ramsey numbers, J Comb Theory, Ser. B 57 (1993), 138-149.
[4] C. Chvátal, V. Rödl, E. Szemerédi, and W. T. Trotter, The Ramsey number of a graph with bounded maximum degree, J Comb Theory, Ser. B 34 (1983), 239-243.
[5] V. Rödl and R. Thomas, Arrangeability and clique subdivisions, in: "The Mathematics of Paul Erdős", Vol. 2, R. Graham and J. Nes̆etřil, (Editors), Springer, Berlin, 1997, pp. 236-239.
[6] S. Lingsheng, manuscript, March 30, 2001.

