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ABSTRACT: An �r� l�-system is an r-uniform hypergraph in which every set of l vertices lies in
at most one edge. Let mk�r� l� be the minimum number of edges in an �r� l�-system that is not
k-colorable. Using probabilistic techniques, we prove that

ar� l�kr−1 ln k�l/�l−1� ≤ mk�r� l� ≤ br� l�kr−1 ln k�l/�l−1��

where br� l is explicitly defined and ar� l is sufficiently small. We also give a different argument
proving (for even k)

mk�r� l� ≥ a′
r� lk

�r−1�l/�l−1��

where a′
r� l = �r − l + 1�/r�2r−1re�−l/�l−1�.

Our results complement earlier results of Erdős and Lovász [10] who mainly focused on the
case l = 2� k fixed, and r large. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 19, 87–98, 2001
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1. INTRODUCTION

A hypergraph H is k-colorable if its vertex set can be partitioned into k color classes,
such that no edge is monochromatic. The chromatic number χ�H� of H is the mini-
mum k such that H is k-colorable. A classical extremal problem is to determine the
minimum number of edges in an r-uniform hypergraph (r-graph for short) that is not
k-colorable. This minimum has been denoted mk�r� (see [2, 3, 6, 8, 9, 12, 14] for the
results in the case k = 2 and [1] for large k). If we restrict to the class of simple
hypergraphs, i.e., those where every two distinct vertices lie in at most one edge, then
the corresponding parameter is denoted by m∗

k�r�. This parameter was first studied by
Erdős and Lovász [10]. They proved the bounds

k2�r−2�

16r�r − 1�2 ≤ m∗
k�r� ≤ 1600r4k2�r+1�� (1)

which imply that

lim
r→∞m∗

k�r�1/r = k2�

We consider a larger class of hypergraphs. A partial �r� l�-system [henceforth, �r� l�-
system], is an r-uniform hypergraph in which every set of l vertices lies in at most
one edge. Let mk�r� l� be the minimum number of edges in an �r� l�-system that is not
k-colorable; thus m∗

k�r� = mk�r� 2�.
The works [13, 15, 11] on Steiner systems with small independence number yield

results for �r� l�-systems, and imply upper bounds on m∗
k�r� which improve (1) for k

very large in comparison with r. In particular, Grable, Phelps, and Rödl [11] for every
r and infinitely many k constructed simple hypergraphs (in fact, Steiner systems) with
chromatic number at least k + 1 and at most c4rr2k2r−2 ln2 k edges. Thus, for such r
and k,

m∗
k�r� ≤ c4rr2k2r−2 ln2 k� (2)

Our first result improves the upper bound in (1) in the range k4 > 0�01r6�ln2 ek�.
It has the advantage over (2) that it applies for every l ≥ 2. We write �r�l for
r�r − 1� · · · �r − l + 1�.

Theorem 1. Let r ≥ 3� l ≥ 2. Then

mk�r� l� ≤ 2
�cr�l�l
�r�l

(
kr−1 ln ek

)l/�l−1�
�

where cr� l = �2r3l�1/�l−1�.

We also improve the lower bound in (1) for r ≥ 3 and large k.

Theorem 2. Let r ≥ 3. If k is even, then

mk�r� l� ≥ dr� lk
�r−1�l/�l−1��
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where

dr� l =
[

1
�2r−1re�l

l−1∏
i=1

(
1− i

r

)]1/�l−1�
�

It is easy to see that this implies the result stated in the abstract. In the case where
r is fixed, we match the order of magnitude of the upper bound of Theorem 1.

Theorem 3. Let r > l ≥ 2 be fixed. Then there exists c depending only on r and l such
that for sufficiently large k we have mk�r� l� ≥ c�kr−1 ln k�l/�l−1�.

We prove Theorem 1 in Section 2 and Theorem 2 in Section 3. In Section 4 we
generalize a result from [13] about the chromatic number of hypergraphs with large
independent sets; this result is used in Section 5 in the proof of Theorem 3.

2. THE UPPER BOUND

The bounds of the kind (2) in [13, 15, 11] hold for all r and k, but apply only to large
k as written. Our construction also works for every r > 2 and k ≥ 2. It is an example
of a random greedy algorithm.

Proof of Theorem 1. Consider the following procedure:

1. Order all r-element subsets of the set 1� 2� � � � � n� at random: R1� � � � � R�nr�;
2. Construct the family G0� � � � �G�nr� of hypergraphs with the vertex set V =

1� � � � � n� as follows: G0 has no edges and for j = 1� � � � �
(
n
r

)
if Gj−1 + Rj is an

�r� l�-system, then we let Gj = Gj−1 + Rj , otherwise, Gj = Gj−1;
3. Let G�n� r� = G�nr�.

Clearly, Part 2 is a deterministic procedure once the ordering is defined. Our aim is
to prove that if n = �cr� l�kr−1 ln ek�1/�l−1��, where cr� l = �2r3l�1/�l−1�, then with positive
probability G�n� r� has no independent set of size �n/k�. Thus such a hypergraph has
no k-colorings. Since G�n� r� is an �r� l�-system by construction, this will give us (for
r ≥ 3) an example of an �r� l�-system with chromatic number at least k + 1 and the
number of edges at most

(
n
l

)
(
r
l

) ≤ n�n− 1�l−1
�r�l

≤ 2 c
l
r� l

�r�l
(
kr−1 ln ek

)l/�l−1�
�

The proof follows from the following claim.

Claim. For an arbitrary set X of vertices in G�n� r� of cardinality x = �n/k�, the proba-
bility that X induces no edges in G�n� r� is less than

(
n
x

)−1.
Proof. Fix an X of size x = �n/k�. Let BX be the event that X induces no edges in
G�n� r�. Observe that BX implies that every r-set T ⊆ X must be preceded (in the
random ordering) by some r-set R not in X such that R ∈ G�n� r� and �R ∩ T � ≥ l.
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Consequently, l ≤ �R ∩X� ≤ r − 1. Let us call such an R a witness for T ∈ �X�r not
being included in G�n� r�. The point is that if BX happens, then we must have a large
number of witnesses in G�n� r�, and the probability of the latter is small. Indeed, each
R ∈ G�n� r� can be a witness for at most (r−1

l

)(
x−l
r−l

)
r-sets T ⊂ X. This means that in

order to prevent all
(
x
r

)
r-sets T of X to appear in G�n� r�, the number of witnesses

has to be at least

m =
⌈ (

x
r

)
(
r−1
l

)(
x−l
r−l

)
⌉
=
⌈

�x�l
�r�l

(
r−1
l

)
⌉
�

For j ≥ 1, let Aj = AX�j denote the event that the first j edges Rl1
� Rl2

� � � � � Rlj
in

G�n� r� such that �Rli
∩X� ≥ l are not contained in X, i.e., l ≤ �Rli

∩X� ≤ r − 1. The
previous paragraph yields that if BX occurs, then Am also occurs.
The rest of the proof consists of bounding the probability of Am from above by

(
n
x

)−1.
For this calculation, we further assume that Rl1

is the witness that appears first in the
ordering, and that for each 1 < j ≤ m�Rlj

is the first witness which comes after Rlj−1 .
Let Gj = Glj−1 be the family of all r-sets included in G�n� r� before the jth witness Rlj
is chosen. For 1 ≤ j ≤ m, let �j be the collection of all r-sets S, such that �X ∩ S� ≥ l
and �R ∩ S� < l for all R ∈ Gj .
Since Am ⊂ Am−1 ⊂ · · · ⊂ A2 ⊂ A1, we have

PAm� = PA1� · PA2 � A1� · · · · · PAm � Am−1��
To estimate these probabilities we first note that each of the events A1 and Aj+1 � Aj ,

j = 1� � � � �m− 1 corresponds to a random choice from the set �j with the result that
the chosen set belongs to �j − �X�r .
Since ��1� ≤

(
x
l

)(
n
r−l

)
we have

PA1� = ��1� −
(
x
r

)
��1�

≤ 1−
(
x
r

)
(
x
l

)(
n
r−l

) �
Furthermore, suppose that j > 1, and let j ≤ m0 = �m/2�. Assume now that the event
Aj occurred. Since

PAj � Aj−1� = ��j − �X�r �
��j�

= 1− ��j ∩ �X�r �
��j�

�

we need to estimate the cardinality of the set �j ∩ �X�r .
The hypergraph Gj contains precisely j − 1 r-sets R with l ≤ �R ∩X� ≤ r − 1. Each

of these is a witness for at most(�X ∩ R�
l

)(
x− l

r − l

)
≤
(
r − 1
l

)(
x− l

r − l

)

r-sets. Consequently, the number of r-sets T in X with no witness at this stage is

��j ∩ �X�r � ≥
(
x

r

)
− �j − 1�

(
r − 1
l

)(
x− l

r − l

)

≥
(
x

r

)
− �m0 − 1�

(
r − 1
l

)(
x− l

r − l

)
≥ 1
2

(
x

r

)
�
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where the last inequality follows from the choice of m0. Summarizing, we infer that

PAj � Aj−1� ≤ 1−
1
2

(
x
r

)
(

n
r−l

)(
x
l

) �
This yields

PAm� ≤ PAm0
� = PA1� · PA2 � A1� · · · · · PAm0

� Am0−1�

≤
(
1−

1
2

(
x
r

)
(

n
r−l

)(
x
l

)
)m0

≤
(
1−

1
2

(
x
r

)
(

n
r−l

)(
x
l

)
)�x�l/2�r�l�r−1l �

≤ exp
{
− �x�r
4nr−l

(
r
l

)�r�l(r−1l )
}
�

In order to prove the claim we will show that the last expression is less than
(
n
x

)−1.
Since

(
n
x

)
< �ne/x�x = expx ln�en/x��, and x = �n/k�, we have

PAm� ·
(
n

x

)
< exp

{
x

(
ln

en

x
− �x− 1�r−1
4nr−l

(
r
l

)�r�l(r−1l )
)}

�

By the choice of n, it is easy to observe that x ≥ n/k ≥ �r − 1�.3 Thus for r ≥ 3,

�x− 1�r−1 ≥
(
1− r − 1

x

)r−1
xr−1 ≥

(
1− 1

�r − 1�2
)r−1

xr−1 ≥ 1
2
xr−1 ≥ 1

2

(
n

k

)r−1
�

Consequently, PAm� ·
(
n
x

)
is strictly less than

exp

{
x

(
ln ek−

1
2

(
n
k

)r−1
4nr−l

(
r
l

)�r�l(r−1l )
)}

≤ 1�

where the last inequality follows since

n ≥ �2r3l�1/�l−1��kr−1 ln ek�1/�l−1� ≥
[
8
(
r

l

)
�r�l

(
r − 1
l

)]1/�l−1�
�kr−1 ln ek�1/�l−1��

3. LOWER BOUNDS FROM THE LOVÁSZ LOCAL LEMMA

In this section, we prove Theorem 2. Our main tool is the symmetric version of the
Lovász local lemma which we state below (see [5] for a proof).

Lemma 4 (Local lemma). Let A1� � � � �An be events in a probability space. Suppose that
each event Ai is mutually independent of a set of all the other events Aj but at most d,
and that Prob�Ai� ≤ p for all i. If ep�d + 1� ≤ 1, then Prob�∧Ai� > 0.

We use the following lemma from [10], whose proof we supply for completeness.
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Lemma 5. Let H be an r-graph. If every vertex in H has degree at most kr−1/er, then
χ�H� ≤ k.

Proof. We color the vertices of H with k colors, with each color being assigned to
each vertex independently with equal probability. The probability that a given edge is
monochromatic is 1/kr−1. The event AF that edge F is monochromatic is independent
of all events AF ′ with F ∩ F ′ = �. The number of F ′ with F ∩ F ′ �= � is at most
r�kr−1/�er� − 1� ≤ kr−1/e − 1. The local lemma (Lemma 4) therefore implies that
there is a k-coloring with no monochromatic edge.

Proof of Theorem 2. Let H be an �r� l�-system with at most z = cr�lk
�r−1�l/�l−1� edges,

where

cr� l =
[

1
�2r−1re�l

l−1∏
i=1

(
1− i

r

)]1/�l−1�
�

Let

A =
{
v ∈ V �H�� deg�v� > kr−1

er2r−1

}
�

Let B = V �H� −A, and let HA and HB be the subhypergraphs induced by A and B,
respectively. By Lemma 5, there is a proper k/2-coloring of HB.
Now color HA randomly using a new set of k/2 colors, where each color appears

on each vertex independently with equal probability. Since H is an �r� l�-system, every
vertex in HA has degree (in HA) at most

! = �a− 1��a− 2� · · · �a− l + 1�
�r − 1��r − 2� · · · �r − l + 1� �

where a = �A�. Consequently, each edge E in HA is incident with at most d = !r − r
other edges. Moreover, since H has at most z edges and zr > akr−1/�er2r−1�, we infer
that a < zer22r−1/kr−1. Consider the space of colorings with each vertex being colored
randomly and independently of others. For each edge E in HA, let ME be the event
that E is monochromatic. Since p = PME� = �2/k�r−1 and

ep�d + 1� ≤ e

(
2
k

)r−1( �a− 1��a− 2� · · · �a− l + 1�
�r − 1��r − 2� · · · �r − l + 1� r − r + 1

)

≤ e

(
2
k

)r−1 al−1r
�r − 1��r − 2� · · · �r − l + 1�

≤ el
r2l−1

�r − 1� · · · �r − l + 1�
(
2
k

)�r−1�l
zl−1 < 1�

the local lemma implies that there is a proper k/2-coloring of HA. These two colorings
together yield a proper k-coloring of H.
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4. FROM INDEPENDENT SETS TO PROPER COLORINGS

In this section, we prove a preliminary Lemma 8 to our main lower bound, Theorem 3,
which might be interesting of its own. A special case appears in [13]. The following fact
was kindly pointed out to us by a referee.

Lemma 6. Let f �m� be a monotonically nondecreasing function, f �1� = 1, and f �m� ≤
m for every m. Let G be a graph on n vertices. Let I1� � � � � It be a family of disjoint
independent sets in G with il = �Il� for l = 1� � � � � t. Let x0 = 0 and xl =

∑l
j=1 ij . If

ij ≥ f �n− xj−1� for every j = 1� � � � � t, then t ≤∑n
l=n−xt+1�1/f �l��.

Proof. Since f �m� is monotonically nondecreasing and ij ≥ f �n− xj−1�, we have

n∑
l=n−xt+1

1
f �l� =

t∑
j=1

n−xj−1∑
l=n−xj+1

1
f �l� ≥

t∑
j=1

n−xj−1∑
l=n−xj+1

1
f �n− xj−1�

=
t∑

j=1

ij

f �n− xj−1�
≥ t�

This lemma (due to a referee) directly implies the following nice corollary.

Lemma 7. Let f �m� be a monotonically nondecreasing function, f �1� = 1, and
f �m� ≤ m for every m. Let G be a graph on n vertices. If for every 2 ≤ m ≤ n,
the independence number of every m-vertex subgraph of G is at least f �m�, then
χ�G� ≤∑n

j=1�1/f �j��.

Lemma 8. Let 0 ≤ α < 1 and β < 1 − α. Let H be a hypergraph with n vertices.
Suppose that every subhypergraph P of H (including H itself ) with m ≥ 2 vertices has an
independent set of size at least f �m� = cmα�ln em�β for some constant c > 0. Then there
is a d = d�c� α�β� > 0 such that χ�H� ≤ dn1−α�ln en�−β.

Proof. Define f �1� = 1. Then by Lemma 7,

χ�H� ≤
n∑

j=1

1
f �j� ≤ 1+

∫ n

1

1
c
x−α�ln ex�−β dx

≤ 1+ 1
c�1− α− β�

∫ n

1
x−α�ln ex�−β

(
1− α− β

ln ex

)
dx

= 1+ 1
c�1− α− β�

∣∣∣∣∣
n

1

x1−α�ln ex�−β = 1+ 1
c�1− α− β��n

1−α
(
ln en�−β − 1)�

This proves the lemma.

We use Lemma 8 to prove that �r� l�-systems with not too many vertices are
k-colorable. The following result of Rödl and S̆inajová guarantees large independent
sets in such r-graphs.
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Theorem 9 (Rödl–S̆inajová [15]). Let H be an �r� l�-system on n vertices. Then H has
an independent set of size at least cn�r−l�/�r−1��ln n�1/�r−1�, where c is a positive constant
depending only on r and l.

Theorem 9 together with Lemma 8 implies the following theorem.

Theorem 10. Let H be an �r� l�-system on n vertices. Then χ�H� ≤ c�nl−1/ ln n�1/�r−1�
for some constant c depending only on r and l. Moreover, there is another constant c′ (also
depending only on r and l) such that, if n ≤ c′�kr−1 ln k�1/�l−1�, then χ�H� ≤ k.

5. THE MAIN LOWER BOUND

In this section we prove Theorem 3. The main idea to properly k-color the �r� l�-system
is to greedily take maximal independent sets. We therefore need a lower bound on the
size of a maximal independent set in an r-graph. Such a bound is provided for a fairly
restricted class by a result of Ajtai et al. [4].

Theorem 11 [4]. Let G be an r-uniform hypergraph without 2-, 3-, and 4-cycles. If
�E�G��/�V �G�� is very large in comparison with r, then

α�G� ≥ c
�V �G��r/�r−1�
�E�G��1/�r−1�

(
ln

�E�G��
�V �G��

)1/�r−1�
� (3)

where c depends only on r.

We remark that the condition �E�G��/�V �G�� being large can be removed by chang-
ing the constant c. Duke, Lefmann, and Rödl [7] extended this bound (with a different
constant) to the class of simple hypergraphs. We need the following generalization of
[7] for �r� l�-systems; the proof follows from the idea in [15].

Theorem 12. Let r� l be integers with r > l > 1, and let δ = �r − l�/�8r − 10�. Suppose
that F is an �r� l�-system with �V �F�� = n and �E�F�� ≥ nl−δ. Then

α�F� ≥ c1 n

(
ln w

w

)1/�r−1�
� (4)

where w = �E�F��/n and c1 depends only on r and l.

Proof (Sketch). Let ε0 = �4l − 5�/�4r − 5� and ε1 = �l − 1 − δ�/�r − 1� < �l − 1�/
�r − 1�. Set ε = �ε0+ ε1�/2. Consider a random induced subsystem H of F , where every
vertex in H is included with probability p = n−ε independently of all other vertices.
The expected number of vertices in H is pn and the expected number of edges in H is
pr �E�F��. In [15] it is proven that with positive probability, we can delete at most half
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of the vertices of H to obtain a subsystem G of F with

1. no cycles of length less than five,
2. �V �G� = pn/2, and
3. �E�G�� ≤ 2pr �E�F��.

We apply Theorem 11 to G. With given �V �G��, the bound we seek for α�G�
decreases when �E�G�� grows. Therefore, letting z = �E�F��, we obtain that α�F� is
at least

α�G� ≥ c
�pn/2�r/�r−1�
�2prz�1/�r−1�

(
ln
4prz

pn

)1/�r−1�

= c
�n/2�r/�r−1�
�2z�1/�r−1�

(
ln

4z
nε�r−1�+1

)1/r−1

≥ c1
nr/�r−1�

z1/�r−1�

(
ln

z

n

)1/�r−1�
�

The last inequality follows by replacing the exponent inside the logarithm by a factor
outside of the logarithm.

Proof of Theorem 3. Let H be an �r� l�-system with at most c2�kr−1lnk�l/�l−1� edges.
Set c3 = 1/�er3r−1�. Partition V �H� into two parts:

V0—vertices of degree at most c3kr−1, and

V1—vertices of degree greater than c3k
r−1.

By Lemma 5 there is a proper coloring of the vertices in V0 with k/3 colors. It
remains to properly color the vertices of V1 with at most 2k/3 colors.
Let H1 = H�V1� and n1 = �V1�. Let c4 be chosen so that by Theorem 10, every

�r� l�-system with at most
n0 = c4

(
kr−1 ln k

)1/�l−1� (5)

vertices is k
3 -colorable. Because

n1c3k
r−1 ≤ ∑

v∈V1
deg�v� ≤ r�E�H���

we obtain

n1 ≤
rc2
c3

(
kr−1lnl k

)1/�l−1� = rc2
c3c4

n0 ln k� (6)

Let a1 = n1/n0. If a1 ≤ 1, then we are done, and by (6), in any case,

a1 ≤
rc2
c3c4
ln k� (7)

Let i ≥ 1 and consider the following procedure.
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Step i.

Case a. If ai > 1, then we distinguish between two cases depending on whether
�E�Hi�� is large.

(I) If �E�Hi�� ≥ nl−δ
i , where δ is as in Theorem 12, then we can apply Theorem 12.

Choose in Hi a maximum independent set Ii, let Hi+1 = Hi − Ii� ni+1 =
�V �Hi+1�� = ni − �Ii� and ai+1 = ni+1/n0. Now go to Step i+ 1.

(II) If �E�Hi�� < nl−δ
i , then partition V �Hi� into two sets X and Y , where X consists

of all vertices of Hi with degree less than dkr−1, with d = 1/�er6r−1�.

By the choice of d, Lemma 5 implies that the hypergraph induced by X can be
properly k/6-colored. Let d′ be chosen so that, by Theorem 10, every �r� l�-system on
at most d′�kr−1 ln k�1/�l−1� vertices is properly k/6-colorable. Because

�Y �dkr−1 ≤ ∑
v∈Y
deg�v� ≤ r�E�Hi�� ≤ rnl−δ

i < rnl−δ
1 �

we conclude that since k is sufficiently large

�Y � ≤ rnl−δ
1

dkr−1 ≤ r

dkr−1

[
rc2
c3
ln k�kr−1 lnk��1/l−1�

]l−δ

≤ d′�kr−1 ln k��1/l−1�� (8)

Consequently, the subhypergraph of Hi induced by Y can be properly k/6-colored.
These two colorings together yield a proper k/3-coloring of Hi. Color Hi properly
with k/3 colors. Since all vertices of H are now colored, we stop the procedure.

Case b. if ai ≤ 1, then the number of vertices in the uncolored hypergraph is at most
n0. We apply Theorem 10 to color these vertices with k/3 colors. Now we stop the
procedure.

Suppose that the procedure stops on Step t + 1. That means that on Steps i =
1� � � � � t, we were in Case (a), part (I). We will prove that t ≤ k/3. Observe that this
implies that H is k-colorable.

(�) We used k/3 colors to color H�V0�,
(�) We used t colors for I1� � � � � It ,
(�) Regardless of whether we stopped the procedure due to Case (a), part (II), or
Case (b), in each situation we used k/3 new colors. This yields the required
k-coloring of H.

In order to complete the argument, we will show that in (β) we have t ≤ k/3.
By the definition of ai, we have

�E�Hi��/�V �Hi�� ≤
c2�kr−1 lnk�l/�l−1�

aic4�kr−1 ln k�1/�l−1�

≤ c2�kr−1 ln k�l/�l−1�
aic4�kr−1 ln k�1/�l−1� = c2k

r−1 ln k

aic4
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and hence by Theorem 12 for large k,

�Ii� ≥ c1ni

(
aic4

c2k
r−1 ln k

)1/�r−1�(
ln

c2k
r−1 ln k

aic4

)1/�r−1�

≥
(
aic4
c2

)1/�r−1� c1ni

k
=
(

c4
c2n0

)1/�r−1� c1nr/�r−1�
i

k
� (9)

Let c5 = c1� c4c2 �
1/�r−1�. Then by (9), the conditions of Lemma 6 are satisfied with

f �m� = c5n
r/�r−1�
i

kn
1/�r−1�
0

. Hence by Lemma 6,

t ≤ 1+
n∑

l=n0+1

1
f �l� = 1+ kn

1/�r−1�
0

c5

n∑
l=n0+1

l−�r/r−1� ≤ 1+ kn
1/�r−1�
0

c5

∫ n

n0

x−r/�r−1� dx

≤ 1+ k�r − 1�n1/�r−1�0

c5

(
n
−1/�r−1�
0 − n−1/�r−1�

)
≤ 1+ k�r − 1�

c5
�

Thus if we choose c2 small enough to make c5 > 6�r − 1�, then for large k we will have
t < k/3. This proves the bound.
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[7] R. Duke, H. Lefmann, and V. Rödl, On uncrowded hypergraphs, Random Structures Algo-
rithms 6 (1995), 209–212.
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