The domination number of cubic Hamiltonian graphs

M. Cropper, D. Greenwell, A.J.W. Hilton ${ }^{1}$ and A. Kostochka ${ }^{2}$

Abstract

Let $\gamma(G)$ denote the domination number of a graph, and let \mathscr{C} be the set of all Hamiltonian cubic graphs. Let $$
\bar{\gamma}(n)=\max \{\gamma(G) \mid G \in \mathscr{C} \quad \text { and } \quad|V(G)|=n\},
$$

and

$$
\underline{\gamma}(n)=\min \{\gamma(G) \mid G \in \mathscr{C} \quad \text { and } \quad|V(G)|=n\} .
$$

Then, for $n \geq 4, n$ even,

$$
\bar{\gamma}(n)=\left\lfloor\frac{n+1}{3}\right\rfloor \quad \text { and } \quad \underline{\gamma}(n)=\left\lfloor\frac{n+2}{4}\right\rfloor .
$$

1 Introduction

The domination number $\gamma(G)$ of a graph G is the least number of vertices needed to dominate G. Thus, if $N(v)$ denotes the closed neighbourhood of a vertex v, then

$$
\gamma(G)=\min _{S \subseteq V(G)}\left\{|S|: \quad V(G) \subseteq \bigcup_{v \in S} N(v)\right\}
$$

Throughout let G be a Hamiltonian cubic graph, and let $n=|V(G)|$.
Some attention has been given to the relationship between the domination number of a graph G and its minimum degree $\delta(G)$. Blank [1] and later, independently, McCuaig and Shephard [4] showed that, apart from seven exceptional graphs, if $\delta(G) \geq 2$ then $\gamma(G) \leq \frac{2}{5}|V(G)|$. Then, in [5], Reed showed that if $\delta(G) \geq 3$, then $\gamma(G) \leq \frac{3}{8}|V(G)|$. Kawarabayashi, Plummer and Saito [3] have recently shown (as a special case of a more general result) that if G is a 2 -edge-connected cubic graph of girth $3 k$ then

$$
\gamma(G) \leq\left(\frac{3 k+2}{9 k+3}\right)|V(G)|
$$

[^0]This improves upon Reed's result when $k \geq 3$.
In [5] Reed also conjectured that if G is a connected cubic graph then $\gamma(G) \leq\left\lceil\frac{n}{3}\right\rceil$. In the very special case when G is Hamiltonian as well as cubic, we can select every third vertex of a Hamiltonian cycle, so Reed's conjecture is clearly true in this case. However, Plummer suggested to the authors that, in this very special case, the slightly stronger inequality $\gamma(G) \leq\left\lfloor\frac{n}{3}\right\rfloor$ was true. There is no difference between these conjectures if $n \equiv 0(\bmod 3)$. We show that Plummer's conjecture is true if $n \equiv 1(\bmod 3)$, but is false if $n \equiv 2(\bmod 3)$.

Let \mathscr{C} be the set of all Hamiltonian cubic graphs. Let

$$
\bar{\gamma}(n)=\max \{\gamma(G) \mid G \in \mathscr{C} \quad \text { and } \quad|V(G)|=n\}
$$

The precise result we prove is:
Theorem 1. For $n \geq 4$, n even, $\bar{\gamma}(n)=\left\lfloor\frac{n+1}{3}\right\rfloor$.
If $\underline{\gamma}(n)=\min \{\gamma(G) \mid G \in \mathscr{C} \quad$ and $\quad|V(G)|=n\}$, we also prove:
Theorem 2. For $n \geq 4$, n even, $\quad \underline{\gamma}(n)=\left\lfloor\frac{n+2}{4}\right\rfloor$.
We just noted that $\gamma(n) \leq\left\lceil\frac{n}{3}\right\rceil$ for all $n \geq 4$, and in [5] Reed showed that $\gamma(n)=\frac{n}{3}=\left\lfloor\frac{n+1}{3}\right\rfloor$ if $n \equiv 0(\bmod 3)$. Therefore Theorem 1 follows from the following propositions.

Proposition 3. If $n=3 k+2$, then $\bar{\gamma}(n) \geq\left\lfloor\frac{n+1}{3}\right\rfloor=k+1$.
Proposition 4. If $n=3 k+1$, then $\bar{\gamma}(n) \geq\left\lfloor\frac{n+1}{3}\right\rfloor=k$.
Proposition 5. If $n=3 k+1$, then $\bar{\gamma}(n) \leq k$.

2 Proof of Proposition 3

For $k \geq 1$ and $1 \leq i \leq k$, let S_{i} be the graph depicted in Figure 1 with vertex set $\left\{a_{i-1}, b_{i}, c_{i}, a_{i}, a_{i-1}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}, a_{i}^{\prime}\right\}$ and edge set

Figure 1
$\left\{a_{i-1} b_{i}, b_{i} c_{i}, c_{i} a_{i}, a_{i-1}^{\prime} b_{i}^{\prime}, b_{i}^{\prime} c_{i}^{\prime}, c_{i}^{\prime} a_{i}^{\prime}, a_{i-1} a_{i-1}^{\prime}, a_{i} a_{i}^{\prime}, b_{i} c_{i}^{\prime}, b_{i}^{\prime} c_{i}\right\}$. Let $H(6 k+$ 2) be the graph $S_{1} \cup \ldots \cup S_{k}$, let $H_{1}(6 k+2)$ be $H(6 k+2) \cup\left\{a_{0} a_{k}, a_{0}^{\prime} a_{k}^{\prime}\right\}$ and let $H_{2}(6 k+2)$ be $H(6 k+2) \cup\left\{a_{0} a_{k}^{\prime}\right.$, $\left.a_{0} a_{k}^{\prime}\right\}$.

Clearly, $H_{1}(6 k+2)$ and $H_{2}(6 k+2)$ are cubic Hamiltonian graphs. We shall show that $\gamma\left(H_{1}(6 k+2)\right)=\gamma\left(H_{2}(6 k+2)\right)=2 k+1 \geq\left\lceil\frac{6 k+2}{3}\right\rceil$. Then Proposition 3 follows.

We may easily check that $\gamma\left(H_{1}(8)\right)=\gamma\left(H_{2}(8)\right)=3$. Suppose Proposition 3 is not true. Then there is a smallest integer k such that, for some $H \in\left\{H_{1}(6 k+2), H_{2}(6 k+2)\right\}, \gamma(H) \leq 2 k$. Since $\gamma\left(H_{1}(8)\right)=\gamma\left(H_{2}(8)\right)>2$, it follows that $k \geq 2$.

Let D be a dominating set of cardinality $2 k$ of H. For $0 \leq i \leq k$, let $A_{i}=D \cap\left\{a_{i}, a_{i}^{\prime}\right\}$ and, for $1 \leq i \leq k$, let $X_{i}=D \cap\left\{b_{i}, b_{i}^{\prime}, c_{i}, c_{i}^{\prime}\right\}$.

Lemma 6. For $0 \leq i \leq k-1$, if $\left|A_{i}\right|=2$ then $\left|A_{i+1}\right|=0$ (i.e. $A_{i+1}=\emptyset$), and, for $1 \leq i \leq k$, if $\left|A_{i}\right|=2$ then $\left|A_{i-1}\right|=0$.

Proof. Suppose $\left|A_{i}\right|=2$ and $0 \leq i \leq k-1$.
Case 1. $\quad\left|A_{i+1}\right|=2$.
Let \tilde{H} be obtained from H by deleting $b_{i+1}, b_{i+1}^{\prime}, c_{i+1}, c_{i+1}^{\prime}$, and identifying a_{i} with a_{i+1} and a_{i}^{\prime} with a_{i+1}^{\prime}. Then $\tilde{H} \in\left\{H_{1}(6(k-1)+2)\right.$, $\left.H_{2}(6(k-1)+2)\right\}$ and \tilde{H} has a dominating set \tilde{D} obtained from D by identifying a_{i} with a_{i+1} and a_{i}^{\prime} with a_{i+1}^{\prime} of cardinality at most $2(k-1)$. This contradicts the minimality of k.
Case 2. $\quad\left|A_{i+1}\right|=1$.
We may suppose that $A_{i+1}=\left\{a_{i+1}\right\}$. Then D must contain a vertex that dominates c_{i+1}^{\prime} (or possibly coincides with c_{i+1}^{\prime}) in S_{i+1}. Therefore, if \tilde{H} is constructed from H as in Case 1, then $\gamma(\tilde{H}) \leq 2(k-1)$, a contradiction. Therefore $\left|A_{i+1}\right| \neq 1$.

It follows that $\left|A_{i+1}\right|=0$.
The argument showing that, if $1 \leq i \leq k$ and $\left|A_{i}\right|=2$, then $A_{i-1}=\emptyset$ is similar.
Lemma 7. If $0 \leq i \leq k-1$ and $\left|A_{i}\right|=1$ then $\left|A_{i+1}\right| \neq 1$. Equivalently, if $1 \leq i \leq k$ and $\left|A_{i}\right|=1$ then $\left|A_{i-1}\right| \neq 1$.

Proof. For some $i, 0 \leq i \leq k-1$, suppose that $\left|A_{i}\right|=\left|A_{i+1}\right|=1$. Then one of $\left\{b_{i+1}, c_{i+1}^{\prime}, b_{i+1}^{\prime}, c_{i+1}\right\}$ lies in D. We construct a graph H^{*} by deleting $b_{i+1}, b_{i+1}^{\prime}, c_{i+1}, c_{i+1}^{\prime}$ and identifying the vertex of $D \cap A_{i}$ with the vertex of $D \cap A_{i+1}$, and the vertex of $A_{i} \backslash D$ with the vertex of $A_{i+1} \backslash D$. Then H^{*} is isomorphic to one of $H_{1}(6(k-1)+2)$ and $H_{2}(6(k-1)+2)$. Since $\gamma\left(H^{*}\right) \leq 2(k-1)$, we have a contradiction. Therefore $\left|A_{i+1}\right| \neq 1$.
Lemma 8. For $1 \leq i \leq k,\left|X_{i}\right| \leq 1$.
Proof. Suppose that, for some $i,\left|X_{i}\right| \geq 2$. Consider the graphs \tilde{H} and \tilde{H}^{\prime} obtained by deleting $b_{i}, b_{i}^{\prime}, c_{i}, c_{i}^{\prime}$ and identifying a_{i-1} with a_{i}, and a_{i-1}^{\prime} with a_{i}^{\prime}, or a_{i-1} with a_{i}^{\prime}, and a_{i-1}^{\prime} with a_{i} respectively. All vertices of \tilde{H} and \tilde{H}^{\prime} apart from the two new vertices are dominated by $D \backslash X_{i}$. Hence if $\left|X_{i}\right| \geq 3$ then $\left(D \backslash X_{i}\right) \cup\left\{a_{i}\right\}$ is a dominating set of cardinality at most $2(k-1)$. If $\left|X_{i}\right|=2$, then at least two of $a_{i-1}, a_{i-1}^{\prime}, a_{i}$ and a_{i}^{\prime} are dominated by $D \backslash X_{i}$. Thus in this case, the set $D \backslash X_{i}$ is dominating either in \tilde{H} or \tilde{H}^{\prime}, and its cardinality is at most $2(k-1)$. Since each of \tilde{H} and \tilde{H}^{\prime} is isomorphic to one of $H_{1}(6(k-2)+2)$ and $H_{2}(6(k-2)+2)$, we have a contradiction against the minimality of k. Therefore $\left|X_{i}\right| \leq 1$.

Lemma 9. For $1 \leq i \leq k-1, A_{i} \neq \emptyset$.
Proof. Suppose $A_{i}=\emptyset$ for some $i, 1 \leq i \leq k-1$. By Lemma $8,\left|X_{i}\right| \leq 1$, so b_{i+1} and b_{i+1}^{\prime} must be dominated by the same vertex. This is only possible if $X_{i+1} \subseteq\left\{c_{i+1}, c_{i+1}^{\prime}\right\}$. Therefore $X_{i} \cap\left\{b_{i+1}, b_{i+1}^{\prime}\right\}=\emptyset$. Therefore a_{i} and a_{i}^{\prime} must be dominated by c_{i} and c_{i}^{\prime} respectively, contradicting Lemma 8 .

Lemma 10. $k \leq 2$.
Proof. Suppose $k \geq 3$. By Lemma $9,\left|A_{1}\right| \geq 1$ and $\left|A_{2}\right| \geq 1$.
Case 1. Suppose $\left|A_{1}\right|=1$. Then, by Lemma $6,\left|A_{2}\right| \leq 1$, so $\left|A_{2}\right|=1$. But this contradicts Lemma 7.
Case 2. Suppose $\left|A_{1}\right|=2$. Then, by Lemma 6, $A_{2}=\emptyset$, contradicting Lemma 9.

Lemma 11. $k \neq 2$.

Proof. Suppose $k=2$. By Lemma $9,\left|A_{1}\right| \geq 1$.
Case 1. $\quad\left|A_{1}\right|=1$.
By Lemma $7,\left|A_{0}\right| \neq 1$ and $\left|A_{2}\right| \neq 1$. By Lemma $6,\left|A_{0}\right| \neq 2$ and $\left|A_{2}\right| \neq 2$. Therefore $A_{0}=A_{2}=\emptyset$. In order that $a_{0}, a_{0}^{\prime}, a_{2}, a_{2}^{\prime}$ be dominated, it is necessary that $b_{1}, b_{1}^{\prime}, c_{2}, c_{2}^{\prime} \in D$. But then $\gamma(H)=5>2 k$, contradicting the definition of k.

Case 2. $\quad\left|A_{1}\right|=2$.
By Lemma $6, A_{0}=A_{2}=\emptyset$, and we get a contradiction as in Case 1 .
We conclude that Proposition 3 is true.

3 Proof of Proposition 4

Since any cubic graph has even order, and since $n \equiv 1(\bmod 3)$, it follows that $n \equiv 4(\bmod 6)$. If $n=4$, then $\gamma\left(K_{4}\right)=1=\left\lfloor\frac{n+1}{3}\right\rfloor$. Now suppose that $n>4$. Then $n \geq 10$. Let $n=6 k+4$, where $k \geq 1$. Take the graph $H_{1}(6 k+2)$ constructed in Section 2 and insert two further vertices v_{1} and v_{1}^{\prime} in the edges $a_{0} b_{1}$ and $a_{0}^{\prime} b_{1}^{\prime}$ respectively, and add an edge $v_{1} v_{1}^{\prime}$. We obtain a cubic Hamiltonian graph G with $6 k+4$ vertices. Suppose that D is a dominating set of G. If $\left\{v_{1}, v_{2}\right\} \notin D$ then D dominates $H_{1}(6 k+2)$, so $|D| \geq 2 k+1$. Similarly if $v_{1} \in D, v_{2} \notin D$ then $\left(D \backslash\left\{v_{1}\right\}\right) \cup\left\{a_{0}\right\}$ dominates $H_{1}(6 k+2)$, and if $v_{1}, v_{2} \in D$ then $\left(D \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\left\{a_{0}, a_{0}^{\prime}\right\}$ dominates $H_{1}(6 k+2)$. Thus $|D| \geq 2 k+1$.

Therefore, for all $n \geq 4$, if $n \equiv 1(\bmod 3)$ then $\bar{\gamma}(n) \geq\left\lfloor\frac{n+1}{3}\right\rfloor$.

4 Proof of Proposition 5

We need to show that if $n=3 k+1$ and G is a cubic Hamiltinian graph of order n, then $\gamma(G) \leq k$. Suppose to the contrary that $\gamma(G) \geq k+1$. Fix a Hamiltonian cycle H of G.

An arc of H is a path P contained by H; the number of edges in the arc P is its length; we shall denote the length by $|P|$. If an arc P has x edges and $x \equiv i(\bmod 3)$, where $0 \leq i \leq 2$, then we say that P is an i-arc. An edge of G which is not an edge of H is a chord.

If A, B, C, D are four vertices on H and $A B$ and $C D$ are chords and A, C, B, D occur in that order going round H, then the chords $A B$ and $C D$ are said to cross. If $A C, C B, B D, D A$ are $a-, c$-, b-, d-arcs respectively, then $A C B D$ is an $(a c b d)$-partition of H. Clearly, $a+b+c+d \equiv 1(\bmod 3)$ and an
($a c b d$)-partition is also a $(\pi a, \pi c, \pi b, \pi d)$-partition for any cyclic permutation π of $a c b d$.

We first note that no chord of G separates H into two 2-arcs. For if $A B$ were such a chord and P were one of the 2 -arcs, then $P \cup A B$ has $3 x$ edges for some integer x, and has a dominating set of x vertices including A. The other arc is dominated by A and $k-x$ vertices, so $\gamma(G)=k$, a contradiction.

Thus each chord separates H into a 0 -arc and a 1 -arc.
It follows that no two crossing chords $A B$ and $C D$ give an ($a c b d$)-partition $\left(D \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\left\{a_{0}, a_{0}^{\prime}\right\}$ with two adjacent 1 's, or an adjacent 0 and 2 , counting d as being adjacent to a. Therefore the only possible partitions are a (0001)partition, a (0121)-partition and a (1222)-partition.

In fact a (1222)-partition cannot occur. Before showing this, we need the following Lemma.

Lemma 12. Given a graph G, suppose that an edge $X Y$ is subdivided by three vertices U, V, W so that X, U, V, W, Y occur in that order, producing a graph G^{*}. Then $\gamma\left(G^{*}\right) \leq \gamma(G)+1$.

Proof. Let D be a dominating set of cardinality $\gamma(G)$ of G. If $X, Y \notin D$ or $\{X, Y\} \subseteq D$, then $D \cup\{V\}$ dominates G^{*}. If $|D \cap\{X, Y\}|=1$ then we may suppose that $X \in D$. In that case $D \cup\{W\}$ dominates G^{*}. Thus $\gamma\left(G^{*}\right) \leq \gamma(G)+1$.

Suppose that $A B$ and $C D$ are crossing chords giving a (1222)-partition with the $\operatorname{arcs} D A, A C, C B, B D$ being 1-, 2-, 2-, 2-arcs respectively. If these arcs have length 1 or 2 then G has 7 vertices and is dominated by 2 vertices, B and C. If $3 k+1>7$ then repeated application of Lemma 12 shows that $\gamma(G) \leq k$, a contradiction. This establishes:

Claim 1. All partitions are (0001)-partitions or (0121)-partitions.
Claim 1 has two consequences.
Claim 2. Let $A B$ be a chord with a 0 -arc and let C be a vertex on the 0 -arc of $A B$ such that $|A C| \equiv 1(\bmod 3)$. If the chord $C D$ crosses $A B$ then A is on the 1 -arc of $C D$.

Proof. Since $|A C| \equiv 1(\bmod 3)$ and $A C \cup C B$ is a $0-\operatorname{arc},|C B| \equiv 2(\bmod 3)$, so by Claim $1,|A D| \equiv 0(\bmod 3)$.

Claim 3. Let $A B$ be a chord with a 0 -arc and let C be a vertex on the 1 -arc of $A B$ such that $|A C| \equiv 2(\bmod 3)$. Then the chord $C D$ does not cross $A B$.

Proof. Since $|A C| \equiv 2(\bmod 3),|C B| \equiv 2(\bmod 3)$ also. By Claim 1, $C D$ does not cross $A B$.
¿From Claim 1 we also deduce the following lemma.
Lemma 13. Let $A B$ be a chord with a 0 -arc and let $A, A_{1}, A_{2}, \ldots, A_{s}, B$ be the vertices of its 0 -arc. If the chords $A_{1} C_{1}$ and $A_{s} C_{s}$ cross $A B$, then they do not cross each other.

Proof. Suppose $A_{1} C_{1}$ and $A_{s} C_{s}$ cross each other and $A B$. Then the vertices $A, A_{1}, A_{s}, B, C_{1}, C_{s}$ are on H in this order. Since $\left|A A_{1}\right| \equiv 1(\bmod 3)$ and $\left|A_{1} B\right| \equiv 2(\bmod 3)$, by Claim 1 applied to $A B$ and $A_{1} C_{1},\left|B C_{1}\right| \equiv 1(\bmod 3)$. Similarly $\left|A C_{s}\right| \equiv 1(\bmod 3)$. Thus $A_{1} C_{1}$ and $A_{s} C_{s}$ yield a (1222)-partition of H, contradicting Claim 1 .

Now choose a shortest 1 -arc $A B$ in H. Then $|A B| \geq 4$. There are two distinct vertices, C, D, on the arc $A B$ such that $C D$ is a 0 -arc. To see this, let C be a vertex on $A B$ such that the path $A C$ has two edges. Then by Claim 3, the chord on C, say $C D$, does not cross $A B$. By the definition of $A B$, the chord $C D$ is a 0 -arc.

Let $K L$ be a shortest 0 -arc with both vertices on the $\operatorname{arc} A B$. Let the vertices of $K L$ be, in order, $K, K_{1}, K_{2}, \ldots, K_{s}, L$. Let $K_{1} D_{1}$ and $K_{s} D_{s}$ be the chords starting at K_{1} and K_{s} respectively. By the minimality of $K L$ and $A B$, each of $K_{1} D_{1}$ and $K_{s} D_{s}$ cross $K L$. By Claim 2, the arc of $K_{1} D_{1}$ containing K is a 1 -arc, and the arc of $K_{s} D_{s}$ containing L is a 1 -arc. By Lemma 13, $K_{1} D_{1}$ and $K_{s} D_{s}$ do not cross. By the minimality of $A B$, each of $K_{1} D_{1}$ and $K_{s} D_{s}$ crosses $A B$. Thus $A, K, K_{1}, K_{s}, L, B, D_{s}, D_{1}$ occur in this order going round H. This is illustrated in Figure 2.

Figure 2

Since $|K L| \equiv 0(\bmod 3)$ and $|A B| \equiv 1(\bmod 3)$, it follows that $|A K|+$ $|B L| \equiv 1(\bmod 3)$.

Because of the symmetry, we need only consider two cases.
Case $1 \quad|A K| \equiv|L B| \equiv 2(\bmod 3)$.
¿From simple arithmetic, it follows that
$\left|K K_{1}\right| \equiv\left|K_{1} K_{s}\right| \equiv\left|K_{s} L\right| \equiv\left|B D_{s}\right| \equiv\left|D_{s} D_{1}\right| \equiv\left|D_{1} A\right| \equiv 1(\bmod 3)$.
In the case when all these sizes are 1 and 2 , there are 10 vertices, and G is dominated by K, B and D_{s}. If $3 k+1>10$ then repeated applications of Lemma 12 shows that G is dominated by k vertices in this case, a contradiction.

Case 2. $\quad|A K| \equiv 0(\bmod 3)$ and $|L B| \equiv 1(\bmod 3)$.
By simple arithmetic we have
$\left|K K_{1}\right| \equiv\left|K_{1} K_{s}\right| \equiv\left|K_{s} L\right| \equiv\left|D_{1} D_{s}\right| \equiv|B L| \equiv 1(\bmod 3)$,
$|L K| \equiv\left|A D_{1}\right| \equiv 0(\bmod 3)$ and $\left|B D_{s}\right| \equiv 2(\bmod 3)$. But then D_{s}, A, K_{s}, B mark a (1222)-partition, contradicting Claim 1.

In every case, our hypothesis that $\gamma(G) \geq k+1$ leads to a contradiction, so $\gamma(G) \leq k$, as asserted.

5 Proof of Theorem 2

We construct a Hamiltonian cubic graph G with $\gamma(G)=\left\lfloor\frac{n+2}{4}\right\rfloor$ by identifying the pendent edges of the graphs in Figure 3.

Figure 3
If $4 \mid n$ we take $\frac{n}{4}$ copies of A identifying one pendent edge of one copy with a pendent edge of another, and the other pendent edge of the first copy with a pendent edge of a third copy (if $n \geq 12$), and so on, so as to form a cycle of such graphs. If $n \equiv 2(\bmod 4)$ we take a copy of B and $\frac{1}{4}(n-6)$ copies of A, indentifying edges and forming a cycle of graphs, similarly. We find a
dominating set of cardinality $\left\lfloor\frac{n+2}{4}\right\rfloor$ by taking one of the two central vertices from each copy of A, and by taking V and W from B.

Clearly if G is a cubic Hamiltonian graph, for each $v \in V(G),|N(v)|=4$, so $\gamma(G) \leq\left\lfloor\frac{n+2}{4}\right\rfloor$.

Thus $\underline{\gamma}(n)=\left\lfloor\frac{n+2}{4}\right\rfloor$ when n is even, as asserted.

Acknowledgement. We thank Mike Plummer for suggesting this problem to us. We also thank the Vernon Wilson endowment at Eastern Kentucky University which made this cooperation possible.

References

1. M. Blank, An estimate of the external stability number of a graph without suspended vertices, Prikl. Math. i Programmirovanie Vyp., 10 (1973), 3-11.
2. E.J. Cockayne and S.T. Hedetnemi, Towards a theory of domination in graphs, Networks, 7 (1977), 247-261.
3. K. Kawarabayashi, M.D. Plummer and A. Saito, Domination in a graph with a 2 -factor, J. Graph Theory, to appear.
4. B. McCuaig and B. Shephard, Domination in graphs of minimum degree two, Journal of Graph Theory, 13 (1989), 749-762.
5. B. Reed, Paths, stars and the number three, Combinatorics, Probability and Computing, 5 (1996), 277-295.

M. Cropper and D. Greenwell	A. Kostochka
Department of Mathematics	Department of Mathematics
Eastern Kentucky University	University of Illinois
Richmond	Urbana/Champaigne
KY 40475	IL
USA	USA
mathew.cropper@eku.edu	kostochk@math.uiuc.edu
don.greenwell@eku.edu	
	Also
A.J.W. Hilton	Institute of Mathematics
School of Mathematical Sciences	Novosibirsk 630090
Queen Mary	Russia
University of London	
Mile End Road	
London	
E1 4NS	
UK	
Also	
Department of Mathematics	
The University of Reading	
Whiteknights	
Reading RG6 6AX	
UK	
a.j.w.hilton@reading.ac.uk	

[^0]: ${ }^{1}$ Research of this author was partially supported by the Vernon Wilson endowment at Eastern Kentucky University.
 ${ }^{2}$ Research of this author was partially supported by NSF grant DMS-0400498 and grant 03-01-00796 of the Russian Foundation for Basic Research.

