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BÉLA BOLLOBÁS,1† ALEXANDR KOSTOCHKA2‡

and KITTIKORN NAKPRASIT3

1 University of Memphis, Memphis, TN 38152, USA

and

Trinity College, Cambridge CB2 1TQ, UK

(e-mail: bollobas@msci.memphis.edu)

2 University of Illinois, Urbana, IL 61801, USA

and

Institute of Mathematics, Novosibirsk 630090, Russia

(e-mail: kostochk@math.uiuc.edu)

3 University of Illinois, Urbana, IL 61801, USA

(e-mail: nakprasi@math.uiuc.edu)

Received 16 January 2004; revised 1 September 2004

For Béla Bollobás on his 60th birthday

In 1978, Bollobás and Eldridge [5] made the following two conjectures.

(C1) There exists an absolute constant c > 0 such that, if k is a positive integer and G1 and

G2 are graphs of order n such that ∆(G1),∆(G2) � n − k and e(G1), e(G2) � ckn, then

the graphs G1 and G2 pack.

(C2) For all 0 < α < 1/2 and 0 < c <
√

1/8, there exists an n0 = n0(α, c) such that, if G1

and G2 are graphs of order n > n0 satisfying e(G1) � αn and e(G2) � c
√

n3/α, then

the graphs G1 and G2 pack.

Conjecture (C2) was proved by Brandt [6]. In the present paper we disprove (C1) and prove

an analogue of (C2) for 1/2 � α < 1. We also give sufficient conditions for simultaneous

packings of about
√
n/4 sparse graphs.

1. Introduction

One of the basic notions of graph theory is that of packing. Two graphs, G1 and G2, of

the same order are said to pack if G1 is a subgraph of the complement G2 of G2, or,
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equivalently, G2 is a subgraph of the complement G1 of G2. The study of packings of

graphs was started in the 1970s by Sauer and Spencer [13] and Bollobás and Eldridge [5].

In particular, Sauer and Spencer [13] proved the following result.

Theorem 1.1. Suppose that G1 and G2 are graphs of order n such that 2∆(G1)∆(G2) < n.

Then G1 and G2 pack.

The main conjecture in the area is the Bollobás–Eldridge–Catlin (BEC) conjecture

(see [4, 3, 5, 10]) stating that if G1 and G2 are graphs with n vertices, maximum degrees

∆1 and ∆2, respectively, and (∆1 + 1)(∆2 + 1) � n + 1, then G1 and G2 pack. If true, this

conjecture is a considerable extension of the Hajnal–Szemerédi theorem [12] on equitable

colouring, which is itself an extension of the Corrádi–Hajnal theorem on equitable 3-

colourings of graphs. Indeed, the Hajnal–Szemerédi theorem is the special case of the

BEC conjecture when G2 is a disjoint union of cliques of the same size [12]. The conjecture

has also been proved when either ∆1 � 2 [1, 2], or ∆1 = 3 and n is huge [11]. The progress

on the topic has been surveyed by Yap [16] and Wozniak [15].

The following two theorems are the main results of Bollobás and Eldridge [5].

Theorem 1.2. Suppose that G1 and G2 are graphs with n vertices, ∆(G1), ∆(G2) < n −
1, e(G1) + e(G2) � 2n − 3 and {G1, G2} is not one of the following pairs: {2K2, K1 ∪ K3},
{K2 ∪ K3, K2 ∪ K3}, {3K2, K2 ∪ K4}, {K3 ∪ K3, 2K3}, {2K2 ∪ K3, K3 ∪ K4}, {K4 ∪ K4, K2 ∪
2K3}, {K5 ∪ K4, 3K3}. Then G1 and G2 pack.

Theorem 1.3. For 0 < α < 1/2, there is an integer n0 = n0(α) such that, if G1 and G2 are

graphs of order n � n0 with e(G1) � αn and e(G2) � 1 − 2α
5

n3/2, then G1 and G2 pack.

Let n be even, x be odd, G1(n) be a perfect matching on n vertices and G2(n, x) be

the complete bipartite graph Kx,n−x. Since x is odd, the graphs G1(n) and G2(n, x) do not

pack. Since e(G1(n)) = n/2 and e(G2(n, x)) = x(n − x) < xn, these examples show that the

condition α < 1/2 in Theorem 1.3 cannot be relaxed without imposing other restrictions

on G1 and/or G2. However, Bollobás and Eldridge [5] could not find an example showing

that the factor (1 − 2α)/5 is close to optimal, and they were led to the following conjecture.

Conjecture 1.4. For all 0 < α < 1/2 and 0 < c <
√

1/8, there exists an n0 = n0(α, c) such

that, if G1 and G2 are graphs of order n > n0 satisfying e(G1) � αn and e(G2) � c
√
n3/α,

then the graphs G1 and G2 pack.

This conjecture was proved by Brandt [6] in 1995. As the main result of this paper,

we prove the following extension of this theorem of Brandt to the case when G1 has αn

edges, with 1/2 � α < 1.

Theorem 1.5. Let 1/2 � α < 1 and c > 0 satisfy

8αc2 < 1, (1.1)
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and put

ε =
1

4
min{1 − α, 1 − 8αc2}. (1.2)

Let G1 and G2 be graphs of order

n > (10/ε)6 (1.3)

such that e(G1) � αn, e(G2) � cn3/2, and ∆(G2) < n − 1 −
√
n√

2α(1 − α)
. Then G1 and G2 pack.

Observe that the only additional restriction in Theorem 1.5 is that each vertex in G2

has at least
√
n√

2α(1 − α)
non-neighbours. The example of G1(n) and G2(n, x) where x is the

largest odd integer not exceeding c
√
n shows that the factor

√
n is unavoidable there.

The examples of a perfect matching and G2(n, x) also explain why Bollobás and

Eldridge [5, p. 118] made the following conjecture.

Conjecture 1.6. There exists an absolute constant c > 0 such that, if k � 1 and G1 and G2

are graphs of order n satisfying the conditions ∆(G1),∆(G2) � n − k and e(G1), e(G2) � ckn,

then the graphs G1 and G2 pack.

We shall disprove Conjecture 1.6; more precisely, we shall prove the following result.

Theorem 1.7. Let k be a positive integer and q be a prime power. Then for every n �
q qk+1 − 1

q−1
, there are graphs G1(n, k) and G2(n, q, k) of order n that do not pack and have the

following properties:

(a) G1(n, k) is a forest with n − k edges and maximum degree at most n/k;

(b) G2(n, q, k) is a qk − 1
q − 1

-degenerate graph with maximum degree at most 2n/q.

Theorem 1.7 not only disproves Conjecture 1.6, but also shows that Theorem 1.5 can

not be extended even to α = 1 without essential restrictions on the maximal degree of G2.

The rest of the paper is organized as follows. In the next section we shall discuss

properties of special enumerations of vertices in graphs; our proof of Theorem 1.5, which

is to be given in Section 3, will be based on these enumerations. In Section 4 we shall

make use of the proof of Theorem 1.5 to give conditions providing simultaneous packing

of about 1
4

√
n/α3 graphs of order n with at most αn edges each. More precisely, we shall

prove the following result.

Theorem 1.8. Let 1
2

� α < 1,

n > (50/(1 − α))6, (1.4)

and m = � 1
4

√
n/α3�. Let H1, H2, . . . , Hm be graphs with n vertices and at most αn edges each.

Then H1, H2, . . . , Hm pack.

In the final section, Section 5, we discuss counterexamples to Conjecture 1.6 and prove

Theorem 1.7.
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Note that the proofs of upper bounds are algorithmic, and so enable one to construct

polynomial-time algorithms for packing graphs satisfying the conditions of Theorems 1.5

or 1.8.

2. Greedy and degenerate enumerations

Before embarking on the proof of Theorem 1.5, we introduce some notation and prove

some auxiliary statements.

Let v1, v2, . . . , vn be an enumeration of the vertices of a graph G. For 1 � i � n, let

G(i) be the subgraph of G induced by the vertices vi, vi+1, . . . , vn; thus G(1) = G and G(n)

consists of the single vertex vn. We call v1, v2, . . . , vn a greedy enumeration of the vertices

or, somewhat loosely, a greedy order on G, if dG(i)(vi) = ∆(G(i)) for every i, 1 � i � n,

i.e., the vertex vi has maximal degree in G(i). Similarly, the enumeration and order are

degenerate if dG(i)(vi) = δ(G(i)) for every i, 1 � i � n, i.e., the vertex vi has minimal degree

in G(i). Note that if v1, v2, . . . , vn is a greedy order on G then vi, vi+1, . . . , vn is a greedy

order on G(i), and an analogous assertion holds for the degenerate order. Another simple

observation is that v1, v2, . . . , vn is a greedy order on G if and only if it is a degenerate

order on the complement G. Needless to say, a graph may have numerous greedy orders

and degenerate orders.

For a graph G, set

ϕ(G) =
∑

v∈V (G)

1

1 + dG(v)
.

The result below is a slight extension of an inequality due to Caro [7] and Wei [14], first

published in [8], implying a weak form of Turán’s theorem. We formulate it in the usual

way, for the complement of the graph, i.e., for finding a large independent set rather than

a complete subgraph.

Theorem 2.1. Let v1, v2, . . . , vn be a greedy enumeration of the vertices of a graph G, and set

� = �ϕ(G)�. Then the last � vertices form an independent set. Equivalently, if dG(i)(vi) � 1

then G(i) has an independent set of at least ϕ(G) vertices.

Proof. We apply induction on the number of edges of G. If there are no edges then

ϕ(G) = n and the entire vertex set is independent, as required. Suppose that G has m > 0

edges and the result holds for graphs with fewer edges. Write d for the maximal degree

of G, i.e., for the degree of v1, and let u1, u2, . . . , ud be the neighbours of v1. Then

ϕ(G(2)) = ϕ(G(1)) − 1

d + 1
+

d∑
i=1

(
1

d(ui)
− 1

d(ui) + 1

)

= ϕ(G(1)) − 1

d + 1
+

d∑
i=1

1

d(ui)(d(ui) + 1)

� ϕ(G(1)) − 1

d + 1
+ d

1

d(d + 1)
= ϕ(G(1)) = ϕ(G).
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By the induction hypothesis, the last �ϕ(G(2))� � �ϕ(G)� = � vertices of v2, v3, . . . , vn form

an independent set of G(2), and so of G, completing the proof.

We shall also need the following simple but somewhat technical lemma concerning

greedy orders.

Lemma 2.2. Let α, γ and ε be positive numbers satisfying γ � α � 1 − 2ε and k0 � (1 −
γ − ε/2)n − 1 a nonnegative integer. Let v1, v2, . . . , vn be an enumeration of the vertices of a

graph G with m edges with the following properties:

(i) e(Gk0+1) � m(1 − 2k0(α+ ε)
n(α− γ+ ε/2)

);

(ii) the enumeration vk0+1, vk0+2, . . . , vn is greedy.

Then there is an index i, k0 � i � (1 − γ − ε/2)n, such that

∆(G(i + 1)) = dG(i+1)(vi+1) <
2m(n − i)(α + ε)

n2(α − γ + ε/2)
. (2.1)

Proof. Suppose that the assertion is false. Then for k = �(1 − γ − ε/2)n� we have

e(G(k + 1)) = e(G(k0 + 1)) −
k∑

i=k0+1

∆(G(i))

� m

(
1 − 2k0(α + ε)

n(α − γ + ε/2)

)
−

k∑
i=k0+1

2m(n + 1 − i)(α + ε)

n2(α − γ + ε/2)

� m −
k∑

i=1

2m(n + 1 − i)(α + ε)

n2(α − γ + ε/2)

= m − 2m(α + ε)

n2(α − γ + ε/2)

((
n + 1

2

)
−

(
n + 1 − k

2

))

< m − m(α + ε)

n2(α − γ + ε/2)
(n2 − (n − k)2)

� m

(
1 − (α + ε)(1 − (γ + ε/2)2)

(α − γ + ε/2)

)
= ρm, (2.2)

say. To arrive at a contradiction and so complete the proof, we shall show that ρ < 0. To

this end, set δ = γ + ε/2, and note that

ρ(α − γ + ε/2) = δ(δ(α + ε) − 1). (2.3)

Since, by assumption, δ > 0 and

δ(α + ε) � (α + ε/2)(α + ε) < 1,

identity (2.3) implies that ρ is indeed negative, completing our proof.

We shall also use the following fact observed by several authors.

Claim 2.3. Suppose that we are packing the vertices of a graph G1 in the reverse degenerate

order into (the complement of ) a graph G2 of order N and maximal degree D2. Suppose that
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we have already packed j vertices and a vertex w ∈ V (G1) has x neighbours among these j

vertices. If

j + xD2 < N, (2.4)

then we can also find a legal placement for w.

Proof. We cannot place w at the j vertices of G2 that we have already used and into

G2-neighbours of the images of the x neighbours of w. However, w can be mapped into

every other vertex of G2.

3. Proof of Theorem 1.5

Let G1 and G2 be graphs of order n > (10/ε)6 such that e(G1) � αn, e(G2) � cn3/2, and

∆(G2) < n − 1 −
√
n√

2α(1 − α)
. Since α � 1/2, condition (1.1) yields that c < 1/2. Since the

greater is c, the stronger is the assertion, we may assume that

1

3
< c <

1

2
. (3.1)

Observe that, by (1.2),

8(α + ε)c2 < 1 − 2ε and α + 2ε < 1. (3.2)

Let T1, . . . , Tt be the components of G1 that are trees (including isolated vertices)

with v(T1) � · · · � v(Tt), where we write v(H) = |V (H)| for the order of a graph H . Let

G∗
1 = G1 − T1 − · · · − Tt. In other words, let G∗

1 be the union of the components of G1

containing cycles. Suppose that G∗
1 has exactly γn vertices. Then it has at least γn edges

and hence γ � α. Since e(G1) � αn,

t � (1 − α)n. (3.3)

It is trivial to check that the following assertion holds.

Claim 3.1. For every 1 � j < t, we have

(a)
∑j

i=1 v(Ti) � 1 − γ
1 − α

j, and

(b) v(Tj) � n(1 − γ)
t− j + 1

.

Let w1, w2, . . . , wn be a degenerate order of the vertices of G1 with the additional

condition that first we list vertices in T1, then those in T2, and so on, and we enumerate the

vertices in G∗
1 only after having enumerated all vertices in T1, . . . , Tt. Let u1, u2, . . . , un be a

greedy order of the vertices of G2. Let k′
0 be the maximal k such that degG2(k)(uk) >

(1 − α)2

20
n.

Since e(G2) �
∑k′

0

i=1 degG2(k)(uk), we have

k′
0 <

20c

(1 − α)2
√
n � 10

(1 − α)2
(0.1ε)3n � 0.01(1 − α)n. (3.4)

Claim 3.2. For j = 1, . . . , k′
0, there is a set Uj ⊂ V (G2) such that

(i) Uj ⊃ {u1, . . . , uj},
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(ii) |Uj | =
∑j

i=1 v(Ti),

(iii) there exists a packing of G1[V (T1) ∪ · · · ∪ V (Tj)] and G2[Uj].

Proof. Suppose that the claim is proved for j ′ � j − 1 � k′
0 − 1. Assume that the vertices

of Tj are wz−y+1, wz−y+2, . . . , wz . Let m be the smallest index such that um /∈ Uj−1. By the

induction assumption, m � j. Identify um with wz and denote v0 = um. To prove the claim,

it is enough to find for every i = 1, . . . , y − 1 a vertex vi ∈ V (G2) − Uj−1 − {v0, . . . , vi−1}
not adjacent to the vertex vi′ , i

′ < i that was identified with a neighbour wz−i′ of wi. Then

we can identify vi with wz−i and continue.

Case 1: j � 2c
√
n. Then by Claim 3.1(a), |Uj−1 ∪ {v0, . . . , vi−1}| � j

1 − α
. Since, under con-

ditions of the theorem, vi′ has at least
√
n√

2α(1 − α)
non-neighbours, it has a non-neighbour in

V (G2) − Uj−1 − {v0, . . . , vi−1}.

Case 2: j > 2c
√
n. Then degG2(j)(vi′) � degG2(j)(uj) � cn1.5

j
< n/2 and by Claim 3.1(a),

|Uj−1 ∪ {v0, . . . , vi−1}| < k′
0

1 − γ
1 − α

. By (3.4), the last expression is at most 0.01n. Again, we can

choose vi as needed.

Let U = Uk′
0

be a set provided by the claim above. We reorder the vertices u′
1, u

′
2, . . . , u

′
n

of G2 as follows: first we enumerate the vertices of U in any order, and then enumerate

the vertices of G2 − U in a greedy order. We will denote k0 = |U|.

Claim 3.3. ϕ(G2 − U) =
∑

v∈V (G2−U)
1

1 + dG2−U (v)
� n

1 + 2c
√
n
.

Proof. Let H = G2 − U. Since ϕ is convex,

ϕ(H) � v(H)

1 + 2e(H)
v(H)

.

Recall that v(H) = n − k0 � n − k′
0(1 − γ)

1 − α
and e(H) � cn

√
n − k′

0(1 − α)2

20(1 − γ)
n. Thus, to prove the

claim, we will verify that

n − k′
0

1 − α

1 +
2(cn

√
n− k′

0
(1 − α)2

20 n)

n− k′
0

1 − α

� n

1 + 2c
√
n
. (3.5)

Multiplying both parts of (3.5) by the product of the denominators, opening the

parentheses in the left-hand side, and cancelling n in both parts, we get

2cn
√
n − k′

0

1 − α
− 2ck′

0

√
n

1 − α
� 2n2

n − k′
0

1 − α

(
c
√
n − k′

0(1 − α)2

20

)
.

Multiplying both parts of the last inequality by n − k′
0

1 − α
, cancelling 2cn2

√
n in both parts

and dividing the rest by
−k′

0

1 − α
we obtain that (3.5) is equivalent to

2cn
√
n +

(
n − k′

0

1 − α

)
(1 + 2c

√
n) � 0.1n2(1 − α)3,
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which is weaker than

1 + 4c
√
n � 0.1n(1 − α)3. (3.6)

By (3.1), (1.2), and (1.3), inequality (3.6) holds.

The main difficulties of packing below are: (1) packing vertices of G2 of very high

degree; (2) packing cyclic components of G1, (3) packing big components of G1 that are

trees, and (4) finishing the packing when there is not much freedom.

Our strategy will be the following.

Step 1: Map V (T1 ∪ · · · ∪ Tk′
0
) onto U.

Step 2: Find some k1, k0 � k1 � (1 − γ − ε/2)n + 1
1 − α

so that the maximum degree of

G2(k1 + 1) is moderate.

Step 3: Map the vertices of G∗
1 into (the complement of) G2(k1 + 1).

Step 4: Map the vertices of Tt, Tt−1, . . . , T1+�3n(1−α)/4� into some of the remaining free

vertices of G2.

Step 5: Complete the packing by arranging the vertices of the remaining tree-components

of G1 in the rest of G2.

Step 1 will take care of difficulty (1), Steps 2 and 3 handle (2), and at Step 4 we

overcome (3).

We can complete Step 1 by Claim 3.2. Note that G2 with the enumeration u′
1, . . . , u

′
n

satisfies condition (ii) of Lemma 2.2 and k0 satisfies the restrictions in this lemma. Suppose

that condition (i) fails for G2 and k0, i.e., that

e(G2 − U) > e(G2)

(
1 − 2k0(α + ε)

n(α − γ + ε/2)

)
.

Then the number ẽ(U) of edges in G2 incident with U is less than

cn3/2 2k0(α + ε)

n(α − γ + ε/2)
< c

√
n

2k0

α − γ + ε/2
.

On the other hand, by the definition of k′
0, ẽ(U) > k′

0
(1 − α)2

20
n, and by Claims 3.1 and 3.2,

k′
0 � k0

1 − α
1 − γ

. Thus if condition (i) fails for G2 and k0, then

k0
1 − α

1 − γ

(1 − α)2

20
n < c

√
n

2k0(1 − γ)

α − γ + ε/2

and hence

√
n <

40c(1 − γ)

(1 − α)3(α − γ + ε/2)
<

20((1 − α) + (α − γ))

(1 − α)3(α − γ + ε/2)

<
20

(1 − α)2(α − γ + ε/2)
+

20

(1 − α)3

� 20

(1 − α)2ε/2
+

20

(1 − α)3
� 60

(1 − α)2ε
<

15

ε3
.

This contradicts (1.3).

Therefore, G2 with the enumeration u′
1, . . . , u

′
n satisfies the conditions of Lemma 2.2.

This lemma implies that there is an index k0 � k1 � (1 − γ − ε/2)n such that the maximal
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degree D = ∆(H) of the graph H = G2(k1 + 1) satisfies

D � 2c(n − k1)(α + ε)√
n(α − γ + ε/2)

. (3.7)

This completes Step 2. Note that the right-hand side of (3.7) is at most 4c(α+ ε)
ε

√
n and

hence (3.7) together with (3.2) yields

D � 4c(α + ε)

ε

√
n �

√
n

2cε
� 3

√
n

2ε
. (3.8)

Also, by Theorem 2.1 and Claim 3.3, for

� =

⌈
n

2c
√
n + 1

⌉
, (3.9)

the set L = {u′
n−�+1, u

′
n−�+2, . . . , u

′
n} of the last � vertices of G2 forms an independent set in

G2.

Now, we identify the last � vertices of G1 with vertices in L. Since L is an independent

set, this identification is ‘legal’ so far: no edge of G1 is identified with an edge of G2.

If wn−� is not in G∗
1, then Step 3 is done, otherwise we continue as follows. We place

the vertices wn−�, wn−�−1, . . . , w(1−γ)n+1 one by one into the rest of G2, the ‘middle’ of G2,

namely M = V (G2(k1 + 1)) − L. We show now that all these vertices can be placed into

M to give us a packing of G∗
1 into (the complement of) G2.

Suppose that we have placed the vertices wn−�, wn−�−1, . . . , wn−j+1 into M, and the next

vertex to be placed, wn−j , has x neighbours wh with h > n − j. Since w1, w2, . . . , wn is a

degenerate order of the vertices of G1, the subgraph G1(n − j) has minimal degree x.

Furthermore, as G∗
1 has γn vertices, we find that

jx + 2(γn − j) � 2e(G1) � 2αn,

and so

x � 2 + 2(α − γ)n/j. (3.10)

By Claim 2.3, we have a legal placement for wn−j provided that

n − k1 − j − xD > 0. (3.11)

Thus, to complete Step 3, it suffices to check that (3.11) holds.

Suppose that (3.11) is false. Then, by (3.10) and (3.7), we have

n − k1 − j � D

(
2 +

2(α − γ)n

j

)
< 2D +

2c(α + ε)(n − k1)2(α − γ)n√
n(α − γ + 0.5ε)j

. (3.12)

Add j to both parts of (3.12) and divide both parts by n − k1. Taking into account (3.8)

and the fact that k1 � n(1 − γ − ε/2), we get

1 <
2D + j

n − k1
+

4c(α + ε)(α − γ)n√
n(α − γ + 0.5ε)j

� 3
√
n/ε + j

n(γ + 0.5ε)
+

4c(α + ε)
√
n

j
. (3.13)

Consider the right-hand side of (3.13) as the function f(j). This is a convex function of

j (when other parameters are fixed). Since � < j � γn, by (3.9), it is enough to check that
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f(j) � 1 for j = n
2c

√
n+ 1

and j = γn. Taking (1.1) into account, we get

f

(
n

2c
√
n + 1

)
� 3

√
n/ε + 2

√
n

n(γ + 0.5ε)
+

4c(α + ε)
√
n(1 + 2c

√
n)

n

�
3
ε
+ 2

0.5ε
√
n

+
4c(α + ε)√

n
+ 8c2(α + ε).

By (3.2) and (1.3), the last expression is at most(
3

ε
+ 2

)
(0.1ε)2 +

(0.1ε)3

2c
+ 1 − 2ε <

3ε

100
+

ε2

50
+

2ε3

1000
+ 1 − 2ε < 1.

Now,

f(γn) =
3

ε
√
n(γ + 0.5ε)

+
γ

γ + 0.5ε
+

4c(α + ε)

γ
√
n

.

If γ � 0.1ε2 then, by (3.2) and (1.3), the last expression is at most

6

ε2
√
n

+
1

1 + 0.5ε
+

5

cε2
√
n

� 6ε

1000
+ 1 − 0.5ε

1 + 0.5ε
+

15ε

1000
< 1.

Suppose that γ < 0.1ε2. Since γn > �, we obtain by (3.9) and (3.2) that

f(γn) � 6

ε2
√
n

+
0.1ε2

0.1ε2 + 0.5ε
+

4c(α + ε)
√
n(1 + 2c

√
n)

n

� 6

ε2
√
n

+
ε

5
+

4c(α + ε)√
n

+ 8c2(α + ε)

� 6

ε2
√
n

+
ε

5
+

1

2c
√
n

+ (1 − 2ε) � 8ε

1000
+ 1 − 1.8ε < 1.

This finishes Step 3.

Let G′
2 denote the subgraph of G2 induced by the vertices not used as the images of

vertices in G∗
1, and in T1, . . . , Tk′

0
. Then by (3.4) and Claim 3.1,

n′
2 = |V (G′

2)| � (1 − γ)n − k0 � (1 − γ)

(
n − k′

0

1 − α

)

� (1 − γ)

(
n − 0.01(1 − α)n

1 − α

)
� 0.99(1 − α)n. (3.14)

By the definition of k′
0, the maximum degree D′ of G′

2 is at most (1 − α)2

20
n. Since the

subgraph G′
1 of G1 induced by V (Tt ∪ Tt−1 ∪ · · · ∪ T1+�3n(1−α)/4�) is 1-degenerate, we can

apply Claim 2.3 with x = 1. The claim implies that we can complete Step 4 provided

n′
2 > D′ + |V (G′

1)|. (3.15)

Applying (3.4), we have

n′
2 − |V (G′

1)| �
�3n(1−α)/4�∑

i=k′
0+1

v(Ti) � 3(1 − α)

4
n − k′

0 − 1 > 0.74(1 − α)n − 1 >
2(1 − α)

3
n.

Taking into account that D′ � (1−α)2

20
n, we get (3.15).
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Remarks. (1) Any vertex in a tree could be made the last vertex in a degenerate order.

In particular, we can make the last a vertex of maximum degree.

(2) Packing each tree, we can start from identifying a vertex of the highest degree in this

tree with an available vertex of the smallest degree in G2.

Finally, let G′′
2 denote the subgraph of G2 induced by the vertices not yet used as the

images of vertices in G1. Then, as in the previous paragraph,

n′′
2 = |V (G′′

2)| >
2(1 − α)

3
n

and ∆(G′′
2) � D′ � (1 − α)2

20
n. Let G′′

1 = Tk′
0+1 ∪ Tk′

0+2 ∪ · · · ∪ T�3n(1−α)/4�. By Claim 3.1(b), the

maximum degree D1 of G′′
1 is less than 4

1 − α
. Therefore,

D1 · D′ � 4

1 − α
· (1 − α)2

20
n =

(1 − α)

5
n <

n′′
2

2
.

Thus, by Theorem 1.1, G′′
1 and G′′

2 pack. This proves Theorem 1.5.

4. Packing many graphs

In this section, we use Theorem 1.5 to show that one can pack many graphs if each of

these graphs has at most αn edges. First, we look again into the proof of Theorem 1.5.

Lemma 4.1. Let α, c, n and G1 and G2 satisfy the conditions of Theorem 1.5. Let H = G1 ∪
G2 be the graph with V (H) = V (G1) = V (G2), E(H) = E(G1) ∪ E(G2) obtained by packing

G1 and G2 as described in the proof of Theorem 1.5. Then ∆(H) � max{αn + 0.04(1 −
α)n,∆(G2) + 2/(1 − α)}.

Proof. Suppose that the lemma is false. Then there is a vertex v with degH (v) >

max{αn,∆(G2)} + 2/(1 − α). We may assume that v is the result of identifying wi ∈ V (G1)

with uj ∈ V (G2).

Case 1: degG2
(uj) > 0.5αn + 2. If j > k0, then by (3.4) and the definition of k′

0,

degG2
(uj) � k′

0 +
(1 − α)2

20
n < 0.01(1 − α)n +

(1 − α)2n

20
< 0.04(1 − α)n � 0.02n, (4.1)

a contradiction. Therefore, j�k0. Hence, wi ∈V (T1 ∪ · · · ∪Tk′
0
) and degG1

(wi)� |V (Tk′
0
)| −1.

By Claim 3.1(b), |V (Tk′
0
)| � n

n(1 − α) − k′
0 + 1

. In view of (3.4),

n(1 − α) − k′
0 + 1 > n(1 − α) − 0.01n(1 − α) = 0.99n(1 − α).

It follows that degG1
(wi) <

1
0.99(1 − α)

and the lemma holds.

Case 2: degG1
(wi) > 0.5αn + 2. Since e(G1) = αn, there is only one vertex in G1 with this

property. Furthermore, with such a large degree, wi is either in V (G∗
1), or in V (Tt). In

either case, uj /∈ U, and by (4.1), degG2
(uj) � 0.04(1 − α)n. This proves the lemma.
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Now we are ready to prove Theorem 1.8.

Proof. Recall that m = �0.25
√

n/α3�. We will prove by induction on k, that for k =

1, . . . , m, there is a packing of H1, . . . , Hk such that the maximal degree, ∆(Fk), of the

obtained graph Fk = H1 ∪ · · · ∪ Hk is at most (1 − 0.96(1 − α))n + 2(k − 2)/(1 − α).

For k = 1, the statement reduces to ∆(H1) � αn + 0.04n − 2/(1 − α). By (1.4), 0.04n −
2/(1 − α) � 0 which proves the base case.

Suppose that the theorem is proved for some k � m − 1. Let us check that Theorem 1.5

and Lemma 4.1 hold for our α and n, c = e(Fk)/n
3/2, ε = 0.25(1 − α), G1 = Hk+1, and

G2 = Fk . Indeed, since k � m − 1, we have

e(Fk) � kαn � (m − 1)αn <
αn

√
n

4α3/2

and hence c � 0.25/
√
α. Therefore, 8c2α � 1/2, which yields (1.1) and (1.2). Now, (1.3)

follows from (1.4). By the inductive assumption,

∆(G2) � (1 − 0.96(1 − α))n +
2(k − 2)

1 − α
� n − 2

1 − α
−

(
0.96(1 − α)n − 2(m − 2)

1 − α

)

� n − 2 −
(

0.96(1 − α)n − 2
√
n

4(1 − α)α1.5

)
� n − 2 −

(
0.96(1 − α)n −

√
2n

1 − α

)
.

Observe that

0.96(1 − α)n > 0.96
√
n

503

(1 − α)2
>

100
√
n

1 − α
,

and hence

∆(G2) � n − 2 − 50
√
n

1 − α
.

Thus, the conditions of Theorem 1.5 are satisfied, and by Lemma 4.1 we can pack Hk+1 and

Fk so that the maximum degree ∆(Fk+1) of the resulting graph Fk+1 = Fk ∪ Hk+1 exceeds

(1 − 0.96(1 − α))n + 2(k − 2)/(1 − α) by at most 2/(1 − α). This proves the theorem.

5. Sparse graphs that do not pack

We will construct some series of pairs of sparse graphs that do not pack. We start from

a simple series and then elaborate it.

Let G1 = G1(n, 2) be a forest on n vertices whose components are stars S1 and S2 of

degree at most � n
2
�. By s1 and s2 we denote the centres of these stars.

Let W = {w1, w2, w3} and U be a set disjoint from W with |U| = n − 3 partitioned into

subsets U1, U2, and U3 of about the same cardinality. We define G2 = G2(n, 1, 2) as follows.

Let V2 = V (G2) = W ∪ U and E2 = {wiwj | 1 � i < j � 3} ∪
⋃3

i=1{uwi, uwi+1 | u ∈ Ui} (we

sum the indices modulo 3). The graph G2 possesses the property that every two vertices

have a common neighbour and the maximum degree of G2 is �2n/3�. Furthermore, G2 is

2-degenerate, i.e., very sparse.

Suppose that G1(n, 2) and G2(n, 1, 2) pack, i.e., that there is an edge-disjoint placement

f of the vertex set V1 of G1 onto V2. Let t1 = f(s1) and t2 = f(s2). By the previous
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paragraphs, t1 and t2 have a common neighbour, say, t0, in G2. Then the vertex s0 in G1

with f(s0) = t0 cannot be adjacent to any of s1 and s2. This contradicts the definition of

G1. Thus G1 and G2 do not pack.

Note that this example disproves Conjecture 1.6 and shows that to extend the statement

of Theorem 1.5 even to α = 1, one needs to impose sufficiently stricter conditions on the

maximum degree of G2. The maximum of maximum degrees of G1 and G2 is �2n/3�.
Below, we elaborate the above example to make this maximum less by making greater

the average degree of G2.

Let G1 = G1(n, k) be a forest on n vertices whose k components are stars S1, . . . , Sk of

degree at most � n
k
�. By s1, . . . , sk we denote the centres of these stars.

Let q be a prime power. For a nonnegative integer d, let qd = qd+1 − 1
q − 1

. In particular,

q0 = 1 and q1 = q + 1. Suppose that n > qk+1. To construct G2 = G2(n, q, k), consider a

k-dimensional projective space W over the field GFq . It has qk points and qk hyperplanes.

Let U be a set of n − qk vertices partitioned into qk sets U1, . . . , Uqk with |Ui| � � n
qk

� − 1

for all i. Let {H1, . . . , Hqk} be a list of all hyperplanes in W . The graph G2 = G2(n, q, k)

has the vertex set V2 = W ∪ U and the edge set

E2 = {w1w2 | w1 ∈ H1, w2 ∈ W, w1 = w2} ∪
qk⋃
i=1

{wu | w ∈ Hi, u ∈ Ui}.

Claim 5.1. If n > qk+1, then

(a) G2(n, q, k) is qk−1-degenerate,

(b) |E2| < qk−1n,

(c) the maximum degree of G2(n, q, k) is at most n
q

+ qk .

Proof. Order the vertices of G2 so that first we list the vertices in U, then the vertices

in W − H1, and finally the points of H1. Then every vertex v has at most qk−1 neighbours

following v in this order. This proves (a). Note that (a) yields (b).

To check (c), observe that every vertex in U has degree qk−1. Every point of a k-

dimensional projective space over GFq is contained in qk−1 hyperplanes. Therefore, every

w ∈ W is adjacent to at most qk−1(� n
qk

� − 1) < n
q

vertices in U. Since |W | = qk , this proves

(c).

Claim 5.1 implies that for fixed q and k, G2(n, q, k) has linear in n number of edges.

Furthermore, if n > q · qk , then the maximum degree of G2 is less than 2n
q
. Thus, for

every k and any prime power q � 2k, if n > q · qk , then both G1(n, k) and G2(n, q, k) have

maximum degree at most n/k.

Claim 5.2. If n > q · qk , then G1(n, k) and G2(n, q, k) do not pack.

Proof. Suppose that there exists a packing of G1(n, q) and G2(n, q, k), i.e., that there is an

edge-disjoint placement f of the vertex set V1 of G1 onto V2. Let tj = f(sj) for j = 1, . . . , k.

By the definition of G2, the neighbourhood of every of tj contains some Hi(j) (if tj ∈ H1,

then it contains many Hi). Suppose that the set T = {t1, . . . , tk} contains exactly r vertices
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of H1. Since any k − r hyperplanes of W have a common r-dimensional subspace, the

neighbourhoods in G2 of the remaining k − r elements of T have at least qr vertices in

common. Since qr > r and vertices of H1 are adjacent to every vertex in W , there exists

a common neighbour t0 ∈ W of all vertices in T . But then the vertex s0 = f−1(t0) cannot

be adjacent in G1 to any of s1, . . . , sk . This contradicts the definition of G1.

These two claims prove Theorem 1.7.
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