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Suppose that n > (log k)ck , where c is a fixed positive constant. We prove that, no matter how the
edges of Kn are coloured with k colours, there is a copy of K4 whose edges receive at most two
colours. This improves the previous best bound of kc

′k , where c′ is a fixed positive constant, which
follows from results on classical Ramsey numbers.

1. Introduction

Let p, q be positive integers with 2 � q �
(
p
2

)
. A (p, q)-colouring of Kn is an edge-colouring

such that every copy of Kp receives at least q distinct colours on its edges. Let f(n, p, q) denote
the minimum number of colours in a (p, q)-colouring of Kn. This parameter, introduced in [2]
and subsequently investigated by Erdős and Gyárfás [3], is a generalization of the classical
Ramsey numbers. Indeed, if Rk(p) denotes the minimum n such that every k-edge-colouring
of Kn results in a monochromatic Kp, then determining all Rk(p) is equivalent to determining
all f(n, p, 2). Many special cases of f(n, p, q) lead to non-trivial problems (see, e.g., [1, 6, 7,
8]). One particularly interesting case is f(n, 4, 3). In [2] it was observed that an easy applica-
tion of the probabilistic method yields f(n, 4, 3) = o(n). This was subsequently improved in [3]
to f(n, 4, 3) = O(

√
n) via the Local Lemma. The second author [5] then improved the upper

bound further to eO(
√

log n) = no(1), and this is the current best-known upper bound. The lower
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bound follows from the well-known fact Rk(4) < kO(k), which implies that there is a constant c
such that

f(n, 4, 3) � f(n, 4, 2) >
c log n

log log n
.

Here we give the first improvement of this lower bound.

Theorem 1.1. Let a � 1 be fixed. There is a constant c depending on a such that, for all n � 2a,

f(n, 2a, a+ 1) >
c log n

log log log n
.

Let Rk(p, q) be the minimum n such that every k-edge-colouring of Kn yields a copy of Kp

with at most q − 1 colours. Then Rk(p, q) � n implies that every k-edge-colouring of Kn yields
a copy of Kp with at most q − 1 colours. Therefore, in order to edge-colour Kn with every copy
of Kp receiving at least q colours, we need at least k + 1 colours. This means that f(n, p, q) > k.
Our main result is

Rk(2a, a+ 1) � c′(log k)c
′k, (1.1)

where c′ is a positive constant depending only on a.
Let us argue that Theorem 1.1 follows from (1.1). First observe that (1.1) implies that

f(�c′(log k)c
′k�, 2a, a+ 1) > k.

Now suppose that a � 1 is fixed and n is sufficiently large. Let k be the largest integer such
that n � �c′(log k)c

′k�. Then

f(n, 2a, a+ 1) � f(�c′(log k)c
′k�, 2a, a+ 1) > k.

Note that as n → ∞, we also have k → ∞. All asymptotic notation below is taken as both of
these parameters approach infinity. It suffices to solve for k in terms of n. By definition of k, we
clearly have n = c′(log k)c

′k+O(1). Taking logs, this yields log n = Θ(k log log k) or

k = Θ

(
log n

log log k

)
. (1.2)

Taking logs of the previous expression yields log log n = Θ(log k + log log log k) = Θ(log k),
and taking logs once again gives log log log n = Θ(log log k) or

log log k = Θ(log log log n).

Plugging this into (1.2) gives us a constant c such that k > c log n/ log log log n, and this proves
Theorem 1.1.

2. The set-up of the proof

Let a � 1 be a positive integer throughout the rest of the paper.
Clearly, f(n, 2, 2) = 0 for n � 2. The idea of our proof is to run induction on something related

to a, but not on a itself, since in this case the scale would be too rough. To facilitate the induction,
we introduce some definitions.
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Definition. A k-edge-colouring χ of Kn is a (γ1, . . . , γk)-colouring if, for each i ∈ [k], colour i
does not appear in any subgraph K2γi+2 whose edges are coloured with at most γi + 1 colours. In
particular, if γi = 0, then colour i does not appear in any subgraph K2 whose edges are coloured
with 1 colour, that is, does not appear at all.

Note that a k-edge-colouring of KN is a (2a, a+ 1)-colouring if and only if it is an
(a− 1, . . . , a− 1)-colouring. Consequently, (1.1) states that if KN admits an (a− 1, . . . , a− 1)-
colouring with k colours, then N � c′(log k)c

′k, where c′ depends only on a.

Definition. For an edge-colouring χ ofKn and a colour i, the weakness γi(χ) of i is the minimum
p such that colour i does not appear in aK2p+2 with at most p+ 1 colours. In particular, γi(χ) = 0

if and only if colour i is not present in χ at all. Then γ(χ) =
∑k

i=1 γi(χ) is called the weakness
of χ.

Note that by definition, each edge-colouring χ of Kn is a (γ1(χ), . . . , γk(χ))-colouring. Also by
definition, the weakness of any (a− 1, . . . , a− 1)-colouring with k colours is at most (a− 1)k.
Then (1.1) will follow from the following fact.

Theorem 2.1. There is a positive constant c1 such that if χ is an edge-colouring of KN , then

N � c1(log γ(χ))c1γ(χ).

In all that follows, let γ0 be sufficiently large such that for γ � γ0, we have log log γ > 1,

(
log γ

1000 log log γ

)15

>
log γ

4500 log log γ
, and 104

(
log γ

1000 log log γ

)5

log log γ > log 2γ.

Let

ε = εγ =
1000 log log γ

log γ
<

1

100
, t = tγ = 
ε−10�, s = sγ =

⌈
(t− 1)1/4√

20

⌉
>

40

ε
. (2.1)

Let c = Rγ0 (2γ0) and define g(γ) = c(log γ)1000γ = cγεγ.
We will prove Theorem 2.1 by showing the following:

Suppose that χ is a (γ1, . . . , γk)-colouring of KN and γ =
∑

i γi. Then N < g(γ). (∗)

We will prove (∗) by induction on γ and k. If 0 � γ � γ0, then certainly N < c � g(γ), so we
may assume that γ > γ0. If some γi = 0, then colour i cannot appear at all, so we apply induction
on k since the bound does not depend on k. Thus, we may assume that each γi is positive; in
particular, k � γ. We will also assume that N � g(γ) = c(log γ)1000γ = cγεγ and proceed to get a
contradiction.

For a vertex x in a coloured Kn and a colour i, let di(x) denote the number of edges of colour
i incident to x.

Claim 2.2. For γ > γ0 and ε, t, s defined as above, we have 2t2s < γ0.1sε−2.
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Proof. Since 2 < ts and s > 400/ε, the result follows from t3s < γsε/20, which is equivalent to
60 log t < ε log γ. Since t < ε−11, we have

60 log t

ε
<

660 log ε−1

ε
<

660 log γ

1000 log log γ
log

[
log γ

1000 log log γ

]
<

log γ

log log γ
log log γ = log γ.

In the next section we prove that every dense bipartite graph F(V1, V2;E) contains a ‘large’
subset M of V1 in which every t-element subset has ‘many’ common neighbours in V2. In
Section 4 we prove the main result.

3. A probabilistic lemma

One of our main tools is the following lemma, essentially Lemma 1 in [4]. The proof uses ideas
of Sudakov [9]. By N(A) we denote the set of common neighbours of all vertices in A.

Lemma 3.1. Let positive integers m, n, h, d and reals α, β be such that

md/h < β. (3.1)

Let F = (V1, V2;E) be a bipartite graph with |V1| = m, |V2| = n such that

degF (v) � n/α for each v ∈ V1.

Then there is a subset V ′′
1 of V1 with |V ′′

1 | > m/αh − 1 such that every d-tuple D of vertices in
V ′′

1 has at least n/β common neighbours.

Proof. Let x1, . . . , xh be a sequence of h not necessarily distinct vertices of V2, which we
choose uniformly and independently at random and denote S = {x1, . . . , xh}. Denote by V ′

1 the
set N(S) of common neighbours of vertices in S . Note that the size of V ′

1 is a random variable
and that S ⊆ N(v) for every v ∈ V ′

1. Then, using (3.1), we can estimate the expected size of V ′
1

as follows:

E
(
|V ′

1|
)

=
∑
v∈V1

Pr
(
v ∈ V ′

1

)
=

∑
v∈V1

(
|N(v)|
n

)h

� mα−h. (3.2)

On the other hand, by definition, the probability that a given set of vertices W ⊂ V1 is contained
in V ′

1 equals
(
|N(W )|/n

)h
. Denote by Z the number of subsetsW of V ′

1 of size dwith |N(W )| <
n/β. Then by (3.1) the expected value of Z is at most

E
(
Z

)
=

∑
W⊆V1 : |W |=d, |N(W )|<n/β

Pr
(
W ⊂ V ′

1

)
�

(
m

d

)(
1

β

)h

� md
(

1

β

)h

< 1. (3.3)

Hence, the expectation of |V ′
1| − Z is greater than mα−h − 1, and thus there is a choice S0

of S such that the corresponding value of |V ′
1(S0)| − Z(S0) is greater than mα−h − 1. For every

d-tuple D of vertices of V ′
1(S0), delete a vertex vD ∈ D from V ′

1(S0). The resulting set V ′′
1 satisfies

the lemma.
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4. Proof of the theorem

Call a t-set of vertices rainbow if its edges are coloured with at least 10t3/2 colours.

Claim 4.1. Suppose that n � γ > γ0, the edges ofKn are coloured (with any number of colours)
and di(x) � 2nγ−ε/10 for each x ∈ V (Kn) and each colour i. Then the number of t-sets that are
not rainbow is at most

(
n
t

)
/γ.

Proof. First, let us estimate ν(i, t, n), the number of t-sets in Kn in which there is a vertex
incident with at least s edges of colour i in this t-set. We can first choose the vertex, then choose
s incident edges of colour i and include the other ends of these edges, and then add n− s− 1

other vertices. This gives

ν(i, t, n) �
∑

x∈V (Kn)

(
di(x)

s

)(
n− 1 − s

t− 1 − s

)
� n

( 2n
γε/10

s

)(
n− 1 − s

t− 1 − s

)
�

(
n

t

)
γ−sε/10 t2s.

Similarly, let ψ(i, t, n) be the number of t-sets in Kn in which there is a matching of colour i of
size at least s. Let ei be the number of edges of colour i. Since

ei �
n

2
max
x∈V (Kn)

di(x) � n2γ−ε/10,

we have

ψ(i, t, n) �
(
ei

s

)(
n− 2s

t− 2s

)
�

(
n2

γε/10

s

)(
n− 2s

t− 2s

)
�

(
n

t

)
t2sγ−sε/10.

Now Claim 2.2 implies that

ν(i, t, n) + ψ(i, t, n) � 2

(
n

t

)
t2sγ−sε/10 <

1

γ2

(
n

t

)
.

Suppose that a t-set T contains more than s2 edges of colour i, and let Gi be the graph of these
edges. Either Gi has a vertex incident with at least s edges, or Vizing’s theorem implies that Gi
has a proper edge-colouring with at most s colours. In the latter case, Gi has a matching of size
at least s2/s = s. We have already shown that the number of t-sets that contain a monochromatic
matching of size s or a vertex with s edges of the same colour is at most

(
n
t

)
/γ2. Consequently,

the number of t-sets that contain more than s2 edges of some colour is at most

k

(
n

t

)
/γ2 �

(
n

t

)
/γ.

Each t-set not included above has at most s2 edges in each colour and therefore at least
(
t
2

)
/s2

colours. By the choice of s, this is at least 10t3/2. Hence the number of rainbow t-sets is at least
(1 − 1/γ)

(
n
t

)
.

Claim 4.2. Let u ∈ V (KN) and S = S(u) = {j ∈ [k] : dj(u) � N/γ1+ε/2}. Then, for every
i ∈ [k] − S and j ∈ [k], the number of vertices x ∈ Ni(u) for which

|Nj(x) ∩Ni(u)| � 2di(u)/γ
ε/10 (4.1)

is at most γεγ−3.
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Proof. Suppose the contrary. Then there are colours i ∈ [k] − S(u) and j ∈ [k] such that
Ni(u) contains a set M of 
γεγ−3� vertices x such that (4.1) holds. Consider the bipartite graph
F(V1, V2;E) with partite sets V1 = M and V2 = Ni(u) −M whose edges are all edges of colour
j in our KN connecting V1 with V2. By (4.1) and since |M| = 
γεγ−3� < 
N/γ3� < di(u)/γ

ε/10,
we have, for every v ∈ V1,

degF (v) >
2di(u)

γε/10
− |M| > di(u)

γε/10
>

|V2|
γε/10

.

Observe that graph F satisfies the conditions of Lemma 3.1 with

m = |M|, n = |V2|, h = γ/
√
t, d = t, α = γε/10, β = 2mt/h.

Hence, there is a subset M ′ of V1 with

|M ′| > m/αh − 1 � γεγ−3α−h − 1 > γεγ−3γ−(γ/
√
t)ε/10 − 1 > γ0.9εγ (4.2)

such that every d-tuple D of vertices in M ′ has at least n/β common neighbours.
We will construct a sequence M0 ⊂ M1 ⊂ · · · of subsets of M ′ as follows. Let M0 = M ′.

Suppose thatM0,M1, . . . ,Ml are constructed. If there is a vertex xl+1 ∈ Ml and a colour jl+1 such
that |Njl+1

(xl+1) ∩Ml | � |Ml |γ−ε/10, then we let Ml+1 = Njl+1
(xl+1) ∩Ml ; otherwise we stop.

Suppose that we stop at step q. Each colour i appears at most 2γi + 1 times in {j1, . . . , jq}, since
otherwise we have a monochromatic K2γi+2, which is forbidden. Consequently, q �∑

i(2γi + 1) = 2γ + k � 3γ. From this and (4.2),

|Mq| > |M0|(γ−ε/10)3γ = |M0|γ−3γε/10 > γ0.9εγγ−3γε/10 = γ0.6γε > γ.

Hence, by Claim 4.1,Mq contains a rainbow t-tupleD (in fact it contains many). LetNF (D) = U.
By Lemma 3.1, |U| � n/β. Now suppose 	 is a colour that appears in D. Then the weakness of
	 within U is strictly smaller than γ	, since if 	 appears in a K2p within U that receives at most
p colours, then this copy together with an edge of colour 	 from D yields a K2(p+1) with at most
p+ 1 colours (the only new colour is possibly j). Therefore, the weakness of χwhen restricted to
U is at most γ′ = γ − 10t3/2. Hence, by the induction hypothesis, |U| < g(γ′) = c(log γ′)1000γ

′
.

Since |U| � n/β,

n � βc(log γ′)1000γ
′
.

On the other hand, since |M| < di(u)/2,

n = |V2| = di(u) − |M| > di(u)

2
>

N

2γ1+ε/2
.

This gives

N < 2γ1+ε/2(2mt/h)c(log γ′)1000γ′
= 4γ1+ε/2mt

√
t/γc(log γ′)1000γ

′
< γ2+εt3/2c(log γ′)1000γ

′
,

where the last inequality holds because m = |M| < γεγ . As N � g(γ) = c(log γ)1000γ , we get

(log γ)1000γ < γ2+εt3/2 (log γ′)1000γ
′
< γ2+εt3/2 (log γ)1000γ

′
.

Taking logs, this reduces to

1000γ log log γ < (2 + εt3/2) log γ + 1000γ′ log log γ.
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Consequently,

(1000 log log γ)10t3/2 < (2 + εt3/2) log γ = 2 log γ + 1000t3/2 log log γ.

Simplifying, we obtain 9000t3/2 log log γ < 2 log γ. Finally, this yields
(

log γ

1000 log log γ

)15

= ε−15 � t3/2 <
log γ

4500 log log γ
,

which contradicts our choice of γ.

Claim 4.3. For every u ∈ V (KN), the number of rainbow t-sets on V (KN) − {u} all of whose
vertices are connected with u by edges of the same colour is at least 0.3

∑k
i=1

(
di(u)
t

)
.

Proof. Fix some u ∈ V (KN). Let S = {i ∈ [k] : di(u) � N/γ1+ε/2}. Then

∑
i∈S

(
di(u)

t

)
� k

(
� N
γ1+ε/2 �
t

)
� k

(
�N
k

�
t

)
γ−εt/2 � 2γ−εt/2

k∑
i=1

(
di(u)

t

)
.

We added the factor 2 since d1(u) + · · · + dk(u) = N − 1 and not N. Since t = 
ε−10�, we have
tε > 20 and hence

∑
i∈S

(
di(u)

t

)
� γ−10

k∑
i=1

(
di(u)

t

)
. (4.3)

Now, let i /∈ S . LetM be the set of vertices x ∈ Ni(u) such that, for some colour j, (4.1) holds.
Let M = Ni(u) −M. By Claim 4.2,

|M| < γεγ−2 <
N

γ2
<

|Ni(u)|
t

.

Hence, for the subgraph F of our KN on M, the conditions of Claim 4.1 are satisfied since
|M| > (1 − 1/t)di(u) > 0.9di(u) > γ. Thus, by Claim 4.1, at least (1 − 1/γ)

(|M|
t

)
t-sets in M are

rainbow. Now

γ − 1

γ

(
|M|
t

)
� γ − 1

γ

(
di(u)(1 − 1/t)

t

)
.

For large γ, the last expression is at least

0.9

(
t− 1

t

)t(
di(u)

t

)
� 1

3

(
di(u)

t

)
.

Combining this with (4.3), we finish the proof.

By Claim 4.3, the total number of (t+ 1)-sets {u0, u1, . . . , ut} of vertices of V (KN) such that
the t-set {u1, . . . , ut} is rainbow and all edges from u0 to u1, . . . , ut are of the same colour is at
least

0.3
∑

u∈V (KN )

k∑
i=1

(
di(u)

t

)
� 0.3N · k

(
(N − 1)/k

t

)
� N · (2k)1−t

(
N

t

)
.
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It follows that some rainbow t-set {u1, . . . , ut} is contained in at least N · (2k)1−t such (t+ 1)-
sets. Let U be the set of all vertices u0 in these (t+ 1)-sets containing our chosen {u1, . . . , ut}.
Then, for some 1 � i � k, the size of the subset Ui of U that is connected with each of u1, . . . , ut
by an edge of colour i is at least 2N · (2k)−t. Since {u1, . . . , ut} is rainbow, it contains edges
of at least 10t3/2 colours. For every colour 	 that appears within {u1, . . . , ut}, the weakness of
	 when restricted to Ui is at most γ	 − 1. Hence, by the induction hypothesis, |Ui| � g(γ′) =

c(log γ′)1000γ′
, where γ′ = γ − 10t3/2. Since |Ui| � 2N/(2k)t and N � g(γ), we obtain

c(log γ)1000γ � N < (2k)tc(log γ′)1000γ
′
< (2k)tc(log γ)1000γ

′
.

Dividing by c and taking logs,

1000γ log log γ < t log 2γ + 1000γ′ log log γ.

Consequently,

(1000 log log γ)10t3/2 < t log 2γ.

Plugging in the values of t and ε, we obtain

104

(
log γ

1000 log log γ

)5

log log γ = 104ε−5 log log γ < 104
√
t log log γ < log 2γ.

This contradicts our choice of γ and completes the proof.
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