When is an Almost Monochromatic K₄ Guaranteed?

ALEXANDR KOSTOCHKA 1† and DHRUV MUBAYI 2‡

¹Department of Mathematics, University of Illinois, Urbana, USA and Institute of Mathematics, Novosibirsk, Russia (e-mail: kostochk@math.uiuc.edu)

²Department of Mathematics, Statistics, and Computer Science, University of Illinois, 851 S. Morgan Street, Chicago, IL 60607-704, USA (e-mail: mubayi@math.uic.edu)

Received 2 July 2006; revised 14 July 2008

Suppose that $n > (\log k)^{ck}$, where c is a fixed positive constant. We prove that, no matter how the edges of K_n are coloured with k colours, there is a copy of K_4 whose edges receive at most two colours. This improves the previous best bound of $k^{c'k}$, where c' is a fixed positive constant, which follows from results on classical Ramsey numbers.

1. Introduction

Let p,q be positive integers with $2 \le q \le {\binom{p}{2}}$. A (p,q)-colouring of K_n is an edge-colouring such that every copy of K_p receives at least q distinct colours on its edges. Let f(n, p, q) denote the minimum number of colours in a (p,q)-colouring of K_n . This parameter, introduced in [2] and subsequently investigated by Erdős and Gyárfás [3], is a generalization of the classical Ramsey numbers. Indeed, if $R_k(p)$ denotes the minimum n such that every k-edge-colouring of K_n results in a monochromatic K_p , then determining all $R_k(p)$ is equivalent to determining all f(n, p, 2). Many special cases of f(n, p, q) lead to non-trivial problems (see, *e.g.*, [1, 6, 7, 8]). One particularly interesting case is f(n, 4, 3) = o(n). This was subsequently improved in [3] to $f(n, 4, 3) = O(\sqrt{n})$ via the Local Lemma. The second author [5] then improved the upper bound further to $e^{O(\sqrt{\log n})} = n^{o(1)}$, and this is the current best-known upper bound. The lower

[†] Research supported in part by the National Science Foundation under grant DMS-0400498.

[‡] Research supported in part by the National Science Foundation under grants DMS-0400812, DMS-0653946 and an Alfred P. Sloan Research Fellowship.

bound follows from the well-known fact $R_k(4) < k^{O(k)}$, which implies that there is a constant *c* such that

$$f(n,4,3) \ge f(n,4,2) > \frac{c \log n}{\log \log n}.$$

Here we give the first improvement of this lower bound.

Theorem 1.1. Let $a \ge 1$ be fixed. There is a constant *c* depending on a such that, for all $n \ge 2a$,

$$f(n, 2a, a+1) > \frac{c \log n}{\log \log \log n}.$$

Let $R_k(p,q)$ be the minimum n such that every k-edge-colouring of K_n yields a copy of K_p with at most q - 1 colours. Then $R_k(p,q) \le n$ implies that every k-edge-colouring of K_n yields a copy of K_p with at most q - 1 colours. Therefore, in order to edge-colour K_n with every copy of K_p receiving at least q colours, we need at least k + 1 colours. This means that f(n, p, q) > k. Our main result is

$$R_k(2a, a+1) \leqslant c'(\log k)^{c'k},\tag{1.1}$$

where c' is a positive constant depending only on a.

Let us argue that Theorem 1.1 follows from (1.1). First observe that (1.1) implies that

$$f(\lfloor c'(\log k)^{c'k}\rfloor, 2a, a+1) > k.$$

Now suppose that $a \ge 1$ is fixed and *n* is sufficiently large. Let *k* be the largest integer such that $n \ge \lfloor c'(\log k)^{c'k} \rfloor$. Then

$$f(n, 2a, a+1) \ge f(\lfloor c'(\log k)^{c'k} \rfloor, 2a, a+1) > k.$$

Note that as $n \to \infty$, we also have $k \to \infty$. All asymptotic notation below is taken as both of these parameters approach infinity. It suffices to solve for k in terms of n. By definition of k, we clearly have $n = c'(\log k)^{c'k+O(1)}$. Taking logs, this yields $\log n = \Theta(k \log \log k)$ or

$$k = \Theta\left(\frac{\log n}{\log\log k}\right). \tag{1.2}$$

Taking logs of the previous expression yields $\log \log n = \Theta(\log k + \log \log \log k) = \Theta(\log k)$, and taking logs once again gives $\log \log \log n = \Theta(\log \log k)$ or

$$\log \log k = \Theta(\log \log \log n).$$

Plugging this into (1.2) gives us a constant *c* such that $k > c \log n / \log \log \log n$, and this proves Theorem 1.1.

2. The set-up of the proof

Let $a \ge 1$ be a positive integer throughout the rest of the paper.

Clearly, f(n, 2, 2) = 0 for $n \ge 2$. The idea of our proof is to run induction on something related to *a*, but not on *a* itself, since in this case the scale would be too rough. To facilitate the induction, we introduce some definitions.

Definition. A *k*-edge-colouring χ of K_n is a $(\gamma_1, \dots, \gamma_k)$ -colouring if, for each $i \in [k]$, colour *i* does not appear in any subgraph $K_{2\gamma_i+2}$ whose edges are coloured with at most $\gamma_i + 1$ colours. In particular, if $\gamma_i = 0$, then colour *i* does not appear in any subgraph K_2 whose edges are coloured with 1 colour, that is, does not appear at all.

Note that a *k*-edge-colouring of K_N is a (2a, a + 1)-colouring if and only if it is an (a - 1, ..., a - 1)-colouring. Consequently, (1.1) states that if K_N admits an (a - 1, ..., a - 1)-colouring with *k* colours, then $N \leq c'(\log k)^{c'k}$, where *c'* depends only on *a*.

Definition. For an edge-colouring χ of K_n and a colour *i*, the *weakness* $\gamma_i(\chi)$ of *i* is the minimum *p* such that colour *i* does not appear in a K_{2p+2} with at most p + 1 colours. In particular, $\gamma_i(\chi) = 0$ if and only if colour *i* is not present in χ at all. Then $\gamma(\chi) = \sum_{i=1}^k \gamma_i(\chi)$ is called the *weakness* of χ .

Note that by definition, each edge-colouring χ of K_n is a $(\gamma_1(\chi), \ldots, \gamma_k(\chi))$ -colouring. Also by definition, the weakness of any $(a - 1, \ldots, a - 1)$ -colouring with k colours is at most (a - 1)k. Then (1.1) will follow from the following fact.

Theorem 2.1. There is a positive constant c_1 such that if χ is an edge-colouring of K_N , then

$$N \leq c_1 (\log \gamma(\chi))^{c_1 \gamma(\chi)}.$$

In all that follows, let γ_0 be sufficiently large such that for $\gamma \ge \gamma_0$, we have $\log \log \gamma > 1$,

$$\left(\frac{\log\gamma}{1000\log\log\gamma}\right)^{15} > \frac{\log\gamma}{4500\log\log\gamma}, \quad \text{and} \quad 10^4 \left(\frac{\log\gamma}{1000\log\log\gamma}\right)^5 \log\log\gamma > \log 2\gamma.$$

Let

$$\epsilon = \epsilon_{\gamma} = \frac{1000 \log \log \gamma}{\log \gamma} < \frac{1}{100}, \quad t = t_{\gamma} = \lceil \epsilon^{-10} \rceil, \quad s = s_{\gamma} = \left\lceil \frac{(t-1)^{1/4}}{\sqrt{20}} \right\rceil > \frac{40}{\epsilon}.$$
 (2.1)

Let $c = R_{\gamma_0}(2\gamma_0)$ and define $g(\gamma) = c(\log \gamma)^{1000\gamma} = c\gamma^{\epsilon\gamma}$. We will prove Theorem 2.1 by showing the following:

Suppose that χ is a $(\gamma_1, \dots, \gamma_k)$ -colouring of K_N and $\gamma = \sum_i \gamma_i$. Then $N < g(\gamma)$. (*)

We will prove (*) by induction on γ and k. If $0 \leq \gamma \leq \gamma_0$, then certainly $N < c \leq g(\gamma)$, so we may assume that $\gamma > \gamma_0$. If some $\gamma_i = 0$, then colour *i* cannot appear at all, so we apply induction on k since the bound does not depend on k. Thus, we may assume that each γ_i is positive; in particular, $k \leq \gamma$. We will also assume that $N \geq g(\gamma) = c(\log \gamma)^{1000\gamma} = c\gamma^{\epsilon\gamma}$ and proceed to get a contradiction.

For a vertex x in a coloured K_n and a colour *i*, let $d_i(x)$ denote the number of edges of colour *i* incident to x.

Claim 2.2. For $\gamma > \gamma_0$ and ϵ , t, s defined as above, we have $2t^{2s} < \gamma^{0.1s\epsilon-2}$.

Proof. Since $2 < t^s$ and $s > 400/\epsilon$, the result follows from $t^{3s} < \gamma^{s\epsilon/20}$, which is equivalent to $60 \log t < \epsilon \log \gamma$. Since $t < \epsilon^{-11}$, we have

$$\frac{60\log t}{\epsilon} < \frac{660\log \epsilon^{-1}}{\epsilon} < \frac{660\log \gamma}{1000\log\log \gamma} \log \left[\frac{\log \gamma}{1000\log\log \gamma}\right] < \frac{\log \gamma}{\log\log \gamma} \log\log \gamma = \log \gamma.$$

In the next section we prove that every dense bipartite graph $F(V_1, V_2; E)$ contains a 'large' subset M of V_1 in which every t-element subset has 'many' common neighbours in V_2 . In Section 4 we prove the main result.

3. A probabilistic lemma

One of our main tools is the following lemma, essentially Lemma 1 in [4]. The proof uses ideas of Sudakov [9]. By N(A) we denote the set of common neighbours of all vertices in A.

Lemma 3.1. Let positive integers m, n, h, d and reals α, β be such that

$$n^{d/h} < \beta. \tag{3.1}$$

Let $F = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = m$, $|V_2| = n$ such that

 $\deg_F(v) \ge n/\alpha$ for each $v \in V_1$.

Then there is a subset V_1'' of V_1 with $|V_1''| > m/\alpha^h - 1$ such that every d-tuple D of vertices in V_1'' has at least n/β common neighbours.

Proof. Let x_1, \ldots, x_h be a sequence of h not necessarily distinct vertices of V_2 , which we choose uniformly and independently at random and denote $S = \{x_1, \ldots, x_h\}$. Denote by V'_1 the set N(S) of common neighbours of vertices in S. Note that the size of V'_1 is a random variable and that $S \subseteq N(v)$ for every $v \in V'_1$. Then, using (3.1), we can estimate the expected size of V'_1 as follows:

$$\mathbf{E}(|V_1'|) = \sum_{v \in V_1} \mathbf{Pr}(v \in V_1') = \sum_{v \in V_1} \left(\frac{|N(v)|}{n}\right)^h \ge m \, \alpha^{-h}.$$
(3.2)

On the other hand, by definition, the probability that a given set of vertices $W \subset V_1$ is contained in V'_1 equals $(|N(W)|/n)^h$. Denote by Z the number of subsets W of V'_1 of size d with $|N(W)| < n/\beta$. Then by (3.1) the expected value of Z is at most

$$\mathbf{E}(Z) = \sum_{W \subseteq V_1 : |W| = d, |N(W)| < n/\beta} \mathbf{Pr}(W \subset V_1') \leqslant {\binom{m}{d}} \left(\frac{1}{\beta}\right)^h \leqslant m^d \left(\frac{1}{\beta}\right)^h < 1.$$
(3.3)

Hence, the expectation of $|V'_1| - Z$ is greater than $m \alpha^{-h} - 1$, and thus there is a choice S_0 of S such that the corresponding value of $|V'_1(S_0)| - Z(S_0)$ is greater than $m \alpha^{-h} - 1$. For every d-tuple D of vertices of $V'_1(S_0)$, delete a vertex $v_D \in D$ from $V'_1(S_0)$. The resulting set V''_1 satisfies the lemma.

4. Proof of the theorem

Call a *t*-set of vertices *rainbow* if its edges are coloured with at least $10t^{3/2}$ colours.

Claim 4.1. Suppose that $n \ge \gamma > \gamma_0$, the edges of K_n are coloured (with any number of colours) and $d_i(x) \le 2n\gamma^{-\epsilon/10}$ for each $x \in V(K_n)$ and each colour i. Then the number of t-sets that are not rainbow is at most $\binom{n}{t}/\gamma$.

Proof. First, let us estimate v(i, t, n), the number of *t*-sets in K_n in which there is a vertex incident with at least *s* edges of colour *i* in this *t*-set. We can first choose the vertex, then choose *s* incident edges of colour *i* and include the other ends of these edges, and then add n - s - 1 other vertices. This gives

$$v(i,t,n) \leq \sum_{x \in V(K_n)} \binom{d_i(x)}{s} \binom{n-1-s}{t-1-s} \leq n \binom{\frac{2n}{\gamma^{\epsilon/10}}}{s} \binom{n-1-s}{t-1-s} \leq \binom{n}{t} \gamma^{-s\epsilon/10} t^{2s}.$$

Similarly, let $\psi(i, t, n)$ be the number of *t*-sets in K_n in which there is a matching of colour *i* of size at least *s*. Let e_i be the number of edges of colour *i*. Since

$$e_i \leqslant \frac{n}{2} \max_{x \in V(K_n)} d_i(x) \leqslant n^2 \gamma^{-\epsilon/10},$$

we have

$$\psi(i,t,n) \leqslant \binom{e_i}{s} \binom{n-2s}{t-2s} \leqslant \binom{\frac{n^2}{\gamma^{\epsilon/10}}}{s} \binom{n-2s}{t-2s} \leqslant \binom{n}{t} t^{2s} \gamma^{-s\epsilon/10}.$$

Now Claim 2.2 implies that

$$\psi(i,t,n) + \psi(i,t,n) \leq 2\binom{n}{t} t^{2s} \gamma^{-s\epsilon/10} < \frac{1}{\gamma^2} \binom{n}{t}.$$

Suppose that a *t*-set *T* contains more than s^2 edges of colour *i*, and let G_i be the graph of these edges. Either G_i has a vertex incident with at least *s* edges, or Vizing's theorem implies that G_i has a proper edge-colouring with at most *s* colours. In the latter case, G_i has a matching of size at least $s^2/s = s$. We have already shown that the number of *t*-sets that contain a monochromatic matching of size *s* or a vertex with *s* edges of the same colour is at most $\binom{n}{t}/\gamma^2$. Consequently, the number of *t*-sets that contain more than s^2 edges of some colour is at most

$$k\binom{n}{t}/\gamma^2 \leqslant \binom{n}{t}/\gamma.$$

Each *t*-set not included above has at most s^2 edges in each colour and therefore at least $\binom{t}{2}/s^2$ colours. By the choice of *s*, this is at least $10t^{3/2}$. Hence the number of rainbow *t*-sets is at least $(1 - 1/\gamma)\binom{n}{t}$.

Claim 4.2. Let $u \in V(K_N)$ and $S = S(u) = \{j \in [k] : d_j(u) \leq N/\gamma^{1+\epsilon/2}\}$. Then, for every $i \in [k] - S$ and $j \in [k]$, the number of vertices $x \in N_i(u)$ for which

$$|N_j(x) \cap N_i(u)| \ge 2d_i(u)/\gamma^{\epsilon/10} \tag{4.1}$$

is at most $\gamma^{\epsilon\gamma-3}$.

Proof. Suppose the contrary. Then there are colours $i \in [k] - S(u)$ and $j \in [k]$ such that $N_i(u)$ contains a set M of $\lceil \gamma^{\epsilon \gamma - 3} \rceil$ vertices x such that (4.1) holds. Consider the bipartite graph $F(V_1, V_2; E)$ with partite sets $V_1 = M$ and $V_2 = N_i(u) - M$ whose edges are all edges of colour j in our K_N connecting V_1 with V_2 . By (4.1) and since $|M| = \lceil \gamma^{\epsilon \gamma - 3} \rceil < \lceil N/\gamma^3 \rceil < d_i(u)/\gamma^{\epsilon/10}$, we have, for every $v \in V_1$,

$$\deg_F(v) > \frac{2d_i(u)}{\gamma^{e/10}} - |M| > \frac{d_i(u)}{\gamma^{e/10}} > \frac{|V_2|}{\gamma^{e/10}}$$

Observe that graph F satisfies the conditions of Lemma 3.1 with

$$m = |M|, \quad n = |V_2|, \quad h = \gamma/\sqrt{t}, \quad d = t, \quad \alpha = \gamma^{\epsilon/10}, \quad \beta = 2m^{t/h}$$

Hence, there is a subset M' of V_1 with

$$|M'| > m/\alpha^h - 1 \ge \gamma^{\epsilon\gamma - 3} \alpha^{-h} - 1 > \gamma^{\epsilon\gamma - 3} \gamma^{-(\gamma/\sqrt{t})\epsilon/10} - 1 > \gamma^{0.9\epsilon\gamma}$$
(4.2)

such that every *d*-tuple *D* of vertices in *M'* has at least n/β common neighbours.

We will construct a sequence $M_0 \subset M_1 \subset \cdots$ of subsets of M' as follows. Let $M_0 = M'$. Suppose that M_0, M_1, \ldots, M_l are constructed. If there is a vertex $x_{l+1} \in M_l$ and a colour j_{l+1} such that $|N_{j_{l+1}}(x_{l+1}) \cap M_l| \ge |M_l| \gamma^{-\epsilon/10}$, then we let $M_{l+1} = N_{j_{l+1}}(x_{l+1}) \cap M_l$; otherwise we stop. Suppose that we stop at step q. Each colour i appears at most $2\gamma_i + 1$ times in $\{j_1, \ldots, j_q\}$, since otherwise we have a monochromatic $K_{2\gamma_l+2}$, which is forbidden. Consequently, $q \le \sum_i (2\gamma_i + 1) = 2\gamma + k \le 3\gamma$. From this and (4.2),

$$|M_q| > |M_0|(\gamma^{-\epsilon/10})^{3\gamma} = |M_0|\gamma^{-3\gamma\epsilon/10} > \gamma^{0.9\epsilon\gamma}\gamma^{-3\gamma\epsilon/10} = \gamma^{0.6\gamma\epsilon} > \gamma.$$

Hence, by Claim 4.1, M_q contains a rainbow *t*-tuple *D* (in fact it contains many). Let $N_F(D) = U$. By Lemma 3.1, $|U| \ge n/\beta$. Now suppose ℓ is a colour that appears in *D*. Then the weakness of ℓ within *U* is strictly smaller than γ_ℓ , since if ℓ appears in a K_{2p} within *U* that receives at most *p* colours, then this copy together with an edge of colour ℓ from *D* yields a $K_{2(p+1)}$ with at most p + 1 colours (the only new colour is possibly *j*). Therefore, the weakness of χ when restricted to *U* is at most $\gamma' = \gamma - 10t^{3/2}$. Hence, by the induction hypothesis, $|U| < g(\gamma') = c(\log \gamma')^{1000\gamma'}$. Since $|U| \ge n/\beta$,

$$n \leq \beta c (\log \gamma')^{1000\gamma'}$$
.

On the other hand, since $|M| < d_i(u)/2$,

$$n = |V_2| = d_i(u) - |M| > \frac{d_i(u)}{2} > \frac{N}{2\gamma^{1+\epsilon/2}}.$$

This gives

$$N < 2\gamma^{1+\epsilon/2} (2m^{t/h}) c(\log \gamma')^{1000\gamma'} = 4\gamma^{1+\epsilon/2} m^{t\sqrt{t}/\gamma} c(\log \gamma')^{1000\gamma'} < \gamma^{2+\epsilon t^{3/2}} c(\log \gamma')^{1000\gamma'},$$

where the last inequality holds because $m = |M| < \gamma^{\epsilon \gamma}$. As $N \ge g(\gamma) = c(\log \gamma)^{1000\gamma}$, we get

$$(\log \gamma)^{1000\gamma} < \gamma^{2 + \epsilon t^{3/2}} (\log \gamma')^{1000\gamma'} < \gamma^{2 + \epsilon t^{3/2}} (\log \gamma)^{1000\gamma'}$$

Taking logs, this reduces to

$$1000\gamma \log \log \gamma < (2 + \epsilon t^{3/2}) \log \gamma + 1000\gamma' \log \log \gamma.$$

Consequently,

$$(1000\log\log\gamma)10t^{3/2} < (2 + \epsilon t^{3/2})\log\gamma = 2\log\gamma + 1000t^{3/2}\log\log\gamma.$$

Simplifying, we obtain $9000t^{3/2} \log \log \gamma < 2 \log \gamma$. Finally, this yields

$$\left(\frac{\log\gamma}{1000\log\log\gamma}\right)^{15} = \epsilon^{-15} \leqslant t^{3/2} < \frac{\log\gamma}{4500\log\log\gamma}$$

which contradicts our choice of γ .

Claim 4.3. For every $u \in V(K_N)$, the number of rainbow t-sets on $V(K_N) - \{u\}$ all of whose vertices are connected with u by edges of the same colour is at least $0.3 \sum_{i=1}^{k} {\binom{d_i(u)}{t}}$.

Proof. Fix some $u \in V(K_N)$. Let $S = \{i \in [k] : d_i(u) \leq N/\gamma^{1+\epsilon/2}\}$. Then

$$\sum_{i\in S} \binom{d_i(u)}{t} \leqslant k \binom{\lfloor \frac{N}{\gamma^{1+\epsilon/2}} \rfloor}{t} \leqslant k \binom{\lfloor \frac{N}{k} \rfloor}{t} \gamma^{-\epsilon t/2} \leqslant 2\gamma^{-\epsilon t/2} \sum_{i=1}^k \binom{d_i(u)}{t}.$$

We added the factor 2 since $d_1(u) + \cdots + d_k(u) = N - 1$ and not N. Since $t = \lceil e^{-10} \rceil$, we have $t \in 20$ and hence

$$\sum_{i\in\mathcal{S}} \binom{d_i(u)}{t} \leqslant \gamma^{-10} \sum_{i=1}^k \binom{d_i(u)}{t}.$$
(4.3)

Now, let $i \notin S$. Let M be the set of vertices $x \in N_i(u)$ such that, for some colour j, (4.1) holds. Let $\overline{M} = N_i(u) - M$. By Claim 4.2,

$$|M| < \gamma^{\epsilon \gamma - 2} < \frac{N}{\gamma^2} < \frac{|N_i(u)|}{t}.$$

Hence, for the subgraph F of our K_N on \overline{M} , the conditions of Claim 4.1 are satisfied since $|\overline{M}| > (1 - 1/t)d_i(u) > 0.9d_i(u) > \gamma$. Thus, by Claim 4.1, at least $(1 - 1/\gamma)\binom{|\overline{M}|}{t}$ t-sets in \overline{M} are rainbow. Now

$$\frac{\gamma-1}{\gamma}\binom{|\overline{M}|}{t} \ge \frac{\gamma-1}{\gamma}\binom{d_i(u)(1-1/t)}{t}.$$

For large γ , the last expression is at least

$$0.9\left(\frac{t-1}{t}\right)^t \binom{d_i(u)}{t} \ge \frac{1}{3}\binom{d_i(u)}{t}.$$

Combining this with (4.3), we finish the proof.

By Claim 4.3, the total number of (t + 1)-sets $\{u_0, u_1, \ldots, u_t\}$ of vertices of $V(K_N)$ such that the *t*-set $\{u_1, \ldots, u_t\}$ is rainbow and all edges from u_0 to u_1, \ldots, u_t are of the same colour is at least

$$0.3\sum_{u\in V(K_N)}\sum_{i=1}^k \binom{d_i(u)}{t} \ge 0.3N \cdot k\binom{(N-1)/k}{t} \ge N \cdot (2k)^{1-t}\binom{N}{t}.$$

It follows that some rainbow t-set $\{u_1, \ldots, u_t\}$ is contained in at least $N \cdot (2k)^{1-t}$ such (t + 1)sets. Let U be the set of all vertices u_0 in these (t + 1)-sets containing our chosen $\{u_1, \ldots, u_t\}$. Then, for some $1 \leq i \leq k$, the size of the subset U_i of U that is connected with each of u_1, \ldots, u_t by an edge of colour *i* is at least $2N \cdot (2k)^{-t}$. Since $\{u_1, \ldots, u_t\}$ is rainbow, it contains edges of at least $10t^{3/2}$ colours. For every colour ℓ that appears within $\{u_1, \ldots, u_t\}$, the weakness of ℓ when restricted to U_i is at most $\gamma_{\ell} - 1$. Hence, by the induction hypothesis, $|U_i| \leq g(\gamma') = c(\log \gamma')^{1000\gamma'}$, where $\gamma' = \gamma - 10t^{3/2}$. Since $|U_i| \geq 2N/(2k)^t$ and $N \geq g(\gamma)$, we obtain

$$c(\log \gamma)^{1000\gamma} \leqslant N < (2k)^t c(\log \gamma')^{1000\gamma'} < (2k)^t c(\log \gamma)^{1000\gamma'}.$$

Dividing by c and taking logs,

$$1000\gamma \log \log \gamma < t \log 2\gamma + 1000\gamma' \log \log \gamma$$

Consequently,

$$(1000\log\log\gamma)10t^{3/2} < t\log 2\gamma.$$

Plugging in the values of t and ϵ , we obtain

$$10^4 \left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^5 \log \log \gamma = 10^4 \epsilon^{-5} \log \log \gamma < 10^4 \sqrt{t} \log \log \gamma < \log 2\gamma.$$

This contradicts our choice of γ and completes the proof.

References

- Eichhorn, D. and Mubayi, D. (2000) Edge-coloring cliques with many colors on subcliques. Combinatorica 20 441–444.
- [2] Erdős, P. (1981) Solved and unsolved problems in combinatorics and combinatorial number theory. *Congressus Numerantium* **32** 49–62.
- [3] Erdős, P. and Gyárfás, A. (1997) A variant of the classical Ramsey problem. *Combinatorica* 17 459–467.
- [4] Kostochka, A. and Rödl, V. (2001) On graphs with small Ramsey numbers. J. Graph Theory 37 198– 204.
- [5] Mubayi, D. (1998) Edge-coloring cliques with three colors on all 4-cliques. Combinatorica 18 293–296.
- [6] Mubayi, D. (2004) An explicit construction for a Ramsey problem. *Combinatorica* 24 313–324.
- [7] Sárkőzy, G. and Selkow, S. (2001) On edge colorings with at least q colors in every subset of p vertices. Electron. J. Combin. 8 R9.
- [8] Sárkőzy, G. and Selkow, S. (2003) An application of the regularity lemma in generalized Ramsey theory. J. Graph Theory 44 39–49.
- [9] Sudakov, B. (2003) A few remarks on Ramsey–Turán-type problems. J. Combin. Theory Ser. B 88 99–106.