When is an Almost Monochromatic K_{4} Guaranteed?

ALEXANDR KOSTOCHKA ${ }^{1 \dagger}$ and DHRUV MUBAYI ${ }^{2 \ddagger}$
${ }^{1}$ Department of Mathematics, University of Illinois, Urbana, USA
and
Institute of Mathematics, Novosibirsk, Russia
(e-mail: kostochk@math.uiuc.edu)
${ }^{2}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois, 851 S. Morgan Street, Chicago, IL 60607-704, USA
(e-mail: mubayi@math.uic.edu)

Received 2 July 2006; revised 14 July 2008

Abstract

Suppose that $n>(\log k)^{c k}$, where c is a fixed positive constant. We prove that, no matter how the edges of K_{n} are coloured with k colours, there is a copy of K_{4} whose edges receive at most two colours. This improves the previous best bound of $k^{c^{\prime} k}$, where c^{\prime} is a fixed positive constant, which follows from results on classical Ramsey numbers.

1. Introduction

Let p, q be positive integers with $2 \leqslant q \leqslant\binom{ p}{2}$. A (p, q)-colouring of K_{n} is an edge-colouring such that every copy of K_{p} receives at least q distinct colours on its edges. Let $f(n, p, q)$ denote the minimum number of colours in a (p, q)-colouring of K_{n}. This parameter, introduced in [2] and subsequently investigated by Erdős and Gyárfás [3], is a generalization of the classical Ramsey numbers. Indeed, if $R_{k}(p)$ denotes the minimum n such that every k-edge-colouring of K_{n} results in a monochromatic K_{p}, then determining all $R_{k}(p)$ is equivalent to determining all $f(n, p, 2)$. Many special cases of $f(n, p, q)$ lead to non-trivial problems (see, e.g., $[1,6,7$, 8]). One particularly interesting case is $f(n, 4,3)$. In [2] it was observed that an easy application of the probabilistic method yields $f(n, 4,3)=o(n)$. This was subsequently improved in [3] to $f(n, 4,3)=O(\sqrt{n})$ via the Local Lemma. The second author [5] then improved the upper bound further to $e^{O(\sqrt{\log n})}=n^{o(1)}$, and this is the current best-known upper bound. The lower

[^0]bound follows from the well-known fact $R_{k}(4)<k^{O(k)}$, which implies that there is a constant c such that
$$
f(n, 4,3) \geqslant f(n, 4,2)>\frac{c \log n}{\log \log n} .
$$

Here we give the first improvement of this lower bound.
Theorem 1.1. Let $a \geqslant 1$ be fixed. There is a constant c depending on a such that, for all $n \geqslant 2 a$,

$$
f(n, 2 a, a+1)>\frac{c \log n}{\log \log \log n} .
$$

Let $R_{k}(p, q)$ be the minimum n such that every k-edge-colouring of K_{n} yields a copy of K_{p} with at most $q-1$ colours. Then $R_{k}(p, q) \leqslant n$ implies that every k-edge-colouring of K_{n} yields a copy of K_{p} with at most $q-1$ colours. Therefore, in order to edge-colour K_{n} with every copy of K_{p} receiving at least q colours, we need at least $k+1$ colours. This means that $f(n, p, q)>k$. Our main result is

$$
\begin{equation*}
R_{k}(2 a, a+1) \leqslant c^{\prime}(\log k)^{c^{\prime} k} \tag{1.1}
\end{equation*}
$$

where c^{\prime} is a positive constant depending only on a.
Let us argue that Theorem 1.1 follows from (1.1). First observe that (1.1) implies that

$$
f\left(\left\lfloor c^{\prime}(\log k)^{c^{\prime} k}\right\rfloor, 2 a, a+1\right)>k
$$

Now suppose that $a \geqslant 1$ is fixed and n is sufficiently large. Let k be the largest integer such that $n \geqslant\left\lfloor c^{\prime}(\log k)^{c^{\prime} k}\right\rfloor$. Then

$$
f(n, 2 a, a+1) \geqslant f\left(\left\lfloor c^{\prime}\left(\log k c^{c^{\prime} k}\right\rfloor, 2 a, a+1\right)>k\right.
$$

Note that as $n \rightarrow \infty$, we also have $k \rightarrow \infty$. All asymptotic notation below is taken as both of these parameters approach infinity. It suffices to solve for k in terms of n. By definition of k, we clearly have $n=c^{\prime}(\log k)^{c^{\prime} k+O(1)}$. Taking logs, this yields $\log n=\Theta(k \log \log k)$ or

$$
\begin{equation*}
k=\Theta\left(\frac{\log n}{\log \log k}\right) . \tag{1.2}
\end{equation*}
$$

Taking logs of the previous expression yields $\log \log n=\Theta(\log k+\log \log \log k)=\Theta(\log k)$, and taking logs once again gives $\log \log \log n=\Theta(\log \log k)$ or

$$
\log \log k=\Theta(\log \log \log n) .
$$

Plugging this into (1.2) gives us a constant c such that $k>c \log n / \log \log \log n$, and this proves Theorem 1.1.

2. The set-up of the proof

Let $a \geqslant 1$ be a positive integer throughout the rest of the paper.
Clearly, $f(n, 2,2)=0$ for $n \geqslant 2$. The idea of our proof is to run induction on something related to a, but not on a itself, since in this case the scale would be too rough. To facilitate the induction, we introduce some definitions.

Definition. A k-edge-colouring χ of K_{n} is a $\left(\gamma_{1}, \ldots, \gamma_{k}\right)$-colouring if, for each $i \in[k]$, colour i does not appear in any subgraph $K_{2 \gamma_{i}+2}$ whose edges are coloured with at most $\gamma_{i}+1$ colours. In particular, if $\gamma_{i}=0$, then colour i does not appear in any subgraph K_{2} whose edges are coloured with 1 colour, that is, does not appear at all.

Note that a k-edge-colouring of K_{N} is a $(2 a, a+1)$-colouring if and only if it is an $(a-1, \ldots, a-1)$-colouring. Consequently, (1.1) states that if K_{N} admits an $(a-1, \ldots, a-1)$ colouring with k colours, then $N \leqslant c^{\prime}(\log k)^{c^{\prime} k}$, where c^{\prime} depends only on a.

Definition. For an edge-colouring χ of K_{n} and a colour i, the weakness $\gamma_{i}(\chi)$ of i is the minimum p such that colour i does not appear in a $K_{2 p+2}$ with at most $p+1$ colours. In particular, $\gamma_{i}(\chi)=0$ if and only if colour i is not present in χ at all. Then $\gamma(\chi)=\sum_{i=1}^{k} \gamma_{i}(\chi)$ is called the weakness of χ.

Note that by definition, each edge-colouring χ of K_{n} is a $\left(\gamma_{1}(\chi), \ldots, \gamma_{k}(\chi)\right)$-colouring. Also by definition, the weakness of any $(a-1, \ldots, a-1)$-colouring with k colours is at most $(a-1) k$. Then (1.1) will follow from the following fact.

Theorem 2.1. There is a positive constant c_{1} such that if χ is an edge-colouring of K_{N}, then

$$
N \leqslant c_{1}(\log \gamma(\chi))^{c_{1} \gamma(\chi)} .
$$

In all that follows, let γ_{0} be sufficiently large such that for $\gamma \geqslant \gamma_{0}$, we have $\log \log \gamma>1$,

$$
\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{15}>\frac{\log \gamma}{4500 \log \log \gamma}, \quad \text { and } \quad 10^{4}\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{5} \log \log \gamma>\log 2 \gamma .
$$

Let

$$
\begin{equation*}
\epsilon=\epsilon_{\gamma}=\frac{1000 \log \log \gamma}{\log \gamma}<\frac{1}{100}, \quad t=t_{\gamma}=\left\lceil\epsilon^{-10}\right\rceil, \quad s=s_{\gamma}=\left\lceil\frac{(t-1)^{1 / 4}}{\sqrt{20}}\right\rceil>\frac{40}{\epsilon} . \tag{2.1}
\end{equation*}
$$

Let $c=R_{\gamma_{0}}\left(2 \gamma_{0}\right)$ and define $g(\gamma)=c(\log \gamma)^{1000 \gamma}=c \gamma^{\epsilon \gamma}$.
We will prove Theorem 2.1 by showing the following:

$$
\begin{equation*}
\text { Suppose that } \chi \text { is a }\left(\gamma_{1}, \ldots, \gamma_{k}\right) \text {-colouring of } K_{N} \text { and } \gamma=\sum_{i} \gamma_{i} \text {. Then } N<g(\gamma) \text {. } \tag{*}
\end{equation*}
$$

We will prove (*) by induction on γ and k. If $0 \leqslant \gamma \leqslant \gamma_{0}$, then certainly $N<c \leqslant g(\gamma)$, so we may assume that $\gamma>\gamma_{0}$. If some $\gamma_{i}=0$, then colour i cannot appear at all, so we apply induction on k since the bound does not depend on k. Thus, we may assume that each γ_{i} is positive; in particular, $k \leqslant \gamma$. We will also assume that $N \geqslant g(\gamma)=c(\log \gamma)^{1000 \gamma}=c \gamma^{\epsilon \gamma}$ and proceed to get a contradiction.

For a vertex x in a coloured K_{n} and a colour i, let $d_{i}(x)$ denote the number of edges of colour i incident to x.

Claim 2.2. For $\gamma>\gamma_{0}$ and ϵ, t, s defined as above, we have $2 t^{2 s}<\gamma^{0.1 s \epsilon-2}$.

Proof. Since $2<t^{s}$ and $s>400 / \epsilon$, the result follows from $t^{3 s}<\gamma^{s \epsilon / 20}$, which is equivalent to $60 \log t<\epsilon \log \gamma$. Since $t<\epsilon^{-11}$, we have

$$
\frac{60 \log t}{\epsilon}<\frac{660 \log \epsilon^{-1}}{\epsilon}<\frac{660 \log \gamma}{1000 \log \log \gamma} \log \left[\frac{\log \gamma}{1000 \log \log \gamma}\right]<\frac{\log \gamma}{\log \log \gamma} \log \log \gamma=\log \gamma
$$

In the next section we prove that every dense bipartite graph $F\left(V_{1}, V_{2} ; E\right)$ contains a 'large' subset M of V_{1} in which every t-element subset has 'many' common neighbours in V_{2}. In Section 4 we prove the main result.

3. A probabilistic lemma

One of our main tools is the following lemma, essentially Lemma 1 in [4]. The proof uses ideas of Sudakov [9]. By $N(A)$ we denote the set of common neighbours of all vertices in A.

Lemma 3.1. Let positive integers m, n, h, d and reals α, β be such that

$$
\begin{equation*}
m^{d / h}<\beta \tag{3.1}
\end{equation*}
$$

Let $F=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=m,\left|V_{2}\right|=n$ such that

$$
\operatorname{deg}_{F}(v) \geqslant n / \alpha \quad \text { for each } v \in V_{1} .
$$

Then there is a subset $V_{1}^{\prime \prime}$ of V_{1} with $\left|V_{1}^{\prime \prime}\right|>m / \alpha^{h}-1$ such that every d-tuple D of vertices in $V_{1}^{\prime \prime}$ has at least n / β common neighbours.

Proof. Let x_{1}, \ldots, x_{h} be a sequence of h not necessarily distinct vertices of V_{2}, which we choose uniformly and independently at random and denote $S=\left\{x_{1}, \ldots, x_{h}\right\}$. Denote by V_{1}^{\prime} the set $N(S)$ of common neighbours of vertices in S. Note that the size of V_{1}^{\prime} is a random variable and that $S \subseteq N(v)$ for every $v \in V_{1}^{\prime}$. Then, using (3.1), we can estimate the expected size of V_{1}^{\prime} as follows:

$$
\begin{equation*}
\mathbf{E}\left(\left|V_{1}^{\prime}\right|\right)=\sum_{v \in V_{1}} \operatorname{Pr}\left(v \in V_{1}^{\prime}\right)=\sum_{v \in V_{1}}\left(\frac{|N(v)|}{n}\right)^{h} \geqslant m \alpha^{-h} . \tag{3.2}
\end{equation*}
$$

On the other hand, by definition, the probability that a given set of vertices $W \subset V_{1}$ is contained in V_{1}^{\prime} equals $(|N(W)| / n)^{h}$. Denote by Z the number of subsets W of V_{1}^{\prime} of size d with $|N(W)|<$ n / β. Then by (3.1) the expected value of Z is at most

$$
\begin{equation*}
\mathbf{E}(Z)=\sum_{W \subseteq V_{1}:|W|=d,|N(W)|<n / \beta} \operatorname{Pr}\left(W \subset V_{1}^{\prime}\right) \leqslant\binom{ m}{d}\left(\frac{1}{\beta}\right)^{h} \leqslant m^{d}\left(\frac{1}{\beta}\right)^{h}<1 . \tag{3.3}
\end{equation*}
$$

Hence, the expectation of $\left|V_{1}^{\prime}\right|-Z$ is greater than $m \alpha^{-h}-1$, and thus there is a choice S_{0} of S such that the corresponding value of $\left|V_{1}^{\prime}\left(S_{0}\right)\right|-Z\left(S_{0}\right)$ is greater than $m \alpha^{-h}-1$. For every d-tuple D of vertices of $V_{1}^{\prime}\left(S_{0}\right)$, delete a vertex $v_{D} \in D$ from $V_{1}^{\prime}\left(S_{0}\right)$. The resulting set $V_{1}^{\prime \prime}$ satisfies the lemma.

4. Proof of the theorem

Call a t-set of vertices rainbow if its edges are coloured with at least $10 t^{3 / 2}$ colours.
Claim 4.1. Suppose that $n \geqslant \gamma>\gamma_{0}$, the edges of K_{n} are coloured (with any number of colours) and $d_{i}(x) \leqslant 2 n \gamma^{-\epsilon / 10}$ for each $x \in V\left(K_{n}\right)$ and each colour i. Then the number of t-sets that are not rainbow is at most $\binom{n}{t} / \gamma$.

Proof. First, let us estimate $v(i, t, n)$, the number of t-sets in K_{n} in which there is a vertex incident with at least s edges of colour i in this t-set. We can first choose the vertex, then choose s incident edges of colour i and include the other ends of these edges, and then add $n-s-1$ other vertices. This gives

$$
v(i, t, n) \leqslant \sum_{x \in V\left(K_{n}\right)}\binom{d_{i}(x)}{s}\binom{n-1-s}{t-1-s} \leqslant n\binom{\frac{2 n}{\gamma^{\epsilon / 10}}}{s}\binom{n-1-s}{t-1-s} \leqslant\binom{ n}{t} \gamma^{-s \epsilon / 10} t^{2 s} .
$$

Similarly, let $\psi(i, t, n)$ be the number of t-sets in K_{n} in which there is a matching of colour i of size at least s. Let e_{i} be the number of edges of colour i. Since

$$
e_{i} \leqslant \frac{n}{2} \max _{x \in V\left(K_{n}\right)} d_{i}(x) \leqslant n^{2} \gamma^{-\epsilon / 10}
$$

we have

$$
\psi(i, t, n) \leqslant\binom{ e_{i}}{s}\binom{n-2 s}{t-2 s} \leqslant\binom{\frac{n^{2}}{\gamma^{\epsilon / 10}}}{s}\binom{n-2 s}{t-2 s} \leqslant\binom{ n}{t} t^{2 s} \gamma^{-s \epsilon / 10}
$$

Now Claim 2.2 implies that

$$
v(i, t, n)+\psi(i, t, n) \leqslant 2\binom{n}{t} t^{2 s} \gamma^{-s \epsilon / 10}<\frac{1}{\gamma^{2}}\binom{n}{t}
$$

Suppose that a t-set T contains more than s^{2} edges of colour i, and let G_{i} be the graph of these edges. Either G_{i} has a vertex incident with at least s edges, or Vizing's theorem implies that G_{i} has a proper edge-colouring with at most s colours. In the latter case, G_{i} has a matching of size at least $s^{2} / s=s$. We have already shown that the number of t-sets that contain a monochromatic matching of size s or a vertex with s edges of the same colour is at most $\binom{n}{t} / \gamma^{2}$. Consequently, the number of t-sets that contain more than s^{2} edges of some colour is at most

$$
k\binom{n}{t} / \gamma^{2} \leqslant\binom{ n}{t} / \gamma
$$

Each t-set not included above has at most s^{2} edges in each colour and therefore at least $\binom{t}{2} / s^{2}$ colours. By the choice of s, this is at least $10 t^{3 / 2}$. Hence the number of rainbow t-sets is at least $(1-1 / \gamma)\binom{n}{t}$.

Claim 4.2. Let $u \in V\left(K_{N}\right)$ and $S=S(u)=\left\{j \in[k]: d_{j}(u) \leqslant N / \gamma^{1+\epsilon / 2}\right\}$. Then, for every $i \in[k]-S$ and $j \in[k]$, the number of vertices $x \in N_{i}(u)$ for which

$$
\begin{equation*}
\left|N_{j}(x) \cap N_{i}(u)\right| \geqslant 2 d_{i}(u) / \gamma^{\epsilon / 10} \tag{4.1}
\end{equation*}
$$

is at most $\gamma^{\epsilon \gamma-3}$.

Proof. Suppose the contrary. Then there are colours $i \in[k]-S(u)$ and $j \in[k]$ such that $N_{i}(u)$ contains a set M of $\left\lceil\gamma^{\epsilon \gamma-3}\right\rceil$ vertices x such that (4.1) holds. Consider the bipartite graph $F\left(V_{1}, V_{2} ; E\right)$ with partite sets $V_{1}=M$ and $V_{2}=N_{i}(u)-M$ whose edges are all edges of colour j in our K_{N} connecting V_{1} with V_{2}. By (4.1) and since $|M|=\left\lceil\gamma^{\epsilon \gamma-3}\right\rceil<\left\lceil N / \gamma^{3}\right\rceil<d_{i}(u) / \gamma^{\epsilon / 10}$, we have, for every $v \in V_{1}$,

$$
\operatorname{deg}_{F}(v)>\frac{2 d_{i}(u)}{\gamma^{\epsilon / 10}}-|M|>\frac{d_{i}(u)}{\gamma^{\epsilon / 10}}>\frac{\left|V_{2}\right|}{\gamma^{\epsilon / 10}}
$$

Observe that graph F satisfies the conditions of Lemma 3.1 with

$$
m=|M|, \quad n=\left|V_{2}\right|, \quad h=\gamma / \sqrt{t}, \quad d=t, \quad \alpha=\gamma^{\epsilon / 10}, \quad \beta=2 m^{t / h}
$$

Hence, there is a subset M^{\prime} of V_{1} with

$$
\begin{equation*}
\left|M^{\prime}\right|>m / \alpha^{h}-1 \geqslant \gamma^{\epsilon \gamma-3} \alpha^{-h}-1>\gamma^{\epsilon \gamma-3} \gamma^{-(\gamma / \sqrt{t}) \epsilon / 10}-1>\gamma^{0.9 \epsilon \gamma} \tag{4.2}
\end{equation*}
$$

such that every d-tuple D of vertices in M^{\prime} has at least n / β common neighbours.
We will construct a sequence $M_{0} \subset M_{1} \subset \cdots$ of subsets of M^{\prime} as follows. Let $M_{0}=M^{\prime}$. Suppose that $M_{0}, M_{1}, \ldots, M_{l}$ are constructed. If there is a vertex $x_{l+1} \in M_{l}$ and a colour j_{l+1} such that $\left|N_{j_{l+1}}\left(x_{l+1}\right) \cap M_{l}\right| \geqslant\left|M_{l}\right| \gamma^{-\epsilon / 10}$, then we let $M_{l+1}=N_{j_{l+1}}\left(x_{l+1}\right) \cap M_{l}$; otherwise we stop. Suppose that we stop at step q. Each colour i appears at most $2 \gamma_{i}+1$ times in $\left\{j_{1}, \ldots, j_{q}\right\}$, since otherwise we have a monochromatic $K_{2 \gamma_{i}+2}$, which is forbidden. Consequently, $q \leqslant$ $\sum_{i}\left(2 \gamma_{i}+1\right)=2 \gamma+k \leqslant 3 \gamma$. From this and (4.2),

$$
\left|M_{q}\right|>\left|M_{0}\right|\left(\gamma^{-\epsilon / 10}\right)^{3 \gamma}=\left|M_{0}\right| \gamma^{-3 \gamma \epsilon / 10}>\gamma^{0.9 \epsilon \gamma} \gamma^{-3 \gamma \epsilon / 10}=\gamma^{0.6 \gamma \epsilon}>\gamma .
$$

Hence, by Claim 4.1, M_{q} contains a rainbow t-tuple D (in fact it contains many). Let $N_{F}(D)=U$. By Lemma 3.1, $|U| \geqslant n / \beta$. Now suppose ℓ is a colour that appears in D. Then the weakness of ℓ within U is strictly smaller than γ_{ℓ}, since if ℓ appears in a $K_{2 p}$ within U that receives at most p colours, then this copy together with an edge of colour ℓ from D yields a $K_{2(p+1)}$ with at most $p+1$ colours (the only new colour is possibly j). Therefore, the weakness of χ when restricted to U is at most $\gamma^{\prime}=\gamma-10 t^{3 / 2}$. Hence, by the induction hypothesis, $|U|<g\left(\gamma^{\prime}\right)=c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}$. Since $|U| \geqslant n / \beta$,

$$
n \leqslant \beta c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}
$$

On the other hand, since $|M|<d_{i}(u) / 2$,

$$
n=\left|V_{2}\right|=d_{i}(u)-|M|>\frac{d_{i}(u)}{2}>\frac{N}{2 \gamma^{1+\epsilon / 2}}
$$

This gives

$$
N<2 \gamma^{1+\epsilon / 2}\left(2 m^{t / h}\right) c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}=4 \gamma^{1+\epsilon / 2} m^{t \sqrt{t} / \gamma} c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}<\gamma^{2+\epsilon t^{3 / 2}} c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}
$$

where the last inequality holds because $m=|M|<\gamma^{\epsilon \gamma}$. As $N \geqslant g(\gamma)=c(\log \gamma)^{1000 \gamma}$, we get

$$
(\log \gamma)^{1000 \gamma}<\gamma^{2+\epsilon t^{3 / 2}}\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}<\gamma^{2+\epsilon t^{3 / 2}}(\log \gamma)^{1000 \gamma^{\prime}}
$$

Taking logs, this reduces to

$$
1000 \gamma \log \log \gamma<\left(2+\epsilon t^{3 / 2}\right) \log \gamma+1000 \gamma^{\prime} \log \log \gamma
$$

Consequently,

$$
(1000 \log \log \gamma) 10 t^{3 / 2}<\left(2+\epsilon t^{3 / 2}\right) \log \gamma=2 \log \gamma+1000 t^{3 / 2} \log \log \gamma
$$

Simplifying, we obtain $9000 t^{3 / 2} \log \log \gamma<2 \log \gamma$. Finally, this yields

$$
\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{15}=\epsilon^{-15} \leqslant t^{3 / 2}<\frac{\log \gamma}{4500 \log \log \gamma}
$$

which contradicts our choice of γ.
Claim 4.3. For every $u \in V\left(K_{N}\right)$, the number of rainbow t-sets on $V\left(K_{N}\right)-\{u\}$ all of whose vertices are connected with u by edges of the same colour is at least $0.3 \sum_{i=1}^{k}\binom{d_{i}(u)}{t}$.

Proof. Fix some $u \in V\left(K_{N}\right)$. Let $S=\left\{i \in[k]: d_{i}(u) \leqslant N / \gamma^{1+\epsilon / 2}\right\}$. Then

$$
\sum_{i \in S}\binom{d_{i}(u)}{t} \leqslant k\binom{\left\lfloor\frac{N}{\left.\gamma^{1+\epsilon / 2}\right\rfloor}\right.}{t} \leqslant k\binom{\left\lfloor\frac{N}{k}\right\rfloor}{ t} \gamma^{-\epsilon t / 2} \leqslant 2 \gamma^{-\epsilon t / 2} \sum_{i=1}^{k}\binom{d_{i}(u)}{t} .
$$

We added the factor 2 since $d_{1}(u)+\cdots+d_{k}(u)=N-1$ and not N. Since $t=\left\lceil\epsilon^{-10}\right\rceil$, we have $t \epsilon>20$ and hence

$$
\begin{equation*}
\sum_{i \in S}\binom{d_{i}(u)}{t} \leqslant \gamma^{-10} \sum_{i=1}^{k}\binom{d_{i}(u)}{t} \tag{4.3}
\end{equation*}
$$

Now, let $i \notin S$. Let M be the set of vertices $x \in N_{i}(u)$ such that, for some colour j, (4.1) holds. Let $\bar{M}=N_{i}(u)-M$. By Claim 4.2,

$$
|M|<\gamma^{\epsilon \gamma-2}<\frac{N}{\gamma^{2}}<\frac{\left|N_{i}(u)\right|}{t} .
$$

Hence, for the subgraph F of our K_{N} on \bar{M}, the conditions of Claim 4.1 are satisfied since $|\bar{M}|>(1-1 / t) d_{i}(u)>0.9 d_{i}(u)>\gamma$. Thus, by Claim 4.1, at least $(1-1 / \gamma)\binom{|\bar{M}|}{t} t$-sets in \bar{M} are rainbow. Now

$$
\frac{\gamma-1}{\gamma}\binom{|\bar{M}|}{t} \geqslant \frac{\gamma-1}{\gamma}\binom{d_{i}(u)(1-1 / t)}{t}
$$

For large γ, the last expression is at least

$$
0.9\left(\frac{t-1}{t}\right)^{t}\binom{d_{i}(u)}{t} \geqslant \frac{1}{3}\binom{d_{i}(u)}{t}
$$

Combining this with (4.3), we finish the proof.
By Claim 4.3, the total number of $(t+1)$-sets $\left\{u_{0}, u_{1}, \ldots, u_{t}\right\}$ of vertices of $V\left(K_{N}\right)$ such that the t-set $\left\{u_{1}, \ldots, u_{t}\right\}$ is rainbow and all edges from u_{0} to u_{1}, \ldots, u_{t} are of the same colour is at least

$$
0.3 \sum_{u \in V\left(K_{N}\right)} \sum_{i=1}^{k}\binom{d_{i}(u)}{t} \geqslant 0.3 N \cdot k\binom{(N-1) / k}{t} \geqslant N \cdot(2 k)^{1-t}\binom{N}{t}
$$

It follows that some rainbow t-set $\left\{u_{1}, \ldots, u_{t}\right\}$ is contained in at least $N \cdot(2 k)^{1-t}$ such $(t+1)$ sets. Let U be the set of all vertices u_{0} in these $(t+1)$-sets containing our chosen $\left\{u_{1}, \ldots, u_{t}\right\}$. Then, for some $1 \leqslant i \leqslant k$, the size of the subset U_{i} of U that is connected with each of u_{1}, \ldots, u_{t} by an edge of colour i is at least $2 N \cdot(2 k)^{-t}$. Since $\left\{u_{1}, \ldots, u_{t}\right\}$ is rainbow, it contains edges of at least $10 t^{3 / 2}$ colours. For every colour ℓ that appears within $\left\{u_{1}, \ldots, u_{t}\right\}$, the weakness of ℓ when restricted to U_{i} is at most $\gamma_{\ell}-1$. Hence, by the induction hypothesis, $\left|U_{i}\right| \leqslant g\left(\gamma^{\prime}\right)=$ $c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}$, where $\gamma^{\prime}=\gamma-10 t^{3 / 2}$. Since $\left|U_{i}\right| \geqslant 2 N /(2 k)^{t}$ and $N \geqslant g(\gamma)$, we obtain

$$
c(\log \gamma)^{1000 \gamma} \leqslant N<(2 k)^{t} c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}<(2 k)^{t} c(\log \gamma)^{1000 \gamma^{\prime}}
$$

Dividing by c and taking logs,

$$
1000 \gamma \log \log \gamma<t \log 2 \gamma+1000 \gamma^{\prime} \log \log \gamma .
$$

Consequently,

$$
(1000 \log \log \gamma) 10 t^{3 / 2}<t \log 2 \gamma
$$

Plugging in the values of t and ϵ, we obtain

$$
10^{4}\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{5} \log \log \gamma=10^{4} \epsilon^{-5} \log \log \gamma<10^{4} \sqrt{t} \log \log \gamma<\log 2 \gamma .
$$

This contradicts our choice of γ and completes the proof.

References

[1] Eichhorn, D. and Mubayi, D. (2000) Edge-coloring cliques with many colors on subcliques. Combinatorica 20 441-444.
[2] Erdős, P. (1981) Solved and unsolved problems in combinatorics and combinatorial number theory. Congressus Numerantium 32 49-62.
[3] Erdős, P. and Gyárfás, A. (1997) A variant of the classical Ramsey problem. Combinatorica 17 459467.
[4] Kostochka, A. and Rödl, V. (2001) On graphs with small Ramsey numbers. J. Graph Theory 37 198204.
[5] Mubayi, D. (1998) Edge-coloring cliques with three colors on all 4-cliques. Combinatorica 18 293-296.
[6] Mubayi, D. (2004) An explicit construction for a Ramsey problem. Combinatorica 24 313-324.
[7] Sárkőzy, G. and Selkow, S. (2001) On edge colorings with at least q colors in every subset of p vertices. Electron. J. Combin. 8 R9.
[8] Sárkőzy, G. and Selkow, S. (2003) An application of the regularity lemma in generalized Ramsey theory. J. Graph Theory 44 39-49.
[9] Sudakov, B. (2003) A few remarks on Ramsey-Turán-type problems. J. Combin. Theory Ser. B $\mathbf{8 8}$ 99-106.

[^0]: \dagger Research supported in part by the National Science Foundation under grant DMS-0400498.
 ${ }^{\ddagger}$ Research supported in part by the National Science Foundation under grants DMS-0400812, DMS-0653946 and an Alfred P. Sloan Research Fellowship.

