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Abstract
7

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most 1. Hajnal
and Szemerédi proved that every graph with maximum degree � is equitably k-colorable for every k�� + 1. Chen, Lih, and Wu9
conjectured that every connected graph with maximum degree ��3 distinct from K�+1 and K�,� is equitably �-colorable. This
conjecture has been proved for graphs in some classes such as bipartite graphs, outerplanar graphs, graphs with maximum degree11
3, interval graphs. We prove that this conjecture holds for graphs with average degree at most �/5.
© 2005 Published by Elsevier B.V.13
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1. Introduction15

In several applications of coloring as a partition problem there is an additional requirement that color classes be
not so large or be of approximately the same size. Examples are the mutual exclusion scheduling problem [1,17],17
scheduling in communication systems [7], construction timetables [9], and round-a-clock scheduling [18]. For other
applications in scheduling, partitioning, and load balancing problems, one can look into [2,12,17]. A model imposing19
such a requirement is equitable coloring—a proper coloring such that color classes differ in size by at most one. A
good survey on equitable colorings of graphs is given in [13]. Recently, Pemmaraju [16] and Janson and Ruciński21
[8] used equitable colorings to derive deviation bounds for sums of dependent random variables that exhibit limited
dependence.23

Unlike in the case of ordinary coloring, a graph may have an equitable k-coloring (i.e., an equitable coloring with k
colors) but have no equitable (k + 1)-coloring. For example, the complete bipartite graph K2n+1,2n+1 has the obvious25
equitable 2-coloring, but has no equitable (2n+1)-coloring. Thus, it is natural to look for the minimum number, eq(G),
such that for every k�eq(G), G has an equitable k-coloring.27

The difficulty of finding eq(G) is not less than that of finding the chromatic number. Thus, already in the class of
planar graphs, finding eq(G) is an NP-hard problem. This situation prompted studying extremal problems on relations of29
eq(G) with other graph parameters. Hajnal and Szemerédi [6] settled a conjecture of Erdős by proving that eq(G)��+1
for every graph G with maximum degree at most �. This bound is sharp, as shows the example of K2n+1,2n+1 above.31
Other natural examples showing sharpness of Hajnal–Szemerédi Theorem are graphs with chromatic number greater
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than maximum degree, i.e. complete graphs and odd cycles. Chen et al. [3] proposed the following analogue of Brooks’1
Theorem for equitable coloring:

Conjecture 1 (Chen et al. [3]). Let G be a connected graph with maximum degree �. If G is distinct from K�+1, K�,�,3
and is not an odd cycle, then G has an equitable coloring with � colors.

They proved the conjecture for graphs with maximum degree at most three. Later,Yap and Zhang [20,21] proved that5
the conjecture holds for outerplanar graphs and planar graphs with maximum degree at least 13. Nakprasit (unpublished)
extended the result of Yap and Zhang [21] to planar graphs with maximum degree at least 9. Lih and Wu [14] verified7
the conjecture for bipartite graphs, and Chen et al. [4] verified it for interval graphs. Kostochka et al. [11] studied a list
analogue of equitable coloring and proved the validity of Conjecture 1 for equitable list coloring in classes of interval9
graphs and 2-degenerate graphs. It follows from [10] that the conjecture holds for d-degenerate graphs with maximum
degree � if d �(� − 1)/14.11

Recall that a graph G is d-degenerate, if each subgraph G′ of G has a vertex of degree (in G′) at most d (see, e.g., [19,
p. 269]). In other words, one can destroy any d-degenerate graph by successively deleting vertices of degree at most13
d. Forests are exactly 1-degenerate graphs. It is also well known that every outerplanar graph is 2-degenerate (see,
e.g., [19, p. 240]), and every planar graph is 5-degenerate. To say that a graph has ‘low degeneracy’ is about the same15
as to say that every subgraph of G has a ‘small average degree’. In this paper, we prove Conjecture 1 for graphs that
have ‘low average degree’ themselves without restrictions on average degrees of subgraphs.17

Theorem 1. Let �, n�46. Suppose that an n-vertex graph G = (V , E) has maximum degree at most � and |E|��n/5.
If K�+1 is not a subgraph of G, then G has an equitable coloring with � colors.19

An immediate consequence of Theorem 1 is that Conjecture 1 holds for d-degenerate graphs with maximum degree
� if d ��/10.21

In order to prove Theorem 1, we will need the following statement.

Theorem 2. Let ��3 and G be a K�+1-free graph with �(G)��. Suppose that G − v has a �-coloring with color23
classes M1, M2, . . . , M�. Then G has a �-coloring with color classes M ′

1, M
′
2, . . . , M

′
� such that |Mi | = |M ′

i | for all
i apart from one.25

We call this statement a theorem, since it seems that it has its own merit. It can be considered as a slight refinement
of the Brooks’ Theorem. For example, Theorem 2 has the following easy consequence.27

Corollary 1. Let ��3 and G be a K�+1-free graph with �(G)��. Let 1�k�� and mk be the order of a maximum
k-colorable subgraph of G. Then there is a proper coloring of G with at most � colors in which the total number of29
vertices in some k color classes is mk . In particular, G has a proper coloring with at most � colors in which one of the
color classes has �(G) vertices.31

The first step of the proof of Theorem 1 uses the Hajnal–Szemerédi Theorem whose complexity we have not analyzed.
The rest of the proof can be rewritten as a polynomial time algorithm for equitable coloring of a graph.33

The structure of the paper is as follows. In the next section, we prove Theorem 2. In Section 3 we introduce some
useful notions and verify Theorem 1 for graphs with few vertices. In Section 4, we prove the bounded-size version of35
Theorem 1: we demand each color class to be of size at most �n/�� but allow ‘small’ color classes. We finalize the
proof of Theorem 1 in the last section.37

Throughout the paper, we use standard graph-theoretic definitions and notation (see, e.g., [5,19]).

2. Proof of Theorem 239

The proof follows the steps of a proof of Brooks’ Theorem by Mel’nikov and Vizing [15] (see also [5, p. 99]).



UNCORRECTED P
ROOF

TCS5723
ARTICLE IN PRESS

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science ( ) – 3

Let ��3 and G be a K�+1-free graph with �(G)��. Let f be a proper coloring of G − v with at most � colors.1
Suppose that M1, M2, . . . , M� are color classes (maybe empty) of f and that G has no �-coloring with color classes
M ′

1, M
′
2, . . . , M

′
� such that |Mi | = |M ′

i | for all i apart from one. Let Gij denote the subgraph of G induced by3
Mi ∪ Mj ∪ {v}, and G′

ij denote the component of Gij containing v. We will deliver the proof in a series of claims.

Claim 2.1. The vertex v has exactly one neighbor in each Mi .5

Proof. Otherwise, there is a color class Ml containing no neighbors of v. We simply add v to Ml . Since other color
classes do not change, the conclusion of the theorem holds, a contradiction. �7

In view of this claim, let wi denote the only neighbor of v in Mi .

Claim 2.2. For each 1� i < j ��, the graph G′
ij is an odd cycle.9

Proof. Suppose that some G′
ij is not an odd cycle. By Claim 2.1, G′

ij cannot be an even cycle. Thus G′
ij has a

vertex of degree (in G′
ij ) distinct from 2. Let u be a vertex closest to v in G′

ij with degree in G′
ij not equal to 2. Let11

P = (v, v1, . . . , vk), where vk = u, be the shortest v, u-path in G′
ij (since G′

ij − v is bipartite, this path is unique).
Note that each internal vertex of P has degree 2 in G′

ij . Denote Aj = {v1, . . . , vk}−Mi , and Ai = {v1, . . . , vk}−Mj .13
Let Bi = Mi ∪ Aj − Ai , and Bj = Mj ∪ Ai − Aj . We may assume that v1 = wi .

Case 1: dG′
ij
(u) = 1. Then P − v is a component in Gij − v. Therefore, the sets Bi and Bj are independent. Note15

that Bi does not contain neighbors of v, since the only neighbor, v1, of v in Mi belongs to Bj and Aj does not contain
any neighbor of v. Thus M ′

i = Bi ∪ {v}, M ′
j = Bj and M ′

m = Mm, for m �= i, j, are color classes of a proper coloring17
of G. If k is odd, then |M ′

i | = |Mi |, and if k is even, then |M ′
j | = |Mj |. This contradicts the choice of G and f.

Case 2: dG′
ij
(u)�3. Since dG(u)�� and dGij

(u)�3, there is a color class Ml , l �= i, j , with no neighbors of u.19
Hence Ml ∪{u} is independent. Similarly to Case 1, the sets Bi −vk and Bj −vk are independent. Thus, M ′

i = Bi ∪{v},
M ′

j = Bj , M ′
l = Ml ∪ {u} and M ′

m = Mm, for m �= i, j, l, are color classes of a proper coloring of G. Note that21
independently of the parity of k, |M ′

i | = |Mi |, and |M ′
j | = |Mj |. This contradicts the choice of G and f. �

Claim 2.3. For any distinct i, j and s, the components G′
ij and G′

js share exactly two vertices, namely, the vertex v23
and the neighbor, wj , of v in Mj .

Proof. By the definition, {v, wj } ⊆ G′
ij ∩G′

js . Suppose u ∈ G′
ij ∩G′

js −{v, wj }. By Claim 2.2, u has four neighbors25
in G′

ij ∪ G′
js . Hence there is a color class Ml , l �= j , with no neighbors of u. Let v, v1, . . . , vk, u be the v, u-path

in G′
ij with v1 = wi . Note that k is odd, since u ∈ Mj and v1 = wi ∈ Mi . Denote Aj = {v1, . . . , vk} − Mi , and27

Ai = {v1, . . . , vk} − Mj . Let Bi = Mi ∪ Aj − Ai , and Bj = Mj ∪ Ai − Aj − {u}. Similarly to the proof in Claim 2.2,
the sets Bi and Bj are independent. Also similarly to the proof of Claim 2.2, the sets M ′

i = Bi ∪ {v}, M ′
j = Bj ,29

M ′
l = Ml ∪ {u} and M ′

m = Mm, for m �= i, j, l, are color classes of a proper coloring of G. Moreover, |Mm| = |M ′
m|

for all m apart from m = l. This proves the claim. �31

Now, we are ready to finish the proof of Theorem 2. Among all colorings of G − v with color class sizes
|M1|, . . . , |M�|, choose a coloring f = (M1, . . . , M�) and indices i and j so that G′

ij − v = G′
ij (f ) − v has the33

largest order. Recall that by the claims above, G′
ij − v is a path with end-vertices wi and wj . We may assume that

i = 1, j = 2, and G′
12 − v is a path P1 = (v1, . . . , vq), where v1 = w1 and vq = w2. If q = 2, then by the maximality35

of G′
ij , all wis are adjacent to each other and together with v form a K�+1, a contradiction. Thus, q �4 and hence

vq−1 �= w1.37
Similarly, G′

23 − v is a path, P2, with end-vertices w2 and w3. Let coloring f1 be obtained from f by swapping the
colors 2 and 3 on vertices in G′

23 − v. Since G′
23 − v is a w2, w3-path, the color class sizes in f1 are the same as in f.39

By Claim 2.2, the new bicolored subgraph H = G′
12(f1) − v has to be a w1, w3-path (because w3 is the only neighbor

of v in the second color class of f1). Note that H contains P1 − vq . By the maximality of q, the vertices vq−1 and w341
must be adjacent. But then vq−1 belongs to G′

13(f ), a contradiction to Claim 2.3. This proves the theorem. �
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Proof of Corollary 1. Suppose that H is a k-colorable subgraph of G of the maximum order. Let V (G) − V (H) =1
{v1, . . . , vt }. Let G0 = H and Gi = G[V (H) ∪ {v1, . . . , vi}] for i = 1, . . . , t . Let f0 = (M1, . . . , M�) be a coloring
of H with Mk+1 = Mk+2 = · · · = M� = ∅. Now, for i = 1, . . . , t , apply Theorem 2 to Gi and fi−1 to produce a3
coloring fi of Gi . Then by this theorem, the total number of vertices of colors 1, . . . , k in Gt = G is at least |V (H)|,
but it cannot be greater by the maximality of H. This proves the corollary. As an additional feature, we have that none5
of the sizes of the first k color classes changed. �

Corollary 2. Let ��3 and G = (V , E) be a K�+1-free graph with �(G)��. Let |V | = n = k(� + 1) + r , where7
0�r ��. Then G has a �-coloring f with color classes M1, M2, . . . , M� such that

(i) |Mi |�k for every i;9
(ii) for every set Z of color classes, |⋃M∈Z M|�k + |Z|�n/� + 1�; in particular, |Mi |�k + �n/� + 1� for every i;

(iii) if |Mi | = k + 1 + p for some p�1, then the degree of every v ∈ Mi in G is at least � − (k + r − 1)/p.11

Proof. By the Hajnal–Szemerédi Theorem, G has an equitable (� + 1)-coloring f ′. Under the conditions of the
corollary, exactly r color classes of f ′ have size k + 1. Let M ′ be a color class of f ′ with |M ′| = k. Adding the13
vertices of M ′ one by one to G − M ′ and applying Theorem 2 on every step, we get a �-coloring f ′′ of G satisfying (i)
and (ii).15

Now, consider the following procedure: If a vertex v in a color class Mi of size z has no neighbors in a color class
Mj of size at most z − 2, then move v from Mi to Mj . Clearly, we will stop after a finite number of steps. We claim17
that the final �-coloring f is what we need. Indeed, once a coloring satisfies (i) and (ii), such moves do not destroy
these properties. Since we have stopped our procedure, if for some i, we have |Mi | = k + 1 + p and v ∈ Mi , then v19
has neighbors in every color class of size at most k + p − 1. By (i), the number of color classes of size at least k + p

(including Mi) is at most (n − k� − 1)/p = (k + r − 1)/p (here −1 arises, because |Mi | = k + 1 + p). It follows21
that v is adjacent to vertices in at least � − (k + r − 1)/p color classes. �

3. Background for the proof of Theorem 123

In this section, we do preparatory work for the proof of Theorem 1: introduce some notions and prove Theorem 1
for n�8.8�.25

Let G = (V , E) be a graph with maximum degree � and f be a vertex coloring of G with color classes M1, . . . , M�
(some color classes can be empty). For a set Y0 of color classes of f and a subset V ′ of V, we define the (V ′, f )-expansion27
of Y0 in G as follows.

Say that a vertex w ∈ V ′ − ⋃
M∈Y0

M is a Y0-candidate if w has no neighbors in some color class M(w) ∈ Y0. Let29
Y1 be the set of color classes of f containing a Y0-candidate. Similarly, for h�1, a vertex w ∈ V ′ − ⋃

M∈Y0∪···∪Yh
M is

a Yh-candidate if w has no neighbors in some color class M(w) ∈ Yh. Let Yh+1 be the set of color classes containing31
a Yh-candidate. Finally, the set Y = ⋃∞

j=0 Yj will be called the (V ′, f )-expansion of Y0 in G.
By the construction, we have the following.33

Claim 3.1. If Y is the (V ′, f )-expansion of Y0 in G, then every vertex u ∈ V ′ − ⋃
M∈Y M has a neighbor in every

M ∈ Y .35

For each M ∈ Y − Y0, we define an (M, Y )-recoloring as follows. Suppose that M ∈ Yh+1 for some h�0. By
the definition of Yh+1, M contains a Yh-candidate xh+1 ∈ V ′. Furthermore, for j = h, h − 1, . . . , 1, the color class37
Mj = M(xj+1) contains a Yj−1-candidate xj ∈ V ′. Then an (M, Y )-recoloring of f is the coloring f ′ that differs from
f only at x1, . . . , xh+1: for every xj , j = h + 1, h, . . . , 1, we let f ′(xj ) = Mj−1 = M(xj ). For different choices of39
x1, . . . , xh+1, we get different recolorings, but the following claim holds by the definition.

Claim 3.2. If h�0 and M ∈ Yh+1 for some (V ′, f )-expansion Y of Y0 in G and f ′ is an (M, Y )-recoloring of f, then41
(a) the sizes of almost all color classes in f and f ′ are the same, only the size of M decreases by one and the size of

one color class in Y0 increases by one;43
(b) the colors of vertices in V (G) − V ′ are the same in f and f ′. �
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Lemma 1. Let ��3 and G be a K�+1-free n-vertex graph with maximum degree � and1

|E(G)|�n�/10. (1)

If n/��8.8, then G has an equitable �-coloring.3

Proof. Let G be an inclusion minimal counterexample to the lemma, and e be an edge adjacent to a vertex v of the
lowest positive degree �. If � > 0.4�, then by (1) and the choice of v, the cardinality of the set V ′ of non-isolated5
vertices in G is at most 2|E(G)|/� < 2 · 0.1n�/0.4� = n/2. Applying Lemma 2 to G[V ′], we obtain a �-coloring of
G[V ′] in which every color class has at most �n/�� vertices and each but one color class has less than �n/�� vertices.7
Now we can add the remaining isolated vertices to these color classes in order to get the size of every class equal to
�n/�� or �n/�. This contradicts the choice of G. Therefore,9

deg(v)�0.4�. (2)

By the minimality of G, G−e has an equitable �-coloring f. We may assume that the color classes of f are M1, . . . , M�11
and that v ∈ M�. By the definition, the size of every Mi is either t or t − 1, where t = �n/��.

Let M0 = M� − v. Then f0 = (M0, . . . , M�−1) is a proper coloring of G0 = G − v. Let Y0 denote the set of color13
classes in f0 of size |M0|. If some Mj ∈ Y0 contains no neighbors of v, then|Y0| > 1 and hence |M0| = t − 1. In
this case, we color vi with Mj and get an equitable �-coloring of G, a contradiction. Thus, every Mj ∈ Y0 contains a15
neighbor of v. Let Y = ⋃∞

j=0 Yj be the (V (G0), f0)-expansion of Y0 in G0 (defined at the beginning of the section)
and y = |Y |.17

Suppose that for some h�0, a color class Mh+1 in Yh+1 does not contain a neighbor of v. Let f ′ be an (M, Y )-
recoloring of f0. By Claim 3.2, if we additionally color v with Mh+1, then we obtain an equitable �-coloring of G, a19
contradiction. Thus, every color class in Y contains a neighbor of v and therefore y�degG(v).

Let V + = V (G) − ⋃
M∈Y M .21

Case 1: |M0| = t − 1. By the definition of Y0, every color class outside of Y has size t. Therefore, |V +| =
t (� − y)�n(� − y)/�. By (1) and Claim 3.1, we have23

n�

10
� |E(G)|�y(� − y)

n

�
. (3)

For � = y/�, (3) gives �2 − � + 0.1�0. It follows that either � > 0.88 or � < 0.12. The former contradicts (2), so25
y < 0.12�. Since every vertex in V + is adjacent to M0, we get �(t−1)� t (�−y), i.e., ty��. This yields t > 1

0.12 > 8,
which means n > 8� and t �9. Furthermore, since every color class outside of Y has size t and y < 0.12�, we get27

n� t (� − y) + (t − 1)y�9� − y�8.88�.

Case 2: |M0| = t −2. Recall that no other color class has size less than t −1. Suppose that some M ∈ Y , say, M ∈ Yh29
has t vertices. Then any (M, Y )-recoloring f ′ of f0 satisfies the conditions of Case 1 with Mh−xh in place of M0. Since
Case 1 is proved, we can assume that every M ∈ Y has at most t − 1 vertices. It follows that the average size of color31
classes outside of Y is higher than in Y, and therefore higher than n/�. Thus, (3) holds, and we get y < 0.12� exactly as
in Case 1. Similarly to Case 1, we obtain �(t − 2)�(t − 1)(� − y), i.e., (t − 1)y��. It follows that t − 1 > 1

0.12 > 8.33
Since t − 1 is an integer, we have n/� > t − 1�9. �

4. The bounded-size version of Theorem 135

An l-bounded coloring of a graph G is a proper vertex coloring of G in which the size of each color class is at most
l. Clearly, every equitable k-coloring of an n-vertex graph is �n/k�-bounded, but not every �n/k�-bounded k-coloring37
of an n-vertex graph is equitable. Thus, the theorem below is a weaker statement than Theorem 1.

Theorem 3. Let �, n�46. Suppose that an n-vertex graph G = (V , E) has maximum degree at most � and |E|��n/5.39
If G does not contain K�+1, then G has an �n/��-bounded coloring with � colors.
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Proof. Let G be a K�+1-free graph with maximum degree ��46 and average degree at most �/5. Let t = �n/��. Let1
Vl = {v1, . . . , vl} be the set of vertices of degree at least 4�/5. For i = l + 1, . . . , n, consider the following procedure:
(1) let �i be the maximum degree in G − Vi−1;3
(2) if �i �2�/5, then let vi be a vertex of degree �i in G − Vi−1;
(3) if �i < 2�/5, then let vi be a vertex of maximum degree in G among vertices in G − Vi−1;5
(4) let Vi = Vi−1 ∪ {vi} and Gi = G[Vi].

Note that, in general, the resulting ordering is not unique.7

Claim 4.1. Let m be the largest index i such that �i �2�/5. Then m��n/4.

Proof. By the definition, every vi for l + 1� i�m has at least 2�/5 adjacent vertices vj with j > i. Therefore, G9
contains at least (m − l)2�/5 edges not incident with v1, . . . , vl . Thus, if �/4 < m, then

|E(G)|� l · 4�

5 · 2
+ (m − l) · 2�

5
>

n

4

2�

5
= �n

10
,11

a contradiction. �

Suppose that m = k(� + 1) + r with 0�r ��. ThenGm has a proper �-coloring fm = (Mm
1 , . . . , Mm

� ) satisfying13
Corollary 2. Note that by Claim 4.1, k + �m/� + 1� = �m/� + 1 + �m/� + 1� < t . Therefore, fm is a t-bounded
coloring of Gm.15

We will now complete fm to a t-bounded �-coloring of G by constructing consecutively colorings fi of Gi for
i = 1 + m, 2 + m, . . . , n, in such a way that17

fi(v) = fm(v) for every v ∈ Vm. (4)

Observe that fm satisfies (4). Now, suppose that m + 1� i�n and Gi−1 has a t-bounded coloring fi−1 satisfying19
(4). We will construct fi for Gi .

Let M1, . . . , M� be the color classes of fi−1. Let Y0 denote the set of color classes of cardinality less than t. If21
some Mj ∈ Y0 contains no neighbors of vi , then we color vi with Mj and have a t-bounded coloring fi satisfying (4).
Otherwise, let Y = ⋃∞

j=0 Yj be the (Vi−1 − Vm, fi−1)-expansion of Y0 in Gi−1 (defined in Section 3) and y = |Y |.23
If for some h�0, a color class Mh+1 in Yh+1 does not contain a neighbor of v, then consider an (M, Y )-recoloring

f ′ of fi−1. By Claim 3.2(a), if we additionally color vi with Mh+1, then we obtain a t-bounded �-coloring of Gi .25
Moreover, by Claim 3.2(b), this new coloring also satisfies (4), as required. Thus, we may assume that every color class
in Y contains a neighbor of v. This together with the definition of Y0 and Claim 3.1 yields the following.27

Claim 4.2. If Gi has no t-bounded coloring fi satisfying (4), then the (Vi−1 − Vm, fi−1)-expansion Y of Y0 in Gi−1
possesses the following properties:29
(a) every color class in Y contains a neighbor of vi and thus y�degG(vi),
(b) every vertex u ∈ Vi−1 − Vm − ⋃

M∈Y M has a neighbor in every M ∈ Y ,31
(c) every color class outside of Y has t vertices.

Let33

V − = Vm − ⋃
M∈Y

M

and35

V + = Vi−1 − Vm − ⋃
M∈Y

M = Vi−1 − ⋃
M∈Y

M − V −.

Claim 4.3. Using the notation above, |V −|�3n/8�(� − y).37
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Proof. Recall that m = k(� + 1) + r with 0�r ��. By Corollary 2(ii),1

|V −|�k +
⌈

m

� + 1

⌉
(� − y)� n

4�
+

⌈ n

4�

⌉
(� − y).

Since ��46 and i > l, we have � − y��/5 > 9. By Lemma 1, n/4��2.2 and therefore, �n/4��� 3
2.2 · n/4�. It3

follows that

|V −|�(� − y)

(
n

4�(� − y)
+ 3

2.2
· n

4�

)
� n

4�
(� − y)

(
1

10
+ 3

2.2

)
<

3n

8�
(� − y).5

This proves the claim. �

Claim 4.4. The size y of Y is less than 0.15�.7

Proof. By Claim 4.2(b), at least y|V +| edges connect V + with
⋃

M∈Y M . Recall that every vq for l + 1�q �m has
at least 2�/5 adjacent vertices vj with j > q. Thus, at least 0.4�|V −| edges of G are incident with V − and hence9

|E(G)|�y|V +| + y

2
|V −|.

Since |V (G) − ⋃
M∈Y M|� t (� − y)�n/�(� − y), we have11

|E(G)|�y
(
(� − y)

n

�
− |V −|

)
+ y

2
|V −|�y

(
(� − y)

n

�
− y

2
|V −|

)
.

This and Claim 4.3 yield13

n�

10
�y

(
n

�
(� − y) − (� − y)

3n

16�

)
= 13

16
yn

(
1 − y

�

)
.

Denoting � = y/� and dividing both parts by n�, we obtain 1
10 � 13

16�(1 − �). Solving this inequality, we get � > 0.8515
or � < 0.15. Since i > m� l, we have y�deg(vi) < 0.8�. We conclude that � = y/� < 0.15. �

Claim 4.5. The size of V + is greater than 2n
3 .17

Proof. Assume that |V +|� 2n
3 . As in the proof of Claim 4.4, at least y|V +| edges connect V + with

⋃
M∈Y M and at

least 0.4�|V −| edges are incident with V −. Hence19

|E(G)|�y|V +| + 0.4�
(
(�−y)

n

�
− |V +|

)
� |V +|(y − 0.4�) + 0.4

n

�
�(� − y).

Recall that y < 0.15� by Claim 4.4 and |V +|� 2n
3 . Thus the last inequality yields21

n�

10
>

2n

3
(y − 0.4�) + 0.4n(� − y).

Dividing both parts by n�, we obtain23

1

10
>

2

3

y

�
− 8

30
+ 2

5
− 2y

5�
,

which is false for y/��0. This contradiction proves the claim. �25

Claim 4.6. Let M1 be a color class of the smallest size in Y. Then

|M1|� n + y

�
− 1. (5)27

Proof. Since vi is not colored, |M1| < n/�. If |M1|� t − 2, the conclusion is obvious. Suppose that |M1| = t − 1.
Since every color class not in Y has size t, by the minimality of |M1|, n + y� t�. This proves the claim. �29
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Now we are ready to finish the proof. Define z = 4n/9� + 17
30 .1

Case 1: |M1∩Vm|�z. Then the number of neighbors of M1 is at most z�+(|M1|−z)(2�/5) = z(3�/5)+|M1|2�/5.
By Claims 4.6 and 4.4, this is less than3 (

4n

9�
+ 17

30

)
3�

5
+

( n

�
− 0.85

)
· 2�

5
= 2n

3
. (6)

Since every vertex in V + is a neighbor of M1, (6) contradicts Claim 4.5.5
Case 2: |M1 ∩ V�| = z + x, where x > 0. We will prove that M1 has at most z(3�/5) + |M1|(2�/5) neighbors in

V +, which by (6) would give the same contradiction as in Case 1.7
By Corollary 2(iii), every vertex of M1 ∩ Vm has at most (k + r − 1)/(z + x − k − 1) neighbors in V +. Thus, it is

enough to prove that9

k + r − 1

z + x − k − 1
(z + x)�z� + x

2�

5
, (7)

since the RHS of (7) is the maximum amount contributed by z + x vertices to z� + (|M1| − z)(2�/5) in Case 1. Note11
that (7) is equivalent to(

z� + x
2�

5

)
(z + x − k − 1) − (k + r − 1)(z + x)�0. (8)13

For x = 0, (8) becomes

z�(z + k − 1) − z(k + r − 1)�0,15

which reduces to

z� k + r − 1

�
+ k + 1. (9)17

Recall that m = k(� + 1) + r ��n/4, i.e., n�4(k� + k + r), and that z = 4n/9� + 17
30 . It follows that

z� 16k

9
+ 16

9

k + r

�
+ 17

30
, (10)19

which yields (9) for k�1. This proves (8) for x = 0.
Now consider the LHS of (8) as a function g(x). Then21

g′(x) = 2�

5
(z + x − k − 1) +

(
z� + x

2�

5

)
− (k + r − 1) = 4�

5
x + 7�

5
z − 2�

5
(k + 1) − (k + r − 1).

We want to show that g′(x)�0 for every x > 0. This would prove (8) and thus the theorem. By the last equality, the23
condition g′(x)�0 is equivalent to

7

5
z� 2

5
(k + 1) − k + r − 1

�
.25

This inequality is implied by (10) for k�1. �

5. Proof of Theorem 127

The algorithm in the previous section produces a t-bounded �-coloring of G, but this coloring might have ‘small’
color classes. In order to ‘correct’ the coloring, we use a slight variation of the technique used above.29

Consider t-bounded colorings of G obtained in the course of proof of Theorem 3. In particular, each vertex v ∈
V (G) − Vm has at most 0.8� neighbors in G and at most 0.4� neighbors in G − Vm. Among such colorings with a31
fixed coloring fm of G[Vm] satisfying Corollary 2, choose a coloring f0 with fewest color classes of size t. We will
prove that f0 has no color classes of size t − 2 or less.33
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Let Y0 be the set of color classes of size at most t − 2 and assume that Y0 is non-empty. Let Y = ⋃∞
j=0 Yj be the1

(V (G) − Vm, f0)-expansion of Y0 in G and y = |Y |.

Claim 5.1. Y possesses the following properties:3
(a) every vertex u ∈ V (G) − Vm − ⋃

M∈Y M has a neighbor in every M ∈ Y ,
(b) every color class in Y has at most t − 1 vertices,5
(c) every color class outside of Y has at least t − 1 vertices.

Proof. Claim 3.1 implies (a), and the definition of Y0 yields (c). To prove (b), assume by contradiction that for some7
h�0, a color class Mh+1 in Yh+1 has cardinality t. Consider an (M, Y )-recoloring f ′ of f0. By Claim 3.2(a), f ′
is a t-bounded �-coloring of G with fewer color classes of size t. Moreover, by Claim 3.2(b), f ′ satisfies (4). This9
contradicts the choice of f0. �

Since there is a color class M ′ of size t, y < �. Since every vertex in M ′ −Vm has neighbors in each color class of Y,11

y�0.8�. (11)

Let13

V − = Vm − ⋃
M∈Y

M

and15

V + = V − Vm − ⋃
M∈Y

M = V − ⋃
M∈Y

M − V −.

Now, Claim 4.3 holds: the proof simply repeats that in the previous section. By Claim 5.1(b) and (c),17 ∣∣∣∣V (G) − ⋃
M∈Y

M

∣∣∣∣ �(� − y)
n

�
. (12)

Thus we can essentially repeat the proofs of Claims 4.4 and 4.5, and conclude that they hold for our Y.19
Let M1 ∈ Y0. By the definition of Y0, |M1|� t − 2 < n/� − 1, which is stronger than Claim 4.6. Therefore, all the

calculations in the previous section following Claim 4.6 go through and we get a contradiction to our assumption.21
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