

Theoretical Computer Science III (IIII) III-III

www.elsevier.com/locate/tcs

1

3

5

On equitable \triangle -coloring of graphs with low average degree $\stackrel{\text{tr}}{\leftarrow}$

A.V. Kostochka^{a, b, *}, K. Nakprasit^a

^aDepartment of Mathematics, The University of Illinois, Urbana, IL 61801, USA ^bInstitute of Mathematics, Novosibirsk, Russia

7 Abstract

An *equitable coloring* of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most 1. Hajnal and Szemerédi proved that every graph with maximum degree Δ is equitably *k*-colorable for every $k \ge \Delta + 1$. Chen, Lih, and Wu conjectured that every connected graph with maximum degree $\Delta \ge 3$ distinct from $K_{\Delta+1}$ and $K_{\Delta,\Delta}$ is equitably Δ -colorable. This conjecture has been proved for graphs in some classes such as bipartite graphs, outerplanar graphs, graphs with maximum degree

- 3, interval graphs. We prove that this conjecture holds for graphs with average degree at most $\Delta/5$.
- 13 © 2005 Published by Elsevier B.V.

Keywords: **■**; **■**; **■**

15 1. Introduction

In several applications of coloring as a partition problem there is an additional requirement that color classes be not so large or be of approximately the same size. Examples are the mutual exclusion scheduling problem [1,17], scheduling in communication systems [7], construction timetables [9], and round-a-clock scheduling [18]. For other

- 19 applications in scheduling, partitioning, and load balancing problems, one can look into [2,12,17]. A model imposing such a requirement is *equitable coloring*—a proper coloring such that color classes differ in size by at most one. A
- 21 good survey on equitable colorings of graphs is given in [13]. Recently, Pemmaraju [16] and Janson and Ruciński [8] used equitable colorings to derive deviation bounds for sums of dependent random variables that exhibit limited

dependence.Unlike in the case of ordinary coloring, a graph may have an equitable *k*-coloring (i.e., an equitable coloring with *k*

colors) but have no equitable (k + 1)-coloring. For example, the complete bipartite graph $K_{2n+1,2n+1}$ has the obvious equitable 2-coloring, but has no equitable (2n + 1)-coloring. Thus, it is natural to look for the minimum number, eq(G),

such that for every $k \ge eq(G)$, *G* has an equitable *k*-coloring.

The difficulty of finding eq(G) is not less than that of finding the chromatic number. Thus, already in the class of planar graphs, finding eq(G) is an NP-hard problem. This situation prompted studying extremal problems on relations of

eq(*G*) with other graph parameters. Hajnal and Szemerédi [6] settled a conjecture of Erdős by proving that eq(*G*) $\leq \Delta + 1$ for every graph *G* with maximum degree at most Δ . This bound is sharp, as shows the example of $K_{2n+1,2n+1}$ above.

Other natural examples showing sharpness of Hajnal–Szemerédi Theorem are graphs with chromatic number greater

E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), nakprasi@math.uiuc.edu (K. Nakprasit).

 $^{^{}m tr}$ This work was partially supported by the NSF Grants DMS-0099608 and DMS-0400498.

^{*} Corresponding author. Department of Mathematics, The University of Illinois, Urbana, IL 61801, USA.

 $^{0304\}text{-}3975/\$$ - see front matter @ 2005 Published by Elsevier B.V. doi:10.1016/j.tcs.2005.09.031

	TCS5723
	ARTICLE IN PRESS
2	A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

1 than maximum degree, i.e. complete graphs and odd cycles. Chen et al. [3] proposed the following analogue of Brooks' Theorem for equitable coloring:

3 **Conjecture 1** (*Chen et al.* [3]). Let G be a connected graph with maximum degree Δ . If G is distinct from $K_{\Delta+1}, K_{\Delta,\Delta}$, and is not an odd cycle, then G has an equitable coloring with Δ colors.

They proved the conjecture for graphs with maximum degree at most three. Later, Yap and Zhang [20,21] proved that the conjecture holds for outerplanar graphs and planar graphs with maximum degree at least 13. Nakprasit (unpublished)
extended the result of Yap and Zhang [21] to planar graphs with maximum degree at least 9. Lih and Wu [14] verified the conjecture for bipartite graphs, and Chen et al. [4] verified it for interval graphs. Kostochka et al. [11] studied a list

- 9 analogue of equitable coloring and proved the validity of Conjecture 1 for equitable list coloring in classes of interval graphs and 2-degenerate graphs. It follows from [10] that the conjecture holds for *d*-degenerate graphs with maximum
- degree *∆* if *d* ≤ (*∆* − 1)/14.
 Recall that a graph *G* is *d*-degenerate, if each subgraph *G'* of *G* has a vertex of degree (in *G'*) at most *d* (see, e.g., [19,
 p. 269]). In other words, one can destroy any *d*-degenerate graph by successively deleting vertices of degree at most
- *d*. Forests are exactly 1-degenerate graphs. It is also well known that every outerplanar graph is 2-degenerate (see,
- e.g., [19, p. 240]), and every planar graph is 5-degenerate. To say that a graph has 'low degeneracy' is about the same as to say that every subgraph of *G* has a 'small average degree'. In this paper, we prove Conjecture 1 for graphs that
- 17 have 'low average degree' themselves without restrictions on average degrees of subgraphs.

Theorem 1. Let Δ , $n \ge 46$. Suppose that an n-vertex graph G = (V, E) has maximum degree at most Δ and $|E| \le \Delta n/5$. 19 If $K_{\Delta+1}$ is not a subgraph of G, then G has an equitable coloring with Δ colors.

An immediate consequence of Theorem 1 is that Conjecture 1 holds for *d*-degenerate graphs with maximum degree Δ if $d \leq \Delta/10$.

In order to prove Theorem 1, we will need the following statement.

Theorem 2. Let $\Delta \ge 3$ and G be a $K_{\Delta+1}$ -free graph with $\Delta(G) \le \Delta$. Suppose that G - v has a Δ -coloring with color classes $M_1, M_2, \ldots, M_{\Delta}$. Then G has a Δ -coloring with color classes $M'_1, M'_2, \ldots, M'_{\Delta}$ such that $|M_i| = |M'_i|$ for all *i* apart from one.

We call this statement a theorem, since it seems that it has its own merit. It can be considered as a slight refinement of the Brooks' Theorem. For example, Theorem 2 has the following easy consequence.

Corollary 1. Let $\Delta \ge 3$ and G be a $K_{\Delta+1}$ -free graph with $\Delta(G) \le \Delta$. Let $1 \le k \le \Delta$ and m_k be the order of a maximum k-colorable subgraph of G. Then there is a proper coloring of G with at most Δ colors in which the total number of vertices in some k color classes is m_k . In particular, G has a proper coloring with at most Δ colors in which one of the color classes has $\alpha(G)$ vertices.

The first step of the proof of Theorem 1 uses the Hajnal–Szemerédi Theorem whose complexity we have not analyzed. The rest of the proof can be rewritten as a polynomial time algorithm for equitable coloring of a graph.

The structure of the paper is as follows. In the next section, we prove Theorem 2. In Section 3 we introduce some useful notions and verify Theorem 1 for graphs with few vertices. In Section 4, we prove the bounded-size version of

Theorem 1: we demand each color class to be of size at most $\lceil n/\Delta \rceil$ but allow 'small' color classes. We finalize the proof of Theorem 1 in the last section.

Throughout the paper, we use standard graph-theoretic definitions and notation (see, e.g., [5,19]).

39 2. Proof of Theorem 2

The proof follows the steps of a proof of Brooks' Theorem by Mel'nikov and Vizing [15] (see also [5, p. 99]).

ARTICLE IN PRESS

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

- Let Δ≥3 and G be a K_{Δ+1}-free graph with Δ(G) ≤ Δ. Let f be a proper coloring of G v with at most Δ colors. Suppose that M₁, M₂,..., M_Δ are color classes (maybe empty) of f and that G has no Δ-coloring with color classes
 M'₁, M'₂,..., M'_Δ such that |M_i| = |M'_i| for all i apart from one. Let G_{ij} denote the subgraph of G induced by M_i ∪ M_j ∪ {v}, and G'_{ij} denote the component of G_{ij} containing v. We will deliver the proof in a series of claims.
- 5 **Claim 2.1.** The vertex v has exactly one neighbor in each M_i .

Proof. Otherwise, there is a color class M_l containing no neighbors of v. We simply add v to M_l . Since other color classes do not change, the conclusion of the theorem holds, a contradiction. \Box

In view of this claim, let w_i denote the only neighbor of v in M_i .

9 **Claim 2.2.** For each $1 \le i < j \le \Delta$, the graph G'_{ij} is an odd cycle.

Proof. Suppose that some G'_{ij} is not an odd cycle. By Claim 2.1, G'_{ij} cannot be an even cycle. Thus G'_{ij} has a

11 vertex of degree (in G'_{ij}) distinct from 2. Let u be a vertex closest to v in G'_{ij} with degree in G'_{ij} not equal to 2. Let $P = (v, v_1, \ldots, v_k)$, where $v_k = u$, be the shortest v, u-path in G'_{ij} (since $G'_{ij} - v$ is bipartite, this path is unique).

- 13 Note that each internal vertex of P has degree 2 in G'_{ij} . Denote $A_j = \{v_1, \dots, v_k\} M_i$, and $A_i = \{v_1, \dots, v_k\} M_j$. Let $B_i = M_i \cup A_j - A_i$, and $B_j = M_j \cup A_i - A_j$. We may assume that $v_1 = w_i$.
- 15 Case 1: $d_{G'_{ij}}(u) = 1$. Then P v is a component in $G_{ij} v$. Therefore, the sets B_i and B_j are independent. Note that B_i does not contain neighbors of v, since the only neighbor, v_1 , of v in M_i belongs to B_j and A_j does not contain
- any neighbor of v. Thus $M'_i = B_i \cup \{v\}$, $M'_j = B_j$ and $M'_m = M_m$, for $m \neq i$, j, are color classes of a proper coloring of G. If k is odd, then $|M'_i| = |M_i|$, and if k is even, then $|M'_i| = |M_j|$. This contradicts the choice of G and f.
- 19 *Case* 2: $d_{G'_{ij}}(u) \ge 3$. Since $d_G(u) \le \Delta$ and $d_{G_{ij}}(u) \ge 3$, there is a color class M_l , $l \ne i, j$, with no neighbors of u. Hence $M_l \cup \{u\}$ is independent. Similarly to Case 1, the sets $B_i - v_k$ and $B_j - v_k$ are independent. Thus, $M'_i = B_i \cup \{v\}$,
- 21 $M'_j = B_j, M'_l = M_l \cup \{u\}$ and $M'_m = M_m$, for $m \neq i, j, l$, are color classes of a proper coloring of G. Note that independently of the parity of k, $|M'_j| = |M_i|$, and $|M'_j| = |M_j|$. This contradicts the choice of G and f. \Box
- 23 **Claim 2.3.** For any distinct *i*, *j* and *s*, the components G'_{ij} and G'_{js} share exactly two vertices, namely, the vertex *v* and the neighbor, w_i , of *v* in M_j .
- 25 **Proof.** By the definition, $\{v, w_j\} \subseteq G'_{ij} \cap G'_{js}$. Suppose $u \in G'_{ij} \cap G'_{js} \{v, w_j\}$. By Claim 2.2, *u* has four neighbors in $G'_{ij} \cup G'_{is}$. Hence there is a color class M_l , $l \neq j$, with no neighbors of *u*. Let v, v_1, \ldots, v_k, u be the *v*, *u*-path
- 27 in G'_{ij} with $v_1 = w_i$. Note that k is odd, since $u \in M_j$ and $v_1 = w_i \in M_i$. Denote $A_j = \{v_1, \ldots, v_k\} M_i$, and $A_i = \{v_1, \ldots, v_k\} M_j$. Let $B_i = M_i \cup A_j A_i$, and $B_j = M_j \cup A_i A_j \{u\}$. Similarly to the proof in Claim 2.2,
- 29 the sets B_i and B_j are independent. Also similarly to the proof of Claim 2.2, the sets $M'_i = B_i \cup \{v\}$, $M'_j = B_j$, $M'_i = M_l \cup \{u\}$ and $M'_m = M_m$, for $m \neq i, j, l$, are color classes of a proper coloring of G. Moreover, $|M_m| = |M'_m|$
- 31 for all *m* apart from m = l. This proves the claim.

Now, we are ready to finish the proof of Theorem 2. Among all colorings of G - v with color class sizes 33 $|M_1|, \ldots, |M_{\Delta}|$, choose a coloring $f = (M_1, \ldots, M_{\Delta})$ and indices *i* and *j* so that $G'_{ij} - v = G'_{ij}(f) - v$ has the

- largest order. Recall that by the claims above, $G'_{ij} v$ is a path with end-vertices w_i and w_j . We may assume that 35 i = 1, j = 2, and $G'_{12} - v$ is a path $P_1 = (v_1, \dots, v_q)$, where $v_1 = w_1$ and $v_q = w_2$. If q = 2, then by the maximality of G'_{ij} , all w_i s are adjacent to each other and together with v form a $K_{\Delta+1}$, a contradiction. Thus, $q \ge 4$ and hence 37 $v_{q-1} \ne w_1$.
- Similarly, $G'_{23} v$ is a path, P_2 , with end-vertices w_2 and w_3 . Let coloring f_1 be obtained from f by swapping the colors 2 and 3 on vertices in $G'_{23} v$. Since $G'_{23} v$ is a w_2 , w_3 -path, the color class sizes in f_1 are the same as in f.
- By Claim 2.2, the new bicolored subgraph $H = G'_{12}(f_1) v$ has to be a w_1 , w_3 -path (because w_3 is the only neighbor of v in the second color class of f_1). Note that H contains $P_1 - v_a$. By the maximality of q, the vertices v_{q-1} and w_3
- 41 of v in the second color class of f_1). Note that H contains $P_1 v_q$. By the maximality of q, the vertices v_{q-1} and w_3 must be adjacent. But then v_{q-1} belongs to $G'_{13}(f)$, a contradiction to Claim 2.3. This proves the theorem. \Box

ARTICLE IN PRESS

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

- 1 **Proof of Corollary 1.** Suppose that *H* is a *k*-colorable subgraph of *G* of the maximum order. Let $V(G) V(H) = \{v_1, \ldots, v_i\}$. Let $G_0 = H$ and $G_i = G[V(H) \cup \{v_1, \ldots, v_i\}]$ for $i = 1, \ldots, t$. Let $f_0 = (M_1, \ldots, M_d)$ be a coloring
- 3 of *H* with $M_{k+1} = M_{k+2} = \cdots = M_{\Delta} = \emptyset$. Now, for i = 1, ..., t, apply Theorem 2 to G_i and f_{i-1} to produce a coloring f_i of G_i . Then by this theorem, the total number of vertices of colors 1, ..., k in $G_t = G$ is at least |V(H)|,
- 5 but it cannot be greater by the maximality of *H*. This proves the corollary. As an additional feature, we have that none of the sizes of the first *k* color classes changed. \Box
- 7 **Corollary 2.** Let $\Delta \ge 3$ and G = (V, E) be a $K_{\Delta+1}$ -free graph with $\Delta(G) \le \Delta$. Let $|V| = n = k(\Delta + 1) + r$, where $0 \le r \le \Delta$. Then G has a Δ -coloring f with color classes $M_1, M_2, \ldots, M_\Delta$ such that
 - (i) $|M_i| \ge k$ for every *i*;

(ii) for every set Z of color classes, $|\bigcup_{M \in \mathbb{Z}} M| \leq k + |Z| \lceil n/\Delta + 1 \rceil$; in particular, $|M_i| \leq k + \lceil n/\Delta + 1 \rceil$ for every i; (iii) if $|M_i| = k + 1 + p$ for some $p \geq 1$, then the degree of every $v \in M_i$ in G is at least $\Delta - (k + r - 1)/p$.

Proof. By the Hajnal–Szemerédi Theorem, G has an equitable (∆ + 1)-coloring f'. Under the conditions of the corollary, exactly r color classes of f' have size k + 1. Let M' be a color class of f' with |M'| = k. Adding the vertices of M' one by one to G - M' and applying Theorem 2 on every step, we get a Δ-coloring f" of G satisfying (i) and (ii).

- Now, consider the following procedure: If a vertex v in a color class M_i of size z has no neighbors in a color class M_i of size at most z 2, then move v from M_i to M_i . Clearly, we will stop after a finite number of steps. We claim
- that the final Δ -coloring f is what we need. Indeed, once a coloring satisfies (i) and (ii), such moves do not destroy these properties. Since we have stopped our procedure, if for some i, we have $|M_i| = k + 1 + p$ and $v \in M_i$, then v
- these properties. Since we have stopped our procedure, if for some *i*, we have $|M_i| = k + 1 + p$ and $v \in M_i$, then *v* has neighbors in every color class of size at most k + p 1. By (i), the number of color classes of size at least k + p. (including M_i) is at most (n - kA - 1)/n = (k + r - 1)/n (here -1 arises because $|M_i| = k + 1 + r$). It follows
- 21 (including M_i) is at most $(n k\Delta 1)/p = (k + r 1)/p$ (here -1 arises, because $|M_i| = k + 1 + p$). It follows that v is adjacent to vertices in at least $\Delta (k + r 1)/p$ color classes.

23 **3. Background for the proof of Theorem 1**

- In this section, we do preparatory work for the proof of Theorem 1: introduce some notions and prove Theorem 1 for $n \leq 8.8\Delta$.
- Let G = (V, E) be a graph with maximum degree Δ and f be a vertex coloring of G with color classes M_1, \ldots, M_{Δ} (some color classes can be empty). For a set Y_0 of color classes of f and a subset V' of V, we define the (V', f)-expansion of Y_0 in G as follows.
- 29 Say that a vertex $w \in V' \bigcup_{M \in Y_0} M$ is a Y_0 -candidate if w has no neighbors in some color class $M(w) \in Y_0$. Let Y_1 be the set of color classes of f containing a Y_0 -candidate. Similarly, for $h \ge 1$, a vertex $w \in V' \bigcup_{M \in Y_0 \cup \dots \cup Y_h} M$ is
- 31 a Y_h -candidate if w has no neighbors in some color class $M(w) \in Y_h$. Let Y_{h+1} be the set of color classes containing a Y_h -candidate. Finally, the set $Y = \bigcup_{i=0}^{\infty} Y_i$ will be called the (V', f)-expansion of Y_0 in G.
- 33 By the construction, we have the following.

Claim 3.1. If Y is the (V', f)-expansion of Y_0 in G, then every vertex $u \in V' - \bigcup_{M \in Y} M$ has a neighbor in every 35 $M \in Y$.

For each $M \in Y - Y_0$, we define an (M, Y)-recoloring as follows. Suppose that $M \in Y_{h+1}$ for some $h \ge 0$. By the definition of Y_{h+1} , M contains a Y_h -candidate $x_{h+1} \in V'$. Furthermore, for j = h, h - 1, ..., 1, the color class $M_j = M(x_{j+1})$ contains a Y_{j-1} -candidate $x_j \in V'$. Then an (M, Y)-recoloring of f is the coloring f' that differs from f only at $x_1, ..., x_{h+1}$: for every $x_j, j = h + 1, h, ..., 1$, we let $f'(x_j) = M_{j-1} = M(x_j)$. For different choices of

- x_1, \ldots, x_{h+1} , we get different recolorings, but the following claim holds by the definition.
- 41 **Claim 3.2.** If $h \ge 0$ and $M \in Y_{h+1}$ for some (V', f)-expansion Y of Y_0 in G and f' is an (M, Y)-recoloring of f, then (a) the sizes of almost all color classes in f and f' are the same, only the size of M decreases by one and the size of 43 one color class in Y_0 increases by one;
 - (b) the colors of vertices in V(G) V' are the same in f and f'. \Box

4

9

11

ARTICLE IN PRESS

TCS5723

1 Lemma 1. Let $\Delta \ge 3$ and G be a $K_{\Delta+1}$ -free n-vertex graph with maximum degree Δ and

 $|E(G)| \leq n\Delta/10.$

3 If $n/\Delta \leq 8.8$, then G has an equitable Δ -coloring.

Proof. Let *G* be an inclusion minimal counterexample to the lemma, and *e* be an edge adjacent to a vertex *v* of the lowest positive degree α . If $\alpha > 0.4\Delta$, then by (1) and the choice of *v*, the cardinality of the set *V'* of non-isolated vertices in *G* is at most $2|E(G)|/\alpha < 2 \cdot 0.1n\Delta/0.4\Delta = n/2$. Applying Lemma 2 to G[V'], we obtain a Δ -coloring of

- 7 G[V'] in which every color class has at most $\lceil n/\Delta \rceil$ vertices and each but one color class has less than $\lceil n/\Delta \rceil$ vertices. Now we can add the remaining isolated vertices to these color classes in order to get the size of every class equal to
- 9 $\lceil n/\Delta \rceil$ or $\lfloor n/\Delta \rfloor$. This contradicts the choice of *G*. Therefore,

$$\deg(v) \leq 0.4\Delta$$
.

(2)

- By the minimality of G, G-e has an equitable Δ -coloring f. We may assume that the color classes of f are M_1, \ldots, M_{Δ} and that $v \in M_{\Delta}$. By the definition, the size of every M_i is either t or t - 1, where $t = \lfloor n/\Delta \rfloor$.
- 13 Let $M_0 = M_{\Delta} v$. Then $f_0 = (M_0, \dots, M_{\Delta-1})$ is a proper coloring of $G_0 = G v$. Let Y_0 denote the set of color classes in f_0 of size $|M_0|$. If some $M_j \in Y_0$ contains no neighbors of v, then $|Y_0| > 1$ and hence $|M_0| = t 1$. In
- this case, we color v_i with M_j and get an equitable Δ -coloring of G, a contradiction. Thus, every $M_j \in Y_0$ contains a neighbor of v. Let $Y = \bigcup_{j=0}^{\infty} Y_j$ be the $(V(G_0), f_0)$ -expansion of Y_0 in G_0 (defined at the beginning of the section)
- 17 and y = |Y|. Suppose that for some $h \ge 0$, a color class M_{h+1} in Y_{h+1} does not contain a neighbor of v. Let f' be an (M, Y)-

19 recoloring of f_0 . By Claim 3.2, if we additionally color v with M_{h+1} , then we obtain an equitable Δ -coloring of G, a contradiction. Thus, every color class in Y contains a neighbor of v and therefore $y \leq \deg_G(v)$.

- 21 Let $V^+ = V(G) \bigcup_{M \in Y} M$.
- Case 1: $|M_0| = t 1$. By the definition of Y_0 , every color class outside of Y has size t. Therefore, $|V^+| = 23 \quad t(\Delta y) \ge n(\Delta y)/\Delta$. By (1) and Claim 3.1, we have

$$\frac{n\Delta}{10} \ge |E(G)| \ge y(\Delta - y)\frac{n}{\Delta}.$$
(3)

- 25 For $\lambda = y/\Delta$, (3) gives $\lambda^2 \lambda + 0.1 \ge 0$. It follows that either $\lambda > 0.88$ or $\lambda < 0.12$. The former contradicts (2), so $y < 0.12\Delta$. Since every vertex in V^+ is adjacent to M_0 , we get $\Delta(t-1) \ge t(\Delta y)$, i.e., $ty \ge \Delta$. This yields $t > \frac{1}{0.12} > 8$,
- 27 which means $n > 8\Delta$ and $t \ge 9$. Furthermore, since every color class outside of *Y* has size *t* and $y < 0.12\Delta$, we get

$$n \ge t(\varDelta - y) + (t - 1)y \ge 9\varDelta - y \ge 8.88\varDelta.$$

- 29 Case 2: $|M_0| = t 2$. Recall that no other color class has size less than t 1. Suppose that some $M \in Y$, say, $M \in Y_h$ has t vertices. Then any (M, Y)-recoloring f' of f_0 satisfies the conditions of Case 1 with $M_h x_h$ in place of M_0 . Since
- 31 Case 1 is proved, we can assume that every $M \in Y$ has at most t 1 vertices. It follows that the average size of color classes outside of Y is higher than in Y, and therefore higher than n/Δ . Thus, (3) holds, and we get $y < 0.12\Delta$ exactly as
- in Case 1. Similarly to Case 1, we obtain $\Delta(t-2) \ge (t-1)(\Delta y)$, i.e., $(t-1)y \ge \Delta$. It follows that $t-1 > \frac{1}{0.12} > 8$. Since t-1 is an integer, we have $n/\Delta > t-1 \ge 9$. \Box

35 4. The bounded-size version of Theorem 1

An *l-bounded* coloring of a graph *G* is a proper vertex coloring of *G* in which the size of each color class is at most *l*. Clearly, every equitable *k*-coloring of an *n*-vertex graph is [n/k]-bounded, but not every [n/k]-bounded *k*-coloring of an *n*-vertex graph is equitable. Thus, the theorem below is a weaker statement than Theorem 1.

39 **Theorem 3.** Let Δ , $n \ge 46$. Suppose that an n-vertex graph G = (V, E) has maximum degree at most Δ and $|E| \le \Delta n/5$. If G does not contain $K_{\Delta+1}$, then G has an $\lceil n/\Delta \rceil$ -bounded coloring with Δ colors.

5

(1)

ARTICLE IN PRESS

6

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

- 1 **Proof.** Let *G* be a $K_{\Delta+1}$ -free graph with maximum degree $\Delta \ge 46$ and average degree at most $\Delta/5$. Let $t = \lceil n/\Delta \rceil$. Let
 - $V_l = \{v_1, \ldots, v_l\}$ be the set of vertices of degree at least $4\Delta/5$. For $i = l + 1, \ldots, n$, consider the following procedure:
- 3 (1) let Δ_i be the maximum degree in $G V_{i-1}$;
- (2) if $\Delta_i \ge 2\Delta/5$, then let v_i be a vertex of degree Δ_i in $G V_{i-1}$;
- 5 (3) if $\Delta_i < 2\Delta/5$, then let v_i be a vertex of maximum degree in G among vertices in $G V_{i-1}$;
- (4) let $V_i = V_{i-1} \cup \{v_i\}$ and $G_i = G[V_i]$.
- 7 Note that, in general, the resulting ordering is not unique.

Claim 4.1. Let *m* be the largest index *i* such that $\Delta_i \ge 2\Delta/5$. Then $m \le \lfloor n/4 \rfloor$.

9 **Proof.** By the definition, every v_i for $l + 1 \le i \le m$ has at least $2\Delta/5$ adjacent vertices v_j with j > i. Therefore, *G* contains at least $(m - l)2\Delta/5$ edges not incident with v_1, \ldots, v_l . Thus, if $\Delta/4 < m$, then

11
$$|E(G)| \ge l \cdot \frac{4\Delta}{5 \cdot 2} + (m-l) \cdot \frac{2\Delta}{5} > \frac{n}{4} \frac{2\Delta}{5} = \frac{\Delta n}{10},$$

a contradiction. \Box

- 13 Suppose that $m = k(\Delta + 1) + r$ with $0 \le r \le \Delta$. Then G_m has a proper Δ -coloring $f_m = (M_1^m, \dots, M_{\Delta}^m)$ satisfying Corollary 2. Note that by Claim 4.1, $k + \lceil m/\Delta + 1 \rceil = \lfloor m/\Delta + 1 \rfloor + \lceil m/\Delta + 1 \rceil < t$. Therefore, f_m is a *t*-bounded 15 coloring of G_m .
- We will now complete f_m to a *t*-bounded Δ -coloring of G by constructing consecutively colorings f_i of G_i for i = 1 + m, 2 + m, ..., n, in such a way that

$$f_i(v) = f_m(v)$$
 for every $v \in V_m$. (4)

- 19 Observe that f_m satisfies (4). Now, suppose that $m + 1 \le i \le n$ and G_{i-1} has a *t*-bounded coloring f_{i-1} satisfying (4). We will construct f_i for G_i .
- 21 Let M_1, \ldots, M_{Δ} be the color classes of f_{i-1} . Let Y_0 denote the set of color classes of cardinality less than *t*. If some $M_i \in Y_0$ contains no neighbors of v_i , then we color v_i with M_i and have a *t*-bounded coloring f_i satisfying (4).
- 23 Otherwise, let $Y = \bigcup_{j=0}^{\infty} Y_j$ be the $(V_{i-1} V_m, f_{i-1})$ -expansion of Y_0 in G_{i-1} (defined in Section 3) and y = |Y|. If for some $h \ge 0$, a color class M_{h+1} in Y_{h+1} does not contain a neighbor of v, then consider an (M, Y)-recoloring
- 25 f' of f_{i-1} . By Claim 3.2(a), if we additionally color v_i with M_{h+1} , then we obtain a *t*-bounded Δ -coloring of G_i . Moreover, by Claim 3.2(b), this new coloring also satisfies (4), as required. Thus, we may assume that every color class
- in Y contains a neighbor of v. This together with the definition of Y_0 and Claim 3.1 yields the following.

Claim 4.2. If G_i has no t-bounded coloring f_i satisfying (4), then the $(V_{i-1} - V_m, f_{i-1})$ -expansion Y of Y_0 in G_{i-1} possesses the following properties:

- (a) every color class in Y contains a neighbor of v_i and thus $y \leq \deg_G(v_i)$,
- 31 (b) every vertex $u \in V_{i-1} V_m \bigcup_{M \in Y} M$ has a neighbor in every $M \in Y$,
 - (c) every color class outside of Y has t vertices.
- 33 Let

$$V^- = V_m - \bigcup_{M \in Y} M$$

35 and

$$V^+ = V_{i-1} - V_m - \bigcup_{M \in Y} M = V_{i-1} - \bigcup_{M \in Y} M - V^-.$$

37 **Claim 4.3.** Using the notation above, $|V^-| \leq 3n/8\Delta(\Delta - y)$.

ARTICLE IN PRESS

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

1 **Proof.** Recall that $m = k(\varDelta + 1) + r$ with $0 \le r \le \varDelta$. By Corollary 2(ii),

$$V^{-}| \leqslant k + \left\lceil \frac{m}{\varDelta + 1} \right\rceil (\varDelta - y) \leqslant \frac{n}{4\varDelta} + \left\lceil \frac{n}{4\varDelta} \right\rceil (\varDelta - y).$$

3 Since $\Delta \ge 46$ and i > l, we have $\Delta - y \ge \Delta/5 > 9$. By Lemma 1, $n/4\Delta \ge 2.2$ and therefore, $\lceil n/4\Delta \rceil \le \frac{3}{2.2} \cdot n/4\Delta$. It follows that

$$_{5} \qquad |V^{-}| \leqslant (\varDelta - y) \left(\frac{n}{4\varDelta(\varDelta - y)} + \frac{3}{2.2} \cdot \frac{n}{4\varDelta} \right) \leqslant \frac{n}{4\varDelta} \left(\varDelta - y \right) \left(\frac{1}{10} + \frac{3}{2.2} \right) < \frac{3n}{8\varDelta} \left(\varDelta - y \right).$$

This proves the claim. \Box

7 **Claim 4.4.** The size y of Y is less than 0.15Δ .

Proof. By Claim 4.2(b), at least $y|V^+|$ edges connect V^+ with $\bigcup_{M \in Y} M$. Recall that every v_q for $l + 1 \le q \le m$ has at least $2\Delta/5$ adjacent vertices v_j with j > q. Thus, at least $0.4\Delta|V^-|$ edges of *G* are incident with V^- and hence

$$|E(G)| \ge y|V^+| + \frac{y}{2}|V^-|.$$

11 Since $|V(G) - \bigcup_{M \in Y} M| \ge t(\Delta - y) \ge n/\Delta(\Delta - y)$, we have

$$|E(G)| \ge y\left((\varDelta - y)\frac{n}{\varDelta} - |V^-|\right) + \frac{y}{2}|V^-| \ge y\left((\varDelta - y)\frac{n}{\varDelta} - \frac{y}{2}|V^-|\right).$$

13 This and Claim 4.3 yield

$$\frac{n\Delta}{10} \ge y \left(\frac{n}{\Delta} \left(\Delta - y\right) - \left(\Delta - y\right) \frac{3n}{16\Delta}\right) = \frac{13}{16} yn \left(1 - \frac{y}{\Delta}\right).$$

- 15 Denoting $\lambda = y/\Delta$ and dividing both parts by $n\Delta$, we obtain $\frac{1}{10} \ge \frac{13}{16}\lambda(1-\lambda)$. Solving this inequality, we get $\lambda > 0.85$ or $\lambda < 0.15$. Since $i > m \ge l$, we have $y \le \deg(v_i) < 0.8\Delta$. We conclude that $\lambda = y/\Delta < 0.15$. \Box
- 17 **Claim 4.5.** The size of V^+ is greater than $\frac{2n}{3}$.

Proof. Assume that $|V^+| \leq \frac{2n}{3}$. As in the proof of Claim 4.4, at least $y|V^+|$ edges connect V^+ with $\bigcup_{M \in Y} M$ and at least $0.4\Delta |V^-|$ edges are incident with V^- . Hence

$$|E(G)| \ge y|V^+| + 0.4\Delta \left((\Delta - y) \frac{n}{\Delta} - |V^+| \right) \ge |V^+|(y - 0.4\Delta) + 0.4\frac{n}{\Delta}\Delta(\Delta - y).$$

21 Recall that $y < 0.15 \Delta$ by Claim 4.4 and $|V^+| \leq \frac{2n}{3}$. Thus the last inequality yields

$$\frac{n\varDelta}{10} > \frac{2n}{3} \left(y - 0.4\varDelta \right) + 0.4n(\varDelta - y).$$

23 Dividing both parts by $n\Delta$, we obtain

$$\frac{1}{10} > \frac{2}{3}\frac{y}{4} - \frac{8}{30} + \frac{2}{5} - \frac{2y}{54}$$

25 which is false for $y/\Delta \ge 0$. This contradiction proves the claim. \Box

Claim 4.6. Let M_1 be a color class of the smallest size in Y. Then

$$|M_1| \leqslant \frac{n+y}{\varDelta} - 1. \tag{5}$$

Proof. Since v_i is not colored, $|M_1| < n/\Delta$. If $|M_1| \le t - 2$, the conclusion is obvious. Suppose that $|M_1| = t - 1$. 29 Since every color class not in *Y* has size *t*, by the minimality of $|M_1|$, $n + y \ge t\Delta$. This proves the claim. \Box

ARTICLE IN PRESS

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

1 Now we are ready to finish the proof. Define $z = 4n/9\Delta + \frac{17}{30}$. *Case* 1: $|M_1 \cap V_m| \le z$. Then the number of neighbors of M_1 is at most $z\Delta + (|M_1| - z)(2\Delta/5) = z(3\Delta/5) + |M_1|2\Delta/5$.

3 By Claims 4.6 and 4.4, this is less than

$$\left(\frac{4n}{9\Delta} + \frac{17}{30}\right)\frac{3\Delta}{5} + \left(\frac{n}{\Delta} - 0.85\right) \cdot \frac{2\Delta}{5} = \frac{2n}{3}.$$
(6)

5 Since every vertex in V^+ is a neighbor of M_1 , (6) contradicts Claim 4.5.

Case 2: $|M_1 \cap V_{\mu}| = z + x$, where x > 0. We will prove that M_1 has at most $z(3\Delta/5) + |M_1|(2\Delta/5)$ neighbors in 7 V^+ , which by (6) would give the same contradiction as in Case 1.

By Corollary 2(iii), every vertex of $M_1 \cap V_m$ has at most (k + r - 1)/(z + x - k - 1) neighbors in V^+ . Thus, it is 9 enough to prove that

$$\frac{k+r-1}{z+x-k-1}(z+x) \leqslant z\varDelta + x\,\frac{2\varDelta}{5},\tag{7}$$

since the RHS of (7) is the maximum amount contributed by z + x vertices to $z\Delta + (|M_1| - z)(2\Delta/5)$ in Case 1. Note that (7) is equivalent to

13
$$\left(z\varDelta + x\frac{2\varDelta}{5}\right)(z+x-k-1) - (k+r-1)(z+x) \ge 0.$$
 (8)

For x = 0, (8) becomes

15
$$z \Delta (z+k-1) - z(k+r-1) \ge 0$$
,

which reduces to

21

29

$$17 z \ge \frac{k+r-1}{\varDelta} + k + 1. (9)$$

Recall that $m = k(\varDelta + 1) + r \leq \lfloor n/4 \rfloor$, i.e., $n \geq 4(k\varDelta + k + r)$, and that $z = 4n/9\varDelta + \frac{17}{30}$. It follows that

19
$$z \ge \frac{16k}{9} + \frac{16}{9}\frac{k+r}{4} + \frac{17}{30},$$
 (10)

which yields (9) for $k \ge 1$. This proves (8) for x = 0.

Now consider the LHS of (8) as a function g(x). Then

$$g'(x) = \frac{2\Delta}{5}(z+x-k-1) + \left(z\Delta + x\frac{2\Delta}{5}\right) - (k+r-1) = \frac{4\Delta}{5}x + \frac{7\Delta}{5}z - \frac{2\Delta}{5}(k+1) - (k+r-1).$$

23 We want to show that $g'(x) \ge 0$ for every x > 0. This would prove (8) and thus the theorem. By the last equality, the condition $g'(x) \ge 0$ is equivalent to

25
$$\frac{7}{5}z \ge \frac{2}{5}(k+1) - \frac{k+r-1}{\Delta}$$

This inequality is implied by (10) for $k \ge 1$. \Box

27 5. Proof of Theorem 1

The algorithm in the previous section produces a *t*-bounded Δ -coloring of *G*, but this coloring might have 'small' color classes. In order to 'correct' the coloring, we use a slight variation of the technique used above.

- Consider *t*-bounded colorings of G obtained in the course of proof of Theorem 3. In particular, each vertex $v \in V(G) V_m$ has at most 0.8 Δ neighbors in G and at most 0.4 Δ neighbors in $G V_m$. Among such colorings with a
- fixed coloring f_m of $G[V_m]$ satisfying Corollary 2, choose a coloring f_0 with fewest color classes of size t. We will prove that f_0 has no color classes of size t = 2 or less
- 33 prove that f_0 has no color classes of size t 2 or less.

8

ARTICLE IN PRESS

A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

(11)

- 1 Let Y_0 be the set of color classes of size at most t 2 and assume that Y_0 is non-empty. Let $Y = \bigcup_{j=0}^{\infty} Y_j$ be the $(V(G) V_m, f_0)$ -expansion of Y_0 in G and y = |Y|.
- 3 **Claim 5.1.** *Y possesses the following properties:*
- (a) every vertex $u \in V(G) V_m \bigcup_{M \in Y} M$ has a neighbor in every $M \in Y$,
- 5 (b) every color class in Y has at most t 1 vertices,
 - (c) every color class outside of Y has at least t 1 vertices.
- 7 **Proof.** Claim 3.1 implies (a), and the definition of Y_0 yields (c). To prove (b), assume by contradiction that for some $h \ge 0$, a color class M_{h+1} in Y_{h+1} has cardinality t. Consider an (M, Y)-recoloring f' of f_0 . By Claim 3.2(a), f'
- 9 is a *t*-bounded Δ -coloring of G with fewer color classes of size *t*. Moreover, by Claim 3.2(b), f' satisfies (4). This contradicts the choice of f_0 . \Box

11 Since there is a color class M' of size $t, y < \Delta$. Since every vertex in $M' - V_m$ has neighbors in each color class of Y,

$$y \leq 0.8 \Delta$$
.

13 Let

$$V^- = V_m - \bigcup_{M \in Y} M$$

15 and

$$V^+ = V - V_m - \bigcup_{M \in Y} M = V - \bigcup_{M \in Y} M - V^-$$

17 Now, Claim 4.3 holds: the proof simply repeats that in the previous section. By Claim 5.1(b) and (c),

$$\left| V(G) - \bigcup_{M \in Y} M \right| \ge (\Delta - y) \frac{n}{\Delta}.$$
(12)

19 Thus we can essentially repeat the proofs of Claims 4.4 and 4.5, and conclude that they hold for our *Y*. Let $M_1 \in Y_0$. By the definition of Y_0 , $|M_1| \le t - 2 < n/\Delta - 1$, which is stronger than Claim 4.6. Therefore, all the

21 calculations in the previous section following Claim 4.6 go through and we get a contradiction to our assumption.

References

- 23 [1] B. Baker, E. Coffman, Mutual exclusion scheduling, Theorot. Comput. Sci. 162 (1996) 225–243.
- [2] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Scheduling Computer and Manufacturing Processes, second ed., Springer, Berlin, 2001, p. 485.
- [3] B.-L. Chen, K.-W. Lih, P.-L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443-447.
- 27 [4] B.-L. Chen, K.-W. Lih, J.-H. Yan, A note on equitable coloring of interval graphs, Manuscript, 1998.
- [5] R. Diestel, Graph Theory, Springer, New York, 1997.
- 29 [6] A. Hajnal, E. Szemerédi, Proof of conjecture of Erdős, in: P. Erdős, A. Rényi, V.T. Sós (Eds.), Combinatorial Theory and its Applications, Vol. II, North-Holland, Amsterdam, 1970, pp. 601–603.
- 31 [7] S. Irani, V. Leung, Scheduling with conflicts and applications to traffic signal control, in: Proc. of Seventh Annu. ACM-SIAM Symp. on Discrete Algorithms, Atlanta, GA, SIAM, Philadelphia, PA, 1996, pp. 85–94.
- 33 [8] S. Janson, A. Ruciński, The infamous upper tail, Random Structures and Algorithms 20 (2002) 317–342.
- [9] F. Kitagawa, H. Ikeda, An existential problem of a weight-controlled subset and its application to school timetable construction, Discrete Math.
 35 72 (1988) 195–211.
- [10] A.V. Kostochka, K. Nakprasit, Equitable colorings of k-degenerate graphs, Combinatorics, Probab. Comput. 12 (2003) 53-60.
- 37 [11] A.V. Kostochka, M.J. Pelsmajer, D.B. West, A list analogue of equitable coloring, J. Graph Theory 44 (2003) 166–177.
- [12] J. Krarup, D. de Werra, Chromatic optimisation: limitations, objectives, uses, references, European J. Oper. Res. 11 (1982) 1–19.
- 39 [13] K.-W. Lih, The equitable coloring of graphs, in: D.-Z. Du, P. Pardalos (Eds.), Handbook of Combinatorial Optimization, Vol. 3, Kluwer, Dordrecht, 1998, pp. 543–566.
- 41 [14] K.-W. Lih, P.-L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996) 155–160.
- [15] L.S. Mel'nikov, V.G. Vizing, New proof of Brooks' theorem, J. Combin. Theory 7 (1969) 289–290.
- 43 [16] S.V. Pemmaraju, Equitable colorings extend Chernoff–Hoeffding bounds, in: Proc. of Fifth Internat. Workshop on Randomization and Approximation Techniques in Computer Science, APPROX-RANDOM 2001, 2001, pp. 285–296.

10

ARTICLE IN PRESS A.V. Kostochka, K. Nakprasit / Theoretical Computer Science III (IIII) III-III

TCS5723

- 1 [17] B.F. Smith, P.E. Bjorstad, W.D. Gropp, Domain decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 1996, p. 224.
- 3 [18] A. Tucker, Perfect graphs and an application to optimizing municipal services, SIAM Rev. 15 (1973) 585–590.
- [19] D.B. West, Introduction to Graph Theory, secon ed., Prentice Hall, Upper Saddle River, 2001.
- 5 [20] H.-P. Yap, Y. Zhang, The equitable Δ-colouring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sinca 25 (1997) 143–149.
 - [21] H.-P. Yap, Y. Zhang, Equitable colourings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998) 97-105.

Acorestication