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Abstract

For a fixed multigraph H with vertices w1, . . . , wm, a graph G is H-linked if for every choice of vertices v1, . . . , vm in G, there
exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k-linked,
k-connected, and k-ordered graphs.

Given a connected multigraph H with k edges and minimum degree at least two and n�7.5k, we determine the least integer d
such that every n-vertex simple graph with minimum degree at least d is H-linked. This value D(H, n) appears to equal the least
integer d ′ such that every n-vertex graph with minimum degree at least d ′ is b(H)-connected, where b(H) is the maximum number
of edges in a bipartite subgraph of H.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let H be a multigraph. An H-subdivision in a graph G is a pair of mappings f : V (H) → V (G) and g : E(H) into
the set of paths in G such that:

(a) f (u) �= f (v) for all distinct u, v ∈ V (H) and
(b) for every uv ∈ E(H), g(uv) is an f (u)f (v)-path in G, and distinct edges map into internally disjoint paths in G.

A graph G is H-linked if every injective mapping f : V (H) → V (G) can be extended to an H-subdivision in G. This
is a natural generalization of k-linkage.

Recall that a graph is k-linked if for every list of 2k vertices {s1, . . . , sk, t1, . . . , tk}, there exist internally disjoint
paths P1, . . . , Pk such that each Pi is an si, ti-path. By the definition, a graph G is k-linked if and only if G is H-linked
for every graph H with |E(H)| = k and �(H)�1. It is known that a graph G on at least 2k vertices is k-linked if and
only if G is Mk-linked, where Mk is the matching with k edges.

Let Bk denote the (multi)graph with two vertices and k parallel edges. By Menger’s theorem, a simple graph G on
at least k + 1 vertices is k-connected if and only if G is Bk-linked.
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A graph is k-ordered, if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the
sequence in the given order. Let Ck denote the cycle of length k. Clearly, a simple graph G is k-ordered if and only if
G is Ck-linked.

Thus, the notion of H-linked graphs is a joint generalization of the notions of k-linked, k-ordered and k-connected
graphs. Minimum degree conditions for graphs to be k-ordered or k-linked were considered by several authors (see
[2,4–10]). Let D(n, k) be the minimum positive integer d such that every n-vertex simple graph with minimum degree
at least d is k-linked (i.e., G is H-linked for every H with k edges). It was proved in [5] that

D(n, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − 1, n�3k − 1,⌊
n + 5k

3

⌋
− 1, 3k�n�4k − 2,

⌈
n − 3

2

⌉
+ k, n�4k − 1.

(1)

In fact, Egawa et al. [1] obtained a very similar result earlier in a bit different setting. In [8], we proved that the degree
condition can be weakened if H has minimum degree at least two.

Theorem 1. Let H be a loopless graph with k edges and �(H)�2. Every simple graph G of order n�5k + 6 with
�(G)��(n + k)/2� − 1 is H-linked.

The minimum degree condition in Theorem 1 is sharp for all bipartite graphs H. The restriction n�5k + 6 probably
can be weakened to about n�3k, but not more. The main result of the present paper refines the bound of Theorem 1
for non-bipartite connected multigraphs H, but under stronger restrictions on n.

Theorem 2. Let H be a loopless connected graph with k edges and �(H)�2. Let b(H) denote the maximum number of
edges over all bipartite subgraphs of H. Then every simple graph G of order n�7.5k with �(G)��(n + b(H))/2� − 1
is H-linked.

In the next section we present examples illustrating the theorem and start the proof of the upper bound. We assume
that there is no appropriate H-subdivision for some choice of branching vertices in G and consider an optimal in some
sense subgraph with a vertex set X. In Section 3, we estimate |X|. In Section 4 we finish the proof.

2. Preliminaries

First, we observe that the restriction �(G)��(n + b(H))/2� − 1 in Theorem 2 cannot be weakened for any n�3k

and any H. Indeed, let G be the n-vertex graph with V (G) = V0 ∪ V1 ∪ V2 such that G[V1] = K�(n−b(H)+1)/2�,
G[V2] = K	(n−b(H)+1)/2
, and each vertex in V0 (with |V0| = b(H) − 1) is adjacent to all other vertices in G. Then
�(G) = 	(n + b(H) − 1)/2
 − 1.

Suppose that b(H) edges in H connect disjoint X ⊂ V (H) and Y = V (H) − X. We claim that G does not contain a
subdivision of H such that X is mapped into V1 and Y is mapped into V2. This is because b(H) edges of H should be
mapped into b(H) internally disjoint V1, V2-paths passing through V0, but |V0| = b(H) − 1.

Now we start the proof of the upper bound. Let f : V (H) → V (G) be an injective mapping and W = f (V (H)).
Let E(H) = {ej = u0

j v
0
j : 1�j �k}. Let uj = f (u0

j ) and vj = f (v0
j ). Since �(H)�2, we have |W | = |V (H)|�k.

Say that a family C of the form {P1, . . . , Pk} is a partial H-linkage if each Pj is either the set {uj , vj } or a uj , vj -path
and the following properties hold:

(1) |X|� |W | + 2(k − b(H) + �) + 3, where X = ⋃k
j=1V (Pj ) and � is the number of Pj ’s that are paths and

(2) the internal vertices of the paths Pj ’s are pairwise disjoint and disjoint from W.

Consider C0 ={{u1, v1}, . . . , {uk, vk}}. This family satisfies properties (1) and (2) above with X =⋃k
j=1{uj , vj }=W

and �=0. Therefore,C0 is a partial H-linkage. If all the Pj ’s in a partial H-linkageC are paths, thenC is an H-subdivision
in G.
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A partial H-linkage C = {P1, . . . , Pk} is optimal, if as many as possible of the Pj ’s are paths and subject to this the
set X = ⋃k

j=1V (Pj ) is as small as possible. We will prove that each optimal H-linkage is an H-subdivision in G.
Suppose for a contradiction that C={P1, . . . , Pk} is an optimal partial H-linkage but is not an H-subdivision. Let, for

definiteness, Pk ={uk, vk} and ukvk /∈ E(G). Let X=⋃k
j=1V (Pj ), x=uk , and y=vk . Let A=N(x)−X, B=N(y)−X,

and R = V (G) − (X ∪ A ∪ B).
It is well known (see, e.g., [11]) that

b(H)�(k + 1)/2 (2)

for every H with k > 0 edges. Therefore, each of A and B has size at least

�(G) − (|X| − 2)� n + b(H) − 2

2
− (|W | + 2(k − b(H) + (k − 1)) + 3 − 2)

� 7.5k + b(H) − 2

2
− 5k + 2b(H) + 1 = 1.25(2b(H) − k) > 1.25.

It follows that we may choose distinct a1, a2 ∈ A and b1, b2 ∈ B.
For v ∈ V (G), let dj (v) denote the number of neighbors of v ‘inside’ Pj plus �j = 1/degH (u0

j ) if uj ∈ NG(v) and

plus �j = 1/degH (v0
j ) if vj ∈ NG(v). For example, if Pj = ujw1w2vj , degH (u0

j ) = 3 and v is adjacent to uj and w2

in Pj , then dj (v) = 4
3 . It is easy to check that

k∑
j=1

dj (v) = |NG(v) ∩ X| ∀v ∈ V (G). (3)

Let lp be the number of Pj ’s of length p for p�1, and l0 be the number of Pj that are not paths. Then

|X| = |W | +
∑
p�1

(p − 1)lp =
k∑

j=1

(�j + �j ) +
∑
p�1

(p − 1)lp (4)

and

k =
∑
p�0

lp = � + l0. (5)

3. A bound on the size of X

We will assume that every path Pj is of the form Pj = uj , w1,j , . . . , wpj −1,j , vj . Sometimes, for simplicity we will
write p instead of pj and wi instead of wi,j if j is clear from the context. In the rest of the paper, for every j = 1, . . . , k,
we denote �j = 1/degH (u0

j ), �j = 1/degH (v0
j ), Mj = dj (x) + dj (y), and Lj = dj (a1) + dj (a2) + dj (b1) + dj (b2).

The following lemma (which is Lemma 5 in [8]) will be very helpful.

Lemma 3. For a Pj = uj , w1, . . . , wp−1, vj , let sj = Mj + 0.5Lj , � = �j , and � = �j . Define

D1(p, �, �) =
{

p + 1 + 2� + 2�, for p�1,

p + 3 + 2� + 2�, for p�2.

Then

(a) sj �D1(p, �, �) and
(b) sk �2(�k + �k).

Furthermore, if xy /∈ E(G), then sk = �k + �k .

Based on Lemma 3, we prove the following.
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Lemma 4. Let Z ={a1, a2, b1, b2} and V0 = (A∪B)−Z −NG(Z). Then |X|� |W | + 2(�+ k − b(H))− |R| − |V0|.

Proof. Let

�′ = degG(x) + degG(y) + 1
2 (degG(a1) + degG(a2) + degG(b1) + degG(b2)). (6)

Every vertex w ∈ A ∪ B contributes to �′ at most 2: if w ∈ A (respectively, w ∈ B), then it is not adjacent to y, b1,
and b2 (respectively, to x, a1, and a2). By the definition, every vertex in V0 is not adjacent to any vertex in Z and to at
least one of x and y. Therefore, every vertex in V0 contributes to �′ at most 1. Furthermore, every z ∈ Z contributes to
�′ at most 1.5, since it is not adjacent to itself. Thus, in total A ∪ B contributes to �′ at most 2|A ∪ B| − |V0| − 0.5|Z|.
Every r ∈ R contributes to �′ at most 2. By the definition, for every j, the vertices of Pj contribute to �′ exactly sj .
Therefore,

�′ �2|A ∪ B| − 2 + 2|R| +
k∑

j=1

sj − |V0|. (7)

By Lemma 3,

k∑
j=1

sj � l0 + 2l1 +
∑
p�2

(p + 3)lp + 2
k∑

j=1

(�j + �j ) − 1

= l0 + 2l1 +
∑
p�2

(p + 3)lp + 2|W | − 1. (8)

Therefore,

�′ �2(|A| + |B| + |W |) + 2|R| − |V0| − 3 + l0 + 2l1 +
∑
p�2

(p + 3)lp. (9)

Combining with (4) and (5), we get

|X| + �′ �2n + |W | + 2k + 2� − 3 − l0 − 2l1 − |V0|.
By (2), �(G)�((n + b(H))/2) − 1 and hence �′ �2n + 2b(H) − 4. Thus,

|X|� |W | + 2(k − b(H) + �) − l0 − 2l1 − |V0| + 1� |W | + 2(k − b(H) + �) − |V0|. (10)

If an r ∈ R has a neighbor a0 ∈ A and a neighbor b0 ∈ B, then one can add to C the path Pk = x, a0, r, b0, y. The
new set of paths will be a better partial linkage, since the new X would have size at most |W | + 2(k − b(H) + �) +
3 = |W | + 2(k − b(H) + � + 1) + 1. Since this contradicts the choice of C, no r ∈ R has both a neighbor in A and a
neighbor in B. Thus, every r ∈ R contributes to �′ at most 1, and (7) becomes

�′ �4 · 1.5 + 2(|A ∪ B| − 4) + |R| +
k∑

j=1

sj − |V0|.

Correspondingly, (10) transforms into

|X|� |W | + 2(k − b(H) + �) − |V0| − |R|. � (11)

This lemma has the following two immediate consequences.

Lemma 5. |A| + |B| > 3k.

Proof. By Lemma 4, |A| + |B| = n − (|X| + |R|)�n − (|W | + 2(k − b(H) + �))�7.5k − (k + 2(k − ((k + 1)/2) +
k − 1)) > 3k. �



1546 A. Kostochka, G. Yu / Discrete Applied Mathematics 156 (2008) 1542–1548

Lemma 6. Each v ∈ V (G) is adjacent to at least three vertices in A∪B−V0. In particular, either v has two neighbors
in A that belong or are adjacent to the set {a1, a2}, or two neighbors in B that belong or are adjacent to the set {b1, b2}.

Proof. By Lemma 4, �(G)− (|X|+|R|+|V0|)�0.5(7.5k+b(H)−2)−|W |−2(k−b(H)+�)�3.75k+0.5b(H)−
1 − k − 2(k − b(H)+ k − 1)= 1.25(2b(H)− k)+ 1 > 2. Thus each vertex has at least three neighbors in V (G)−X −
R − V0. �

For given a1, a2 ∈ A, b1, b2 ∈ B, let A′′ = A′′(a1, a2) (respectively, B ′′ = B ′′(b1, b2)) denote the set of vertices in
X having at least two neighbors in A (respectively, in B) that belong or are adjacent to the set {a1, a2} (respectively,
{b1, b2}). The above lemma yields that for every choice of a1, a2, b1, and b2,

A′′ ∪ B ′′ = X. (12)

4. Proof of Theorem 2

Lemma 7. For every non-adjacent s, t ∈ A (or B), |N(s) ∩ N(t) − X|�3.

Proof. Suppose to the contrary that a1, a2 ∈ A, a1a2 /∈ E(G) and the cardinality of the set T of common neighbors of
a1 and a2 outside of X is at most two. Consider arbitrary b1, b2 ∈ B and let Z = {a1, a2, b1, b2}. Then the contribution
of every a ∈ A − Z − T to the sum �′ defined in (6) is at most 1.5. Thus, repeating the proof of Lemma 4, instead of
(11), we will get |X|� |W | − |R| + 2(k − b(H) + �) − |V0| − 0.5(|A − V0| − 4). In other words,

|X| + 0.5|A| + |R|� |W | + 2(k − b(H) + �) + 2�5k − 2b(H). (13)

On the other hand, degG−X(a1) + degG−X(a2)� |A| + |T | + |R| − 2 (the −2 arises because neither of a1 and a2 is
adjacent to a1 or a2). It follows that

2
n + b(H)

2
− 2�2�(G)�2|X| + |A| + |R|,

which together with (13) yields n + b(H) − 2�2(5k − 2b(H)). Thus, n�10k − 5b(H) + 2�10k − 5((k + 1)/2) +
2 = 7.5k − 0.5, a contradiction. �

For the rest of the section, we fix some distincta1, a2 ∈ A andb1, b2 ∈ B, and letA′′=A′′(a1, a2) andB ′′=B ′′(b1, b2).
The next fact from [6] was used in [8].

Lemma 8. Let X be optimal, 1�j �k − 1, and either {uj , vj } ⊂ A′′ or {uj , vj } ⊂ B ′′. Then for each a ∈ A and
b ∈ B,

(N(a) ∩ N(b) ∩ Pj )\{uj , vj } = ∅.

Proof. Assume to the contrary that r ∈ N(a)∩N(b)∩Pj\{uj , vj }. Let P ′
k = (x, a, r, b, y). Without loss of generality,

assume that {uj , vj } ⊂ A′′. Then there exist s ∈ N(uj ) ∩ A\{a} and t ∈ N(vj ) ∩ A\{a}. If s = t or s is adjacent to t,
then let P ′

j = (uj , s, t, vj ).
If s and t are non-adjacent, then by Lemma 7, we have |(N(s) ∩ N(t))\X|�3, and therefore there exists

q ∈ N(s)∩N(t)\(X∪{a, b}). In this case, let P ′
j =(uj , s, q, t, vj ). In both cases, P ′

j is a path disjoint from P ′
k . Thus, in

both cases we increase the number of Pj ’s that are paths by one and, by (11), maintain |X|� |W |+2(k−b(H)+�+1)+2.
This is a contradiction. �

Lemma 9. Let X be optimal, 1�j �k − 1, Pj = (w0, w1, . . . , wp), where w0 = uj ∈ A′′ and wp = vj ∈ B ′′. If
some wi , 1� i�p − 1 has a neighbor a0 ∈ A ∪ {x} and a neighbor b0 ∈ B ∪ {y}, then each wi′ for i < i′ �p has no
neighbors in A − a0 and each wi′′ for 0� i′′ < i has no neighbors in B − b0.

Proof. Suppose some wi′ for i < i′ �p has a neighbor a′ ∈ A − a0. By the definition of A′′, uj has a neighbor
a′′ ∈ A − a0. By Lemma 7, the length of a shortest path P ′ from a′′ to a′ in G[A − a0] is at most two. Thus, we
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can replace Pj by the path (uj , a
′′, P ′, a′, wi′ , P ′

j , vj )(where P ′
j is the part of Pj connecting wi′ with vj ) and add

the path Pk = (x, a0, wi, b0, y). The new set of � + 1 paths has at most |X| + 5 vertices, which by (11) is at most
|W | + 2(k − b(H) + � + 1) + 3, a contradiction to the choice of C. �

Similarly to dj (v), let dj (u, v) denote the number of common neighbors of u and v ‘inside’ Pj plus �j · |N(u) ∩
N(v) ∩ {uj }| plus �j · |N(u) ∩ N(v) ∩ {vj }|.
Lemma 10. Let C be optimal, a ∈ A, b ∈ B. Then there exists some j = j (a, b) such that dj (a, b) > 1.

Proof. Since N(a) ∩ N(b) ∩ (V (G) − X + x + y) = ∅, we have

k−1∑
j=1

dj (a, b) = |N(a) ∩ N(b)|�2�(G) − (n − 2)�b(H). (14)

Suppose that dj (a, b)�1 for each 1�j �k − 1. We will find an edge cut in H with more than
∑k−1

j=1dj (a, b) edges,
a contradiction to (14). Let E′ be the set of edges ej in H such that an internal vertex of Pj is in N(a) ∩ N(b). Let
V ′ be the set of vertices u0 in H such that the vertex f (u0) (i.e., the branching vertex in G corresponding to u0) is
in N(a) ∩ N(b). By our assumption, no vertex in V ′ is incident to an edge in E′, and for each ej ∈ E′, the path Pj

contains exactly one vertex of N(a) ∩ N(b). Thus, it is enough to find in H an edge cut of size greater than |E′| + |V ′|.
By Lemma 8, for each ej ∈ E′, either uj ∈ A′′ −B ′′ and vj ∈ B ′′ −A′′ or vj ∈ A′′ −B ′′ and uj ∈ B ′′ −A′′. Recall

that x = f (u0
k), y = f (v0

k ),x ∈ A′′ − B ′′ and y ∈ B ′′ − A′′. It follows that the set E′ ∪ {ek} is contained in an edge-cut
in H. Let V1 and V2 be the disjoint subsets of V (H) such that:

(a) each edge in E′ ∪ {ek} is incident to a vertex in V1 and a vertex in V2 and
(b) each vertex in V1 ∪ V2 is incident to an edge in E′ ∪ {ek}.

By the above, V ′ ∩ (V1 ∪ V2) = ∅ and hence |V (H) − (V1 ∪ V2)|� |V ′|. Since H is connected, there is a vertex u0

adjacent to V1 ∪ V2. If u0 is adjacent to V1, then we add u0 to V2, otherwise add it to V1. In any case the number of
edges between the new V1 and V2 is greater than between the old ones. We continue adding vertices to V1 ∪ V2 so that
with each added vertex, the number of edges between V1 and V2 grows by at least one. When we add the last vertex of
H, we get a partition (V1, V2) of V (H) such that the number of edges between V1 and V2 is at least

|E′ ∪ {ek}| + |V (H) − (V1 ∪ V2)|� |E′| + 1 + |V ′|,
a contradiction to (14). �

Lemma 11. Let X be optimal, 1�j �k − 1. Then there is at most one a ∈ A, such that there is more than one b ∈ B

with j = j (a, b).

Proof. Let Pj = (w0, w1, . . . , wp), where w0 = uj and wp = vj . Assume to the contrary that there are a1, a2 ∈ A and
b1, b2, b3, b4 ∈ B such that j (a1, b1) = j (a1, b2) = j (a2, b3) = j (a2, b4) = j , where a1 �= a2, b1 �= b2, b3 �= b4. By
Lemma 8, we may assume that uj ∈ A′′\B ′′ and vj ∈ B ′′\A′′.

Since �j + �j �1, there exists i, 1� i�p − 1, such that wi ∈ N(a1) ∩ N(b1). Since b3 �= b4, we may assume
that b3 �= b1. By Lemma 9, no vertex in V (Pj ) − wi can belong to N(a2) ∩ N(b3). This contradicts the fact that
dj (a2, b3) > 1. �

By Lemma 5, |A| + |B| > 2k. We may assume that |A|� |B|. Thus, |B|�k. If |A|�k, then since |B|�k, by
Lemma 10, for each a ∈ A there is some j (a) and b1(a) and b2(a) such that j (a) = j (a, b1(a)) = j (a, b2(a)).
Furthermore, since |A|�k, for some a1, a2 ∈ A, the indices j (a1) and j (a2) are the same. This contradicts Lemma 11.

Thus, we may assume that |A| < k. Since |B|�k, for each a ∈ A there is some j (a) and b1(a) and b2(a) such that
j (a) = j (a, b1(a)) = j (a, b2(a)). Let J = {j (a) | a ∈ A}. By Lemma 11, the indices j (a) are distinct for distinct
a ∈ A and hence |J | = |A|.
Lemma 12. Suppose that j ∈ J . Then x is not adjacent to some interior vertex of Pj .



1548 A. Kostochka, G. Yu / Discrete Applied Mathematics 156 (2008) 1542–1548

Proof. Let Pj = (w0, w1, . . . , wp), where w0 = uj and wp = vj . By the definition of J, there exists a ∈ A and
b1, b2 ∈ B such that dj (a, b1) and dj (a, b2) > 1. Since �j + �j �1, this implies that p�2. Assume that uj ∈ A′′ −B ′′
and vj ∈ B ′′ − A′′.

Since uj /∈ B ′′, we may assume that ujb1 /∈ E(G). Let wi′ , wi′′ ∈ N(a) ∩ N(b1)and i′ < i′′. By the choice,
1� i′ �p − 1. If xwi′ ∈ E(G), then we get a contradiction to Lemma 9 with a0 = x, since wi′′a ∈ E(G). Thus,
xwi′′ /∈ E(G). �

Proof (End of the proof). By Lemma 12, x is not adjacent to at least |J | vertices in X − W . It also is not adjacent
to itself. Thus, |N(x) ∩ X|� |X| − |J | − 1� |W | + 2(k − b(H) + k − 1) − |J | − 1�5k − 2b(H) − 3 − |J |. Since
|J | = |A| = |N(x) − X|, we get

n + b(H)

2
− 1� deg(x)�5k − 2b(H) − 3,

which yields n�10k − 5b(H) − 1 < 7.5k − 2, a contradiction. �
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