Minimum degree conditions for H-linked graphs ${ }^{\text {T }}$

Alexandr Kostochka ${ }^{\text {a, b, }}$, Gexin Yu ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Institute of Mathematics, Novosibirsk 630090, Russia

Received 31 March 2004; received in revised form 8 November 2005; accepted 2 November 2006
Available online 23 August 2007

Abstract

For a fixed multigraph H with vertices w_{1}, \ldots, w_{m}, a graph G is H-linked if for every choice of vertices v_{1}, \ldots, v_{m} in G, there exists a subdivision of H in G such that v_{i} is the branch vertex representing w_{i} (for all i). This generalizes the notions of k-linked, k-connected, and k-ordered graphs.

Given a connected multigraph H with k edges and minimum degree at least two and $n \geqslant 7.5 k$, we determine the least integer d such that every n-vertex simple graph with minimum degree at least d is H-linked. This value $D(H, n)$ appears to equal the least integer d^{\prime} such that every n-vertex graph with minimum degree at least d^{\prime} is $b(H)$-connected, where $b(H)$ is the maximum number of edges in a bipartite subgraph of H.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Extremal graph problems; Degree conditions; H-linked graphs

1. Introduction

Let H be a multigraph. An H-subdivision in a graph G is a pair of mappings $f: V(H) \rightarrow V(G)$ and $g: E(H)$ into the set of paths in G such that:
(a) $f(u) \neq f(v)$ for all distinct $u, v \in V(H)$ and
(b) for every $u v \in E(H), g(u v)$ is an $f(u) f(v)$-path in G, and distinct edges map into internally disjoint paths in G.

A graph G is H-linked if every injective mapping $f: V(H) \rightarrow V(G)$ can be extended to an H-subdivision in G. This is a natural generalization of k-linkage.

Recall that a graph is k-linked if for every list of $2 k$ vertices $\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$, there exist internally disjoint paths P_{1}, \ldots, P_{k} such that each P_{i} is an s_{i}, t_{i}-path. By the definition, a graph G is k-linked if and only if G is H-linked for every graph H with $|E(H)|=k$ and $\delta(H) \geqslant 1$. It is known that a graph G on at least $2 k$ vertices is k-linked if and only if G is M_{k}-linked, where M_{k} is the matching with k edges.

Let B_{k} denote the (multi)graph with two vertices and k parallel edges. By Menger's theorem, a simple graph G on at least $k+1$ vertices is k-connected if and only if G is B_{k}-linked.

[^0]A graph is k-ordered, if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the sequence in the given order. Let C_{k} denote the cycle of length k. Clearly, a simple graph G is k-ordered if and only if G is C_{k}-linked.

Thus, the notion of H-linked graphs is a joint generalization of the notions of k-linked, k-ordered and k-connected graphs. Minimum degree conditions for graphs to be k-ordered or k-linked were considered by several authors (see [2,4-10]). Let $D(n, k)$ be the minimum positive integer d such that every n-vertex simple graph with minimum degree at least d is k-linked (i.e., G is H-linked for every H with k edges). It was proved in [5] that

$$
D(n, k)= \begin{cases}\left\lfloor\frac{n-1,}{} \frac{n \leqslant 3 k-1}{3}\right\rfloor-1, & 3 k \leqslant n \leqslant 4 k-2, \tag{1}\\ \left\lceil\frac{n-3}{2}\right\rceil+k, & n \geqslant 4 k-1\end{cases}
$$

In fact, Egawa et al. [1] obtained a very similar result earlier in a bit different setting. In [8], we proved that the degree condition can be weakened if H has minimum degree at least two.

Theorem 1. Let H be a loopless graph with k edges and $\delta(H) \geqslant 2$. Every simple graph G of order $n \geqslant 5 k+6$ with $\delta(G) \geqslant\lceil(n+k) / 2\rceil-1$ is H-linked.

The minimum degree condition in Theorem 1 is sharp for all bipartite graphs H. The restriction $n \geqslant 5 k+6$ probably can be weakened to about $n \geqslant 3 k$, but not more. The main result of the present paper refines the bound of Theorem 1 for non-bipartite connected multigraphs H, but under stronger restrictions on n.

Theorem 2. Let H be a loopless connected graph with k edges and $\delta(H) \geqslant 2$. Let $b(H)$ denote the maximum number of edges over all bipartite subgraphs of H. Then every simple graph G of order $n \geqslant 7.5 k$ with $\delta(G) \geqslant\lceil(n+b(H)) / 2\rceil-1$ is H-linked.

In the next section we present examples illustrating the theorem and start the proof of the upper bound. We assume that there is no appropriate H-subdivision for some choice of branching vertices in G and consider an optimal in some sense subgraph with a vertex set X. In Section 3, we estimate $|X|$. In Section 4 we finish the proof.

2. Preliminaries

First, we observe that the restriction $\delta(G) \geqslant\lceil(n+b(H)) / 2\rceil-1$ in Theorem 2 cannot be weakened for any $n \geqslant 3 k$ and any H. Indeed, let G be the n-vertex graph with $V(G)=V_{0} \cup V_{1} \cup V_{2}$ such that $G\left[V_{1}\right]=K_{\lceil(n-b(H)+1) / 2\rceil}$, $G\left[V_{2}\right]=K_{\lfloor(n-b(H)+1) / 2\rfloor}$, and each vertex in V_{0} (with $\left|V_{0}\right|=b(H)-1$) is adjacent to all other vertices in G. Then $\delta(G)=\lfloor(n+b(H)-1) / 2\rfloor-1$.

Suppose that $b(H)$ edges in H connect disjoint $X \subset V(H)$ and $Y=V(H)-X$. We claim that G does not contain a subdivision of H such that X is mapped into V_{1} and Y is mapped into V_{2}. This is because $b(H)$ edges of H should be mapped into $b(H)$ internally disjoint V_{1}, V_{2}-paths passing through V_{0}, but $\left|V_{0}\right|=b(H)-1$.

Now we start the proof of the upper bound. Let $f: V(H) \rightarrow V(G)$ be an injective mapping and $W=f(V(H))$. Let $E(H)=\left\{e_{j}=u_{j}^{0} v_{j}^{0}: 1 \leqslant j \leqslant k\right\}$. Let $u_{j}=f\left(u_{j}^{0}\right)$ and $v_{j}=f\left(v_{j}^{0}\right)$. Since $\delta(H) \geqslant 2$, we have $|W|=|V(H)| \leqslant k$.

Say that a family \mathscr{C} of the form $\left\{P_{1}, \ldots, P_{k}\right\}$ is a partial H-linkage if each P_{j} is either the set $\left\{u_{j}, v_{j}\right\}$ or a u_{j}, v_{j}-path and the following properties hold:
(1) $|X| \leqslant|W|+2(k-b(H)+\alpha)+3$, where $X=\bigcup_{j=1}^{k} V\left(P_{j}\right)$ and α is the number of P_{j} 's that are paths and
(2) the internal vertices of the paths P_{j} 's are pairwise disjoint and disjoint from W.

Consider $\mathscr{C}_{0}=\left\{\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{k}, v_{k}\right\}\right\}$. This family satisfies properties (1) and (2) above with $X=\bigcup_{j=1}^{k}\left\{u_{j}, v_{j}\right\}=W$ and $\alpha=0$. Therefore, \mathscr{C}_{0} is a partial H-linkage. If all the P_{j} 's in a partial H-linkage \mathscr{C} are paths, then \mathscr{C} is an H-subdivision in G.

A partial H-linkage $\mathscr{C}=\left\{P_{1}, \ldots, P_{k}\right\}$ is optimal, if as many as possible of the P_{j} 's are paths and subject to this the set $X=\bigcup_{j=1}^{k} V\left(P_{j}\right)$ is as small as possible. We will prove that each optimal H-linkage is an H-subdivision in G.

Suppose for a contradiction that $\mathscr{C}=\left\{P_{1}, \ldots, P_{k}\right\}$ is an optimal partial H-linkage but is not an H-subdivision. Let, for definiteness, $P_{k}=\left\{u_{k}, v_{k}\right\}$ and $u_{k} v_{k} \notin E(G)$. Let $X=\bigcup_{j=1}^{k} V\left(P_{j}\right), x=u_{k}$, and $y=v_{k}$. Let $A=N(x)-X, B=N(y)-X$, and $R=V(G)-(X \cup A \cup B)$.

It is well known (see, e.g., [11]) that

$$
\begin{equation*}
b(H) \geqslant(k+1) / 2 \tag{2}
\end{equation*}
$$

for every H with $k>0$ edges. Therefore, each of A and B has size at least

$$
\begin{aligned}
\delta(G)-(|X|-2) & \geqslant \frac{n+b(H)-2}{2}-(|W|+2(k-b(H)+(k-1))+3-2) \\
& \geqslant \frac{7.5 k+b(H)-2}{2}-5 k+2 b(H)+1=1.25(2 b(H)-k)>1.25 .
\end{aligned}
$$

It follows that we may choose distinct $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.
For $v \in V(G)$, let $d_{j}(v)$ denote the number of neighbors of v 'inside' P_{j} plus $\beta_{j}=1 / \operatorname{deg}_{H}\left(u_{j}^{0}\right)$ if $u_{j} \in N_{G}(v)$ and plus $\gamma_{j}=1 / \operatorname{deg}_{H}\left(v_{j}^{0}\right)$ if $v_{j} \in N_{G}(v)$. For example, if $P_{j}=u_{j} w_{1} w_{2} v_{j}, \operatorname{deg}_{H}\left(u_{j}^{0}\right)=3$ and v is adjacent to u_{j} and w_{2} in P_{j}, then $d_{j}(v)=\frac{4}{3}$. It is easy to check that

$$
\begin{equation*}
\sum_{j=1}^{k} d_{j}(v)=\left|N_{G}(v) \cap X\right| \quad \forall v \in V(G) . \tag{3}
\end{equation*}
$$

Let l_{p} be the number of P_{j} 's of length p for $p \geqslant 1$, and l_{0} be the number of P_{j} that are not paths. Then

$$
\begin{equation*}
|X|=|W|+\sum_{p \geqslant 1}(p-1) l_{p}=\sum_{j=1}^{k}\left(\beta_{j}+\gamma_{j}\right)+\sum_{p \geqslant 1}(p-1) l_{p} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\sum_{p \geqslant 0} l_{p}=\alpha+l_{0} . \tag{5}
\end{equation*}
$$

3. A bound on the size of X

We will assume that every path P_{j} is of the form $P_{j}=u_{j}, w_{1, j}, \ldots, w_{p_{j}-1, j}, v_{j}$. Sometimes, for simplicity we will write p instead of p_{j} and w_{i} instead of $w_{i, j}$ if j is clear from the context. In the rest of the paper, for every $j=1, \ldots, k$, we denote $\beta_{j}=1 / \operatorname{deg}_{H}\left(u_{j}^{0}\right), \gamma_{j}=1 / \operatorname{deg}_{H}\left(v_{j}^{0}\right), M_{j}=d_{j}(x)+d_{j}(y)$, and $L_{j}=d_{j}\left(a_{1}\right)+d_{j}\left(a_{2}\right)+d_{j}\left(b_{1}\right)+d_{j}\left(b_{2}\right)$.

The following lemma (which is Lemma 5 in [8]) will be very helpful.
Lemma 3. For a $P_{j}=u_{j}, w_{1}, \ldots, w_{p-1}, v_{j}$, let $s_{j}=M_{j}+0.5 L_{j}, \beta=\beta_{j}$, and $\gamma=\gamma_{j}$. Define

$$
D_{1}(p, \beta, \gamma)= \begin{cases}p+1+2 \beta+2 \gamma, & \text { for } p \leqslant 1, \\ p+3+2 \beta+2 \gamma, & \text { for } p \geqslant 2 .\end{cases}
$$

Then
(a) $s_{j} \leqslant D_{1}(p, \beta, \gamma)$ and
(b) $s_{k} \leqslant 2\left(\beta_{k}+\gamma_{k}\right)$.

Furthermore, if $x y \notin E(G)$, then $s_{k}=\beta_{k}+\gamma_{k}$.
Based on Lemma 3, we prove the following.

Lemma 4. Let $Z=\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ and $V_{0}=(A \cup B)-Z-N_{G}(Z)$. Then $|X| \leqslant|W|+2(\alpha+k-b(H))-|R|-\left|V_{0}\right|$.
Proof. Let

$$
\begin{equation*}
\Sigma^{\prime}=\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y)+\frac{1}{2}\left(\operatorname{deg}_{G}\left(a_{1}\right)+\operatorname{deg}_{G}\left(a_{2}\right)+\operatorname{deg}_{G}\left(b_{1}\right)+\operatorname{deg}_{G}\left(b_{2}\right)\right) \tag{6}
\end{equation*}
$$

Every vertex $w \in A \cup B$ contributes to Σ^{\prime} at most 2 : if $w \in A$ (respectively, $w \in B$), then it is not adjacent to y, b_{1}, and b_{2} (respectively, to x, a_{1}, and a_{2}). By the definition, every vertex in V_{0} is not adjacent to any vertex in Z and to at least one of x and y. Therefore, every vertex in V_{0} contributes to Σ^{\prime} at most 1 . Furthermore, every $z \in Z$ contributes to Σ^{\prime} at most 1.5 , since it is not adjacent to itself. Thus, in total $A \cup B$ contributes to Σ^{\prime} at most $2|A \cup B|-\left|V_{0}\right|-0.5|Z|$. Every $r \in R$ contributes to Σ^{\prime} at most 2 . By the definition, for every j, the vertices of P_{j} contribute to Σ^{\prime} exactly s_{j}. Therefore,

$$
\begin{equation*}
\Sigma^{\prime} \leqslant 2|A \cup B|-2+2|R|+\sum_{j=1}^{k} s_{j}-\left|V_{0}\right| . \tag{7}
\end{equation*}
$$

By Lemma 3,

$$
\begin{align*}
\sum_{j=1}^{k} s_{j} & \leqslant l_{0}+2 l_{1}+\sum_{p \geqslant 2}(p+3) l_{p}+2 \sum_{j=1}^{k}\left(\beta_{j}+\gamma_{j}\right)-1 \\
& =l_{0}+2 l_{1}+\sum_{p \geqslant 2}(p+3) l_{p}+2|W|-1 \tag{8}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\Sigma^{\prime} \leqslant 2(|A|+|B|+|W|)+2|R|-\left|V_{0}\right|-3+l_{0}+2 l_{1}+\sum_{p \geqslant 2}(p+3) l_{p} . \tag{9}
\end{equation*}
$$

Combining with (4) and (5), we get

$$
|X|+\Sigma^{\prime} \leqslant 2 n+|W|+2 k+2 \alpha-3-l_{0}-2 l_{1}-\left|V_{0}\right| .
$$

By (2), $\delta(G) \geqslant((n+b(H)) / 2)-1$ and hence $\Sigma^{\prime} \geqslant 2 n+2 b(H)-4$. Thus,

$$
\begin{equation*}
|X| \leqslant|W|+2(k-b(H)+\alpha)-l_{0}-2 l_{1}-\left|V_{0}\right|+1 \leqslant|W|+2(k-b(H)+\alpha)-\left|V_{0}\right| . \tag{10}
\end{equation*}
$$

If an $r \in R$ has a neighbor $a_{0} \in A$ and a neighbor $b_{0} \in B$, then one can add to \mathscr{C} the path $P_{k}=x, a_{0}, r, b_{0}, y$. The new set of paths will be a better partial linkage, since the new X would have size at most $|W|+2(k-b(H)+\alpha)+$ $3=|W|+2(k-b(H)+\alpha+1)+1$. Since this contradicts the choice of \mathscr{C}, no $r \in R$ has both a neighbor in A and a neighbor in B. Thus, every $r \in R$ contributes to Σ^{\prime} at most 1 , and (7) becomes

$$
\Sigma^{\prime} \leqslant 4 \cdot 1.5+2(|A \cup B|-4)+|R|+\sum_{j=1}^{k} s_{j}-\left|V_{0}\right| .
$$

Correspondingly, (10) transforms into

$$
\begin{equation*}
|X| \leqslant|W|+2(k-b(H)+\alpha)-\left|V_{0}\right|-|R| . \tag{11}
\end{equation*}
$$

This lemma has the following two immediate consequences.
Lemma 5. $|A|+|B|>3 k$.
Proof. By Lemma $4,|A|+|B|=n-(|X|+|R|) \geqslant n-(|W|+2(k-b(H)+\alpha)) \geqslant 7.5 k-(k+2(k-((k+1) / 2)+$ $k-1))>3 k$.

Lemma 6. Each $v \in V(G)$ is adjacent to at least three vertices in $A \cup B-V_{0}$. In particular, either v has two neighbors in A that belong or are adjacent to the set $\left\{a_{1}, a_{2}\right\}$, or two neighbors in B that belong or are adjacent to the set $\left\{b_{1}, b_{2}\right\}$.

Proof. By Lemma $4, \delta(G)-\left(|X|+|R|+\left|V_{0}\right|\right) \geqslant 0.5(7.5 k+b(H)-2)-|W|-2(k-b(H)+\alpha) \geqslant 3.75 k+0.5 b(H)-$ $1-k-2(k-b(H)+k-1)=1.25(2 b(H)-k)+1>2$. Thus each vertex has at least three neighbors in $V(G)-X-$ $R-V_{0}$.

For given $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$, let $A^{\prime \prime}=A^{\prime \prime}\left(a_{1}, a_{2}\right)$ (respectively, $B^{\prime \prime}=B^{\prime \prime}\left(b_{1}, b_{2}\right)$) denote the set of vertices in X having at least two neighbors in A (respectively, in B) that belong or are adjacent to the set $\left\{a_{1}, a_{2}\right\}$ (respectively, $\left\{b_{1}, b_{2}\right\}$). The above lemma yields that for every choice of a_{1}, a_{2}, b_{1}, and b_{2},

$$
\begin{equation*}
A^{\prime \prime} \cup B^{\prime \prime}=X \tag{12}
\end{equation*}
$$

4. Proof of Theorem 2

Lemma 7. For every non-adjacent $s, t \in A$ (or $B),|N(s) \cap N(t)-X| \geqslant 3$.
Proof. Suppose to the contrary that $a_{1}, a_{2} \in A, a_{1} a_{2} \notin E(G)$ and the cardinality of the set T of common neighbors of a_{1} and a_{2} outside of X is at most two. Consider arbitrary $b_{1}, b_{2} \in B$ and let $Z=\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Then the contribution of every $a \in A-Z-T$ to the sum Σ^{\prime} defined in (6) is at most 1.5 . Thus, repeating the proof of Lemma 4 , instead of (11), we will get $|X| \leqslant|W|-|R|+2(k-b(H)+\alpha)-\left|V_{0}\right|-0.5\left(\left|A-V_{0}\right|-4\right)$. In other words,

$$
\begin{equation*}
|X|+0.5|A|+|R| \leqslant|W|+2(k-b(H)+\alpha)+2 \leqslant 5 k-2 b(H) . \tag{13}
\end{equation*}
$$

On the other hand, $\operatorname{deg}_{G-X}\left(a_{1}\right)+\operatorname{deg}_{G-X}\left(a_{2}\right) \leqslant|A|+|T|+|R|-2$ (the -2 arises because neither of a_{1} and a_{2} is adjacent to a_{1} or a_{2}). It follows that

$$
2 \frac{n+b(H)}{2}-2 \leqslant 2 \delta(G) \leqslant 2|X|+|A|+|R|,
$$

which together with (13) yields $n+b(H)-2 \leqslant 2(5 k-2 b(H))$. Thus, $n \leqslant 10 k-5 b(H)+2 \leqslant 10 k-5((k+1) / 2)+$ $2=7.5 k-0.5$, a contradiction.

For the rest of the section, we fix some distinct $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, and let $A^{\prime \prime}=A^{\prime \prime}\left(a_{1}, a_{2}\right)$ and $B^{\prime \prime}=B^{\prime \prime}\left(b_{1}, b_{2}\right)$. The next fact from [6] was used in [8].

Lemma 8. Let X be optimal, $1 \leqslant j \leqslant k-1$, and either $\left\{u_{j}, v_{j}\right\} \subset A^{\prime \prime}$ or $\left\{u_{j}, v_{j}\right\} \subset B^{\prime \prime}$. Then for each $a \in A$ and $b \in B$,

$$
\left(N(a) \cap N(b) \cap P_{j}\right) \backslash\left\{u_{j}, v_{j}\right\}=\emptyset
$$

Proof. Assume to the contrary that $r \in N(a) \cap N(b) \cap P_{j} \backslash\left\{u_{j}, v_{j}\right\}$. Let $P_{k}^{\prime}=(x, a, r, b, y)$. Without loss of generality, assume that $\left\{u_{j}, v_{j}\right\} \subset A^{\prime \prime}$. Then there exist $s \in N\left(u_{j}\right) \cap A \backslash\{a\}$ and $t \in N\left(v_{j}\right) \cap A \backslash\{a\}$. If $s=t$ or s is adjacent to t, then let $P_{j}^{\prime}=\left(u_{j}, s, t, v_{j}\right)$.

If s and t are non-adjacent, then by Lemma 7, we have $|(N(s) \cap N(t)) \backslash X| \geqslant 3$, and therefore there exists $q \in N(s) \cap N(t) \backslash(X \cup\{a, b\})$. In this case, let $P_{j}^{\prime}=\left(u_{j}, s, q, t, v_{j}\right)$. In both cases, P_{j}^{\prime} is a path disjoint from P_{k}^{\prime}. Thus, in both cases we increase the number of P_{j} 's that are paths by one and, by (11), maintain $|X| \leqslant|W|+2(k-b(H)+\alpha+1)+2$. This is a contradiction.

Lemma 9. Let X be optimal, $1 \leqslant j \leqslant k-1, P_{j}=\left(w_{0}, w_{1}, \ldots, w_{p}\right)$, where $w_{0}=u_{j} \in A^{\prime \prime}$ and $w_{p}=v_{j} \in B^{\prime \prime}$. If some $w_{i}, 1 \leqslant i \leqslant p-1$ has a neighbor $a_{0} \in A \cup\{x\}$ and a neighbor $b_{0} \in B \cup\{y\}$, then each $w_{i^{\prime}}$ for $i<i^{\prime} \leqslant p$ has no neighbors in $A-a_{0}$ and each $w_{i^{\prime \prime}}$ for $0 \leqslant i^{\prime \prime}<i$ has no neighbors in $B-b_{0}$.

Proof. Suppose some $w_{i^{\prime}}$ for $i<i^{\prime} \leqslant p$ has a neighbor $a^{\prime} \in A-a_{0}$. By the definition of $A^{\prime \prime}, u_{j}$ has a neighbor $a^{\prime \prime} \in A-a_{0}$. By Lemma 7, the length of a shortest path P^{\prime} from $a^{\prime \prime}$ to a^{\prime} in $G\left[A-a_{0}\right]$ is at most two. Thus, we
can replace P_{j} by the path $\left(u_{j}, a^{\prime \prime}, P^{\prime}, a^{\prime}, w_{i^{\prime}}, P_{j}^{\prime}, v_{j}\right)\left(\right.$ where P_{j}^{\prime} is the part of P_{j} connecting $w_{i^{\prime}}$ with $\left.v_{j}\right)$ and add the path $P_{k}=\left(x, a_{0}, w_{i}, b_{0}, y\right)$. The new set of $\alpha+1$ paths has at most $|X|+5$ vertices, which by (11) is at most $|W|+2(k-b(H)+\alpha+1)+3$, a contradiction to the choice of \mathscr{C}.

Similarly to $d_{j}(v)$, let $d_{j}(u, v)$ denote the number of common neighbors of u and v 'inside' P_{j} plus $\beta_{j} \cdot \mid N(u) \cap$ $N(v) \cap\left\{u_{j}\right\} \mid$ plus $\gamma_{j} \cdot\left|N(u) \cap N(v) \cap\left\{v_{j}\right\}\right|$.

Lemma 10. Let \mathscr{C} be optimal, $a \in A, b \in B$. Then there exists some $j=j(a, b)$ such that $d_{j}(a, b)>1$.
Proof. Since $N(a) \cap N(b) \cap(V(G)-X+x+y)=\emptyset$, we have

$$
\begin{equation*}
\sum_{j=1}^{k-1} d_{j}(a, b)=|N(a) \cap N(b)| \geqslant 2 \delta(G)-(n-2) \geqslant b(H) . \tag{14}
\end{equation*}
$$

Suppose that $d_{j}(a, b) \leqslant 1$ for each $1 \leqslant j \leqslant k-1$. We will find an edge cut in H with more than $\sum_{j=1}^{k-1} d_{j}(a, b)$ edges, a contradiction to (14). Let E^{\prime} be the set of edges e_{j} in H such that an internal vertex of P_{j} is in $N(a) \cap N(b)$. Let V^{\prime} be the set of vertices u^{0} in H such that the vertex $f\left(u^{0}\right)$ (i.e., the branching vertex in G corresponding to u^{0}) is in $N(a) \cap N(b)$. By our assumption, no vertex in V^{\prime} is incident to an edge in E^{\prime}, and for each $e_{j} \in E^{\prime}$, the path P_{j} contains exactly one vertex of $N(a) \cap N(b)$. Thus, it is enough to find in H an edge cut of size greater than $\left|E^{\prime}\right|+\left|V^{\prime}\right|$.

By Lemma 8, for each $e_{j} \in E^{\prime}$, either $u_{j} \in A^{\prime \prime}-B^{\prime \prime}$ and $v_{j} \in B^{\prime \prime}-A^{\prime \prime}$ or $v_{j} \in A^{\prime \prime}-B^{\prime \prime}$ and $u_{j} \in B^{\prime \prime}-A^{\prime \prime}$. Recall that $x=f\left(u_{k}^{0}\right), y=f\left(v_{k}^{0}\right), x \in A^{\prime \prime}-B^{\prime \prime}$ and $y \in B^{\prime \prime}-A^{\prime \prime}$. It follows that the set $E^{\prime} \cup\left\{e_{k}\right\}$ is contained in an edge-cut in H. Let V_{1} and V_{2} be the disjoint subsets of $V(H)$ such that:
(a) each edge in $E^{\prime} \cup\left\{e_{k}\right\}$ is incident to a vertex in V_{1} and a vertex in V_{2} and
(b) each vertex in $V_{1} \cup V_{2}$ is incident to an edge in $E^{\prime} \cup\left\{e_{k}\right\}$.

By the above, $V^{\prime} \cap\left(V_{1} \cup V_{2}\right)=\emptyset$ and hence $\left|V(H)-\left(V_{1} \cup V_{2}\right)\right| \geqslant\left|V^{\prime}\right|$. Since H is connected, there is a vertex u^{0} adjacent to $V_{1} \cup V_{2}$. If u^{0} is adjacent to V_{1}, then we add u^{0} to V_{2}, otherwise add it to V_{1}. In any case the number of edges between the new V_{1} and V_{2} is greater than between the old ones. We continue adding vertices to $V_{1} \cup V_{2}$ so that with each added vertex, the number of edges between V_{1} and V_{2} grows by at least one. When we add the last vertex of H, we get a partition $\left(V_{1}, V_{2}\right)$ of $V(H)$ such that the number of edges between V_{1} and V_{2} is at least

$$
\left|E^{\prime} \cup\left\{e_{k}\right\}\right|+\left|V(H)-\left(V_{1} \cup V_{2}\right)\right| \geqslant\left|E^{\prime}\right|+1+\left|V^{\prime}\right|
$$

a contradiction to (14).
Lemma 11. Let X be optimal, $1 \leqslant j \leqslant k-1$. Then there is at most one $a \in A$, such that there is more than one $b \in B$ with $j=j(a, b)$.

Proof. Let $P_{j}=\left(w_{0}, w_{1}, \ldots, w_{p}\right)$, where $w_{0}=u_{j}$ and $w_{p}=v_{j}$. Assume to the contrary that there are $a_{1}, a_{2} \in A$ and $b_{1}, b_{2}, b_{3}, b_{4} \in B$ such that $j\left(a_{1}, b_{1}\right)=j\left(a_{1}, b_{2}\right)=j\left(a_{2}, b_{3}\right)=j\left(a_{2}, b_{4}\right)=j$, where $a_{1} \neq a_{2}, b_{1} \neq b_{2}, b_{3} \neq b_{4}$. By Lemma 8, we may assume that $u_{j} \in A^{\prime \prime} \backslash B^{\prime \prime}$ and $v_{j} \in B^{\prime \prime} \backslash A^{\prime \prime}$.

Since $\beta_{j}+\gamma_{j} \leqslant 1$, there exists $i, 1 \leqslant i \leqslant p-1$, such that $w_{i} \in N\left(a_{1}\right) \cap N\left(b_{1}\right)$. Since $b_{3} \neq b_{4}$, we may assume that $b_{3} \neq b_{1}$. By Lemma 9, no vertex in $V\left(P_{j}\right)-w_{i}$ can belong to $N\left(a_{2}\right) \cap N\left(b_{3}\right)$. This contradicts the fact that $d_{j}\left(a_{2}, b_{3}\right)>1$.

By Lemma 5, $|A|+|B|>2 k$. We may assume that $|A| \leqslant|B|$. Thus, $|B| \geqslant k$. If $|A| \geqslant k$, then since $|B| \geqslant k$, by Lemma 10, for each $a \in A$ there is some $j(a)$ and $b_{1}(a)$ and $b_{2}(a)$ such that $j(a)=j\left(a, b_{1}(a)\right)=j\left(a, b_{2}(a)\right)$. Furthermore, since $|A| \geqslant k$, for some $a_{1}, a_{2} \in A$, the indices $j\left(a_{1}\right)$ and $j\left(a_{2}\right)$ are the same. This contradicts Lemma 11.

Thus, we may assume that $|A|<k$. Since $|B| \geqslant k$, for each $a \in A$ there is some $j(a)$ and $b_{1}(a)$ and $b_{2}(a)$ such that $j(a)=j\left(a, b_{1}(a)\right)=j\left(a, b_{2}(a)\right)$. Let $J=\{j(a) \mid a \in A\}$. By Lemma 11, the indices $j(a)$ are distinct for distinct $a \in A$ and hence $|J|=|A|$.

Lemma 12. Suppose that $j \in J$. Then x is not adjacent to some interior vertex of P_{j}.

Proof. Let $P_{j}=\left(w_{0}, w_{1}, \ldots, w_{p}\right)$, where $w_{0}=u_{j}$ and $w_{p}=v_{j}$. By the definition of J, there exists $a \in A$ and $b_{1}, b_{2} \in B$ such that $d_{j}\left(a, b_{1}\right)$ and $d_{j}\left(a, b_{2}\right)>1$. Since $\beta_{j}+\gamma_{j} \leqslant 1$, this implies that $p \geqslant 2$. Assume that $u_{j} \in A^{\prime \prime}-B^{\prime \prime}$ and $v_{j} \in B^{\prime \prime}-A^{\prime \prime}$.

Since $u_{j} \notin B^{\prime \prime}$, we may assume that $u_{j} b_{1} \notin E(G)$. Let $w_{i^{\prime}}, w_{i^{\prime \prime}} \in N(a) \cap N\left(b_{1}\right)$ and $i^{\prime}<i^{\prime \prime}$. By the choice, $1 \leqslant i^{\prime} \leqslant p-1$. If $x w_{i^{\prime}} \in E(G)$, then we get a contradiction to Lemma 9 with $a_{0}=x$, since $w_{i^{\prime \prime}} a \in E(G)$. Thus, $x w_{i^{\prime \prime}} \notin E(G)$.

Proof (End of the proof). By Lemma 12, x is not adjacent to at least $|J|$ vertices in $X-W$. It also is not adjacent to itself. Thus, $|N(x) \cap X| \leqslant|X|-|J|-1 \leqslant|W|+2(k-b(H)+k-1)-|J|-1 \leqslant 5 k-2 b(H)-3-|J|$. Since $|J|=|A|=|N(x)-X|$, we get

$$
\frac{n+b(H)}{2}-1 \leqslant \operatorname{deg}(x) \leqslant 5 k-2 b(H)-3
$$

which yields $n \leqslant 10 k-5 b(H)-1<7.5 k-2$, a contradiction.

Acknowledgment

We thank the referees for their helpful comments.

References

[1] Y. Egawa, R.J. Faudree, E. Györi, Y. Ishigami, R.H. Schelp, H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000) 81-92.
[2] J. Faudree, R. Faudree, R. Gould, M. Jacobson, L. Lesniak, On k-ordered graphs, J. Graph Theory 35 (2000) 69-82.
[4] R.J. Gould, Advances on the Hamiltonian problem-a survey, Graphs Combin. 19 (2003) 7-52.
[5] K. Kawarabayashi, A. Kostochka, G. Yu, On sufficient degree conditions for a graph to be k-linked, Combin. Probab. Comput. 15 (2006) 685-694.
[6] H.A. Kierstead, G. Sárközy, S. Selkow, On k-ordered hamiltonian graphs, J. Graph Theory 32 (1999) 17-25.
[7] A. Kostochka, G. Yu, On H-linked graphs, Oberwolfach Rep. 1 (2004) 42-45.
[8] A. Kostochka, G. Yu, An extremal problem for H-linked graphs, J. Graph Theory 50 (2005) 321-339.
[9] L. Ng, M. Schultz, k-Ordered hamiltonian graphs, J. Graph Theory 2 (1997) 45-57.
[10] R. Thomas, P. Wollan, An improved linear edge bound for graph linkage, European J. Combin. 26 (2005) 309-324.
[11] D.B. West, Introduction to Graph Theory, second ed., Prentice-Hall, Upper Saddle River, 2001.

[^0]: this work was supported by the NSF grants DMS-0099608 and DMS-0400498.
 ${ }^{1}$ Research was also partially supported by Grants 99-01-00581 and 00-01-00916 of the Russian Foundation for Basic Research. E-mail address: kostochk@math.uiuc.edu (A. Kostochka).

