Available online at www.sciencedirect.com

o2’ . ; DISCRETE

°»” ScienceDirect APPLIED
sl MATHEMATICS
ELSEVIER Discrete Applied Mathematics 156 (2008) 15421548

www.elsevier.com/locate/dam

Minimum degree conditions for H -linked graphs*

Alexandr Kostochka?® ?-!, Gexin Yu?

aDepartment of Mathematics, University of lllinois, Urbana, IL 61801, USA
b Institute of Mathematics, Novosibirsk 630090, Russia

Received 31 March 2004; received in revised form 8 November 2005; accepted 2 November 2006
Available online 23 August 2007

Abstract

For a fixed multigraph H with vertices wi, ..., wy,, a graph G is H-linked if for every choice of vertices vy, ..., vy in G, there
exists a subdivision of H in G such that v; is the branch vertex representing w; (for all 7). This generalizes the notions of k-linked,
k-connected, and k-ordered graphs.

Given a connected multigraph H with k edges and minimum degree at least two and n > 7.5k, we determine the least integer d
such that every n-vertex simple graph with minimum degree at least d is H-linked. This value D(H, n) appears to equal the least
integer d’ such that every n-vertex graph with minimum degree at least d’ is b(H)-connected, where b(H) is the maximum number
of edges in a bipartite subgraph of H.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let H be a multigraph. An H-subdivision in a graph G is a pair of mappings f : V(H) — V(G) and g : E(H) into
the set of paths in G such that:

(@) f(u) # f(v) for all distinct u, v € V(H) and
(b) forevery uv € E(H), g(uv) is an f(u) f (v)-path in G, and distinct edges map into internally disjoint paths in G.

A graph G is H-linked if every injective mapping f : V(H) — V(G) can be extended to an H-subdivision in G. This
is a natural generalization of k-linkage.

Recall that a graph is k-linked if for every list of 2k vertices {s1, ..., Sk, t1, ..., tx}, there exist internally disjoint
paths Py, ..., Py such that each P; is an s;, t;-path. By the definition, a graph G is k-linked if and only if G is H-linked
for every graph H with |E(H)| =k and 6(H) > 1. It is known that a graph G on at least 2k vertices is k-linked if and
only if G is My-linked, where M is the matching with k edges.

Let By denote the (multi)graph with two vertices and k parallel edges. By Menger’s theorem, a simple graph G on
at least k 4 1 vertices is k-connected if and only if G is Bj-linked.
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A graph is k-ordered, if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the
sequence in the given order. Let Cy denote the cycle of length k. Clearly, a simple graph G is k-ordered if and only if
G is Cg-linked.

Thus, the notion of H-linked graphs is a joint generalization of the notions of k-linked, k-ordered and k-connected
graphs. Minimum degree conditions for graphs to be k-ordered or k-linked were considered by several authors (see
[2,4—-10]). Let D(n, k) be the minimum positive integer d such that every n-vertex simple graph with minimum degree
at least d is k-linked (i.e., G is H-linked for every H with k edges). It was proved in [5] that

n—1, n<3k —1,
5k
{”Jr J—l, 3k <n<dk —2,
D(n, k) = 3 (1)
n—3
[ 5 —‘+k, n>dk—1.

In fact, Egawa et al. [1] obtained a very similar result earlier in a bit different setting. In [8], we proved that the degree
condition can be weakened if H has minimum degree at least two.

Theorem 1. Let H be a loopless graph with k edges and 6(H) >?2. Every simple graph G of order n > 5k + 6 with
0(G)=[(n+k)/2] — 1 is H-linked.

The minimum degree condition in Theorem 1 is sharp for all bipartite graphs H. The restriction n > 5k + 6 probably
can be weakened to about n >3k, but not more. The main result of the present paper refines the bound of Theorem 1
for non-bipartite connected multigraphs H, but under stronger restrictions on n.

Theorem 2. Let H be a loopless connected graph with k edges and 6(H) >2. Let b(H) denote the maximum number of
edges over all bipartite subgraphs of H. Then every simple graph G of order n =7.5k with (G) = [(n+b(H)) /2] — 1
is H-linked.

In the next section we present examples illustrating the theorem and start the proof of the upper bound. We assume
that there is no appropriate H-subdivision for some choice of branching vertices in G and consider an optimal in some
sense subgraph with a vertex set X. In Section 3, we estimate | X|. In Section 4 we finish the proof.

2. Preliminaries

First, we observe that the restriction 6(G) > [(n + b(H))/2] — 1 in Theorem 2 cannot be weakened for any n > 3k
and any H. Indeed, let G be the n-vertex graph with V(G) = Vp U Vi U V; such that G[V1] = K[u—sH)+1)/215
G[V2] = K|(n—b(H)+1)/2)> and each vertex in Vy (with [Vp| = b(H) — 1) is adjacent to all other vertices in G. Then
0(G)=[(n+b(H) - 1)/2] — 1.

Suppose that b(H) edges in H connect disjoint X C V(H) and Y = V(H) — X. We claim that G does not contain a
subdivision of H such that X is mapped into V| and Y is mapped into V;. This is because b(H) edges of H should be
mapped into b(H) internally disjoint Vi, V-paths passing through Vy, but |Vy| =b(H) — 1.

Now we start the proof of the upper bound. Let f : V(H) — V(G) be an injective mapping and W = f(V (H)).
Let E(H) = {e; = u‘}v? i 1<j<k}. Letu; = f(u(;) and v; = f(v?). Since 8(H) >2, we have |W| = |V (H)| <k.

Say that a family ¢ of the form { Py, ..., Py} is apartial H-linkage if each P;j is either the set {u j, vj} orau;, vj-path
and the following properties hold:

D 1 X|I<|W|+2k—b(H) + o) + 3, where X = U]jzl V(P;) and o is the number of P;’s that are paths and
(2) the internal vertices of the paths P;’s are pairwise disjoint and disjoint from W.

Consider €y = {{u1, v1}, ..., {uk, vr}}. This family satisfies properties (1) and (2) above with X = Ul;zl {uj,vi}=w
and «=0. Therefore, € is a partial H-linkage. If all the P;’s in a partial H-linkage % are paths, then ¢’ is an H-subdivision
in G.
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A partial H-linkage ¢ = { Py, ..., Py} is optimal, if as many as possible of the P;’s are paths and subject to this the
set X = Ul;zl V (P;) is as small as possible. We will prove that each optimal H-linkage is an H-subdivision in G.

Suppose for a contradiction that ¥ ={ Py, ..., Px}is an optimal partial H-linkage but is not an H-subdivision. Let, for
definiteness, Py ={u, v} and upvr ¢ E(G). Let X:U];:1 V(Pj),x=uy,and y=vi.Let A=N(x)— X, B=N(y)— X,
and R=V(G) — (XU AUB).

It is well known (see, e.g., [11]) that

b(H)>=(k+1)/2 (2)
for every H with k > 0 edges. Therefore, each of A and B has size at least
n+b(H)—2
56) — (X1 - 2> D=2 w2k~ b(H) + 6~ 1) +3 -2

< 7.5k +b(H) —2
- 2
It follows that we may choose distinct aj, a» € A and by, by € B.
For v € V(G), let d;(v) denote the number of neighbors of v ‘inside’ P; plus ﬁj =1/degy (u(j).) ifuj € Ng(v) and

—5k+2b(H)+1=125Q2b(H) — k) > 1.25.
plus y; = l/degH(v?) if v; € Ng(v). For example, if P; = ujwiwav;, degH(u(]).) =3 and v is adjacent to u; and w»
in P, thend;(v) = %. It is easy to check that

k
Y djw) = ING@) N X| Yo e V(G). 3)
j=1

Let [, be the number of P;’s of length p for p > 1, and [y be the number of P; that are not paths. Then

k
IX|=WI+ Y (p=Dl=> B;+7)+ Y (p—Dlp )
r=1 j=1 p=1
and
k=1, =a+lp. ©)
p=0

3. A bound on the size of X

We will assume that every path P; is of the form P; =u;, wy j, ..., Wp;—1,j, Vj- Sometimes, for simplicity we will
write p instead of p; and w; instead of w; ; if j is clear from the context. In the rest of the paper, forevery j =1, ...k,
we denote ﬁj = l/degH(u(}), V= 1/degH(v?), Mj=d;(x)+dj(y),and Lj =d;(ar) +d;(az) +d;(br) +d;(b2).

The following lemma (which is Lemma 5 in [8]) will be very helpful.

Lemma 3. Fora P; =uj, wi,...,wp_1,vj,lets; =M; —I—O.SLj,ﬂ:ﬁj,andyzyj.Deﬁne

p+1+28+2y, for p<1,

Di(p, ,“)={
P.by p+3+2+2y, for p=2.

Then

(a) s;<Di(p, B, y) and
(b) sk <2y + 71)-

Furthermore, if xy ¢ E(G), then sg = B, + V.

Based on Lemma 3, we prove the following.
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Lemma 4. Let Z = {ay, as, by, by} and Vo = (AU B) — Z — NG(Z). Then | X| <|W| +2(o+k — b(H)) — |R| — | V.
Proof. Let

Y =deg;(x) +degs () + %(degG (a1) + degg (az) 4 degs (b1) + degg (D). (6)

Every vertex w € A U B contributes to 2’ at most 2: if w € A (respectively, w € B), then it is not adjacent to y, by,
and b, (respectively, to x, ag, and a). By the definition, every vertex in Vj is not adjacent to any vertex in Z and to at
least one of x and y. Therefore, every vertex in Vj contributes to 2’ at most 1. Furthermore, every z € Z contributes to
2’ at most 1.5, since it is not adjacent to itself. Thus, in total A U B contributes to 2’ at most 2|A U B| — |Vy| — 0.5|Z|.
Every r € R contributes to 2’ at most 2. By the definition, for every j, the vertices of P; contribute to X’ exactly s;.
Therefore,

k
I<2AUBI -2+ 2[RI+ ) s; — Vol. )
j=1

By Lemma 3,

k k
Yosi<lo+2h+ Y (p+3+2> (B +7,) — 1

j=1 p>2 j=1
=lo+2h+ Y (p+3),+2/W| - L. (8)
p>2
Therefore,
X2(|Al+ Bl + WD) +2|R| — Vol =3+ 1o+ 201 + Z(P +3)p. 9

p=2
Combining with (4) and (5), we get
IX|+ 2" <2n + |W|+ 2k + 20 — 3 — Iy — 211 — | Vp|.
By (2), 6(G)=((n + b(H))/2) — 1 and hence 2’ >2n + 2b(H) — 4. Thus,
IXISIWI 42k —b(H) + o) —lo — 211 — [Vo| + I<SIW| +2(k — b(H) + o) — |Vl (10)

If an r € R has a neighbor ag € A and a neighbor by € B, then one can add to % the path Py = x, ag, r, bo, y. The
new set of paths will be a better partial linkage, since the new X would have size at most |W| 4+ 2(k — b(H) + o) +
3=|W|+2(k —b(H)+ o+ 1) + 1. Since this contradicts the choice of %, no r € R has both a neighbor in A and a
neighbor in B. Thus, every r € R contributes to X at most 1, and (7) becomes

k

2'<4-1542(AU Bl —4) + R+ Y _sj — Vol.
j=I
Correspondingly, (10) transforms into
IXISIWI+2(k —b(H) + o) — [Vo| = |R]. O (1)

This lemma has the following two immediate consequences.
Lemma 5. |A| + |B| > 3k.

Proof. By Lemma 4, |A| + |B|=n — (IX| + |[R) =n — (W|+2(k — b(H) + 2)) >7.5k — (k +2(k — ((k + 1)/2) +
k—1)>3k O
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Lemma 6. Eachv € V(G) is adjacent to at least three vertices in AU B — Vy. In particular, either v has two neighbors
in A that belong or are adjacent to the set {a1, a2}, or two neighbors in B that belong or are adjacent to the set {b1, by }.

Proof. By Lemma4, 6(G) — (|X|+|R|+|Vol) =>0.5(7.5k+b(H) —2)— |W|—=2(k—b(H)+ o) >3.75k+0.5b(H) —
1—k—2(k—b(H)+k—1)=1252b(H) — k) + 1 > 2. Thus each vertex has at least three neighbors in V(G) — X —
R—-V,. O

For given aj, ay € A, by, by € B,let A” = A" (a1, ap) (respectively, B” = B” (b1, by)) denote the set of vertices in
X having at least two neighbors in A (respectively, in B) that belong or are adjacent to the set {aj, a2} (respectively,
{b1, b2}). The above lemma yields that for every choice of ay, as, by, and b,

A"UB"=X. (12)
4. Proof of Theorem 2
Lemma 7. For every non-adjacent s,t € A (or B), [IN(s) N N(t) — X|=3.

Proof. Suppose to the contrary that aj, ay € A, ajay ¢ E(G) and the cardinality of the set 7 of common neighbors of
a1 and a; outside of X is at most two. Consider arbitrary by, by € B and let Z = {ay, a», b1, b2}. Then the contribution
ofeverya € A — Z — T to the sum X’ defined in (6) is at most 1.5. Thus, repeating the proof of Lemma 4, instead of
(11), we will get | X|<|W| — |R|+ 2k — b(H) + o) — |Vo| —0.5(]A — V| — 4). In other words,

IX| +0.5|A] + |R|<|W| +2(k — b(H) + o)) + 2< 5k — 2b(H). (13)

On the other hand, deg;_y(a1) 4+ degs_x (a2) <|A| + |T| + |R| — 2 (the —2 arises because neither of a1 and ay is
adjacent to a; or ay). It follows that

b(H
2%() _2<25(G)<2IX| + |A| + IR,

which together with (13) yields n + b(H) — 2<2(5k — 2b(H)). Thus, n <10k — 5b(H) +2<10k — 5((k + 1)/2) +
2 =7.5k — 0.5, a contradiction. [

For the rest of the section, we fix some distincta;, a» € Aandb;, by € B,andlet A”=A"(a;, ay) and B"=B" (b1, by).
The next fact from [6] was used in [8].

Lemma 8. Ler X be optimal, 1< j <k — 1, and either {uj,v;} C A” or {uj,v;} C B". Then for each a € A and
b € B,

(N(a) N N(b) N P)\u,, v} =0

Proof. Assume to the contrary thatr € N(a) NN (b)N Pj\{u;,v;}. Let P, =(x, a,r, b, y). Without loss of generality,
assume that {u;, v;} C A”. Then there exists € N(u;) N A\{a} andr € N(v;) N A\{a}. If s =1 or s is adjacent to r,
then let PJ’. =(uj,s,1,0;).

If s and ¢ are non-adjacent, then by Lemma 7, we have [(N(s) N N(¢))\X| >3, and therefore there exists
g € N(s)NN()\(XU{a, b}). Inthis case, let P; =(uj,s,q,t, v;). Inboth cases, P]’. is a path disjoint from P. Thus, in
both cases we increase the number of P;’s that are paths by one and, by (11), maintain | X | < |W|+2(k—b(H)+o+1)+2.
This is a contradiction. [

Lemma 9. Letr X be optimal, 1< j<k — 1, Pj = (wo, wy, ..., wp), where wo =u; € A” and w, =v; € B". If
some wi, 1 <i < p — 1 has a neighbor ag € A U {x} and a neighbor by € B U {y}, then each w; fori <i’' < p has no
neighbors in A — ag and each w;» for 0<i” <i has no neighbors in B — by.

Proof. Suppose some w; for i <i’< p has a neighbor a’ € A — ag. By the definition of A”, u; has a neighbor
a” € A — ap. By Lemma 7, the length of a shortest path P’ from a” to a’ in G[A — ag] is at most two. Thus, we
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can replace P; by the path (u;,a”, P',a’, wy, PJ’., v;)(where Pj’. is the part of P; connecting w;» with v;) and add
the path P, = (x, ao, w;, bo, y). The new set of o + 1 paths has at most | X| + 5 vertices, which by (11) is at most
|[W|+2(k —b(H) + o+ 1) + 3, a contradiction to the choice of 4. [

Similarly to d;(v), let d; (u, v) denote the number of common neighbors of u and v ‘inside’ P; plus f i IN@)N
N () N {u;}| plus V- IN@) N N@w)N{v;}l.

Lemma 10. Let € be optimal, a € A, b € B. Then there exists some j = j(a, b) such that d;(a, b) > 1.

Proof. Since N(a) N N(bh)N(V(G) — X + x + y) =@, we have

k=1
Zdj(a,b)z|N(a)ﬂN(b)|>25(G)—(n—2)>b(H). (14)
j=1

Suppose that d;(a, b) <1 for each 1 < j <k — 1. We will find an edge cut in H with more than Zl;;lldj (a, b) edges,
a contradiction to (14). Let E’ be the set of edges ¢; in H such that an internal vertex of P; is in N(a) N N(b). Let
V' be the set of vertices u” in H such that the vertex f(u°) (i.e., the branching vertex in G corresponding to u?) is
in N(a) N N(b). By our assumption, no vertex in V' is incident to an edge in E’, and for each e; € E’, the path P;
contains exactly one vertex of N (a) N N (b). Thus, it is enough to find in H an edge cut of size greater than |E’| + |V'|.

By Lemma 8, for each e; € E’, eitheru; € A” — B” andv; € B —A” orvj € A” — B” andu; € B” — A”. Recall
thatx = f(ul), y= f(v)),x € A” — B” and y € B” — A”. It follows that the set E’ U {¢)} is contained in an edge-cut
in H. Let V1 and V; be the disjoint subsets of V (H) such that:

(a) each edge in E’ U {e;} is incident to a vertex in V; and a vertex in V3 and
(b) each vertex in V| U V; is incident to an edge in E" U {ex}.

By the above, V' N (V] U V) = @ and hence |V (H) — (V] U V2)| >|V’|. Since H is connected, there is a vertex u
adjacent to Vi U V,. If uf is adjacent to V1, then we add u% to Vs, otherwise add it to V. In any case the number of
edges between the new V; and V; is greater than between the old ones. We continue adding vertices to V| U V5 so that
with each added vertex, the number of edges between V| and V, grows by at least one. When we add the last vertex of
H, we get a partition (V1, V2) of V(H) such that the number of edges between V; and V> is at least

|E"Ufex}| + IV(H) = (ViU V) Z|E| + 1+ V],

a contradiction to (14). [

Lemma 11. Let X be optimal, 1 < j <k — 1. Then there is at most one a € A, such that there is more than one b € B
with j = j(a, b).

Proof. Let P; = (wp, wy, ..., wp), where wo =u; and w, = v;. Assume to the contrary that there are a;, ax € A and
by, by, b3, by € B such that j(ay, by) = j(ai, ba) = j(az, b3) = j(az, by) = j, where ay # az, by # ba, b3 # bs. By
Lemma 8, we may assume that u; € A”\B” and v; € B"\A”.

Since ﬁj +7; <1, there exists i, 1 <i<p — 1, such that w; € N(aj) N N(by). Since b3 # b4, we may assume
that b3 # by. By Lemma 9, no vertex in V(P;) — w; can belong to N(az) N N(b3). This contradicts the fact that
dj(az, b3)>1. [

By Lemma 5, |A| + |B| > 2k. We may assume that |A|<|B|. Thus, |B|>k. If |A| >k, then since |B|>k, by
Lemma 10, for each a € A there is some j(a) and bj(a) and by (a) such that j(a) = j(a, bi(a)) = j(a, ba(a)).
Furthermore, since |A| >k, for some a1, ay € A, the indices j(a;) and j (ap) are the same. This contradicts Lemma 11.

Thus, we may assume that |A| < k. Since |B| >k, for each a € A there is some j(a) and b (a) and b>(a) such that
jla) = j(a,bi(a)) = j(a,ba(a)). Let J ={j(a) | a € A}. By Lemma 11, the indices j(a) are distinct for distinct
a € A and hence |J| = |A]|.

Lemma 12. Suppose that j € J. Then x is not adjacent to some interior vertex of P;.
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Proof. Let P; = (wp, wi, ..., wp), where wo = u; and w, = v;. By the definition of J, there exists a € A and
by, by € Bsuchthatd;(a, b)) andd;(a, by) > 1. Since ﬁj +7; <1, this implies that p >2. Assume thatu; € A" —B"
andv; € B — A”.

Since u; ¢ B”, we may assume that u;b; ¢ E(G). Let wy, wi» € N(a) N N(by)and i’ <i”. By the choice,
1<i’<p — 1.If xwyy € E(G), then we get a contradiction to Lemma 9 with ag = x, since w;»a € E(G). Thus,
xwir ¢ E(G). U

Proof (End of the proof). By Lemma 12, x is not adjacent to at least |J| vertices in X — W. It also is not adjacent
to itself. Thus, |[N(x) N X|<|X| — [J| = 1< W]+ 2k —b(H)+k —1) = |J]| — 1<5k —2b(H) — 3 — |J|. Since
|J| =1A] =|N(x) — X|, we get
n+b(H)
2
which yields n <10k — 5b(H) — 1 < 7.5k — 2, a contradiction. [

1< deg(x) <5k — 2b(H) — 3,
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