Short communication

Disjoint K_{r}-minors in large graphs with given average degree

Thomas Böhme ${ }^{\mathrm{a}, *}$, Alexandr Kostochka ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ Institut für Mathematik, Technische Universität Ilmenau, Ilmenau, Germany
${ }^{\mathrm{b}}$ Department of Mathematics, University of Illinois, Urbana, IL 61801-2975, USA
${ }^{\mathrm{c}}$ Institute of Mathematics, 630090 Novosibirsk, Russia
Available online 15 January 2005

Abstract

It is proved that there are functions $f(r)$ and $N(r, s)$ such that for every positive integer r, s, each graph G with average degree $d(G)=2|E(G)| /|V(G)| \geq f(r)$, and with at least $N(r, s)$ vertices has a minor isomorphic to $K_{r, s}$ or to the union of s disjoint copies of K_{r}. © 2005 Published by Elsevier Ltd

1. Introduction

In this note all graphs are finite and do not have loops or multiple edges. A graph H is a minor of another graph G if H can be obtained from a subgraph of G by contracting edges. In 1968, Mader [2] showed that for every $r \in \mathbb{N}$ there exists a positive integer $h(r)$ such that every graph with average degree $d(G) \geq h(r)$ contains a minor isomorphic to K_{r}. Mader proved that $h(r)=O(r \log r)$. The order of magnitude of $h(r)$ was determined independently by Kostochka [4] and Thomason [5] (see also [1, p. 178]). They proved that $h(r)=\Theta(r \sqrt{\log r})$. Recently, Thomason [6] found the asymptotics of $h(r)$.

The main result of the present note is the following theorem conjectured by Mohar [3].
Theorem 1.1. There exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a function $N: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that every graph with average degree at least $f(r)$ and order at least $N(r, s)$ has a minor isomorphic to s disjoint copies of K_{r} or a minor isomorphic to $K_{r, s}$.

The order of magnitude of $f(r)$ in the proof below is the same as that of $h(r)$. On the other hand, Mohar observed that $f(5)$ in Theorem 1.1 is larger than $h(5)=6$, as

[^0]follows. Every graph that can be embedded into the torus surface does not contain a minor isomorphic to two disjoint copies of K_{5} or $K_{5,3}$. Since there are arbitrarily large 6-regular graphs on the torus surface this implies $f(5)>h(5)=6$.

For a graph G, we will use $|G|$ and $\|G\|$ to denote the number of vertices and edges of G, respectively.

2. Proof of Theorem 1.1

We will prove the following variation of Theorem 1.1.
Theorem 2.1. There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a function $N: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that every graph with n vertices and at least $f(r)(n / 2)+(N(r, s)-n)$ edges contains a minor isomorphic to s disjoint copies of K_{r} or a minor isomorphic to $K_{r, s}$.

For the proof of Theorem 2.1 we need the following fact.
Proposition 2.2. Let $\mathcal{X}=\left\{X_{1}, \ldots, X_{l}\right\}$ be a family of sets such that $l \geq A^{r} s^{r+1}$ and for every $i \in\{1, \ldots, l\}, r \leq\left|X_{i}\right| \leq A$. Then there is a subfamily $\left\{X_{i_{1}}, \ldots, X_{i_{s}}\right\}$ of \mathcal{X} such that either
(i) $\left|\bigcap_{j=1}^{s} X_{i j}\right| \geq r$, or
(ii) for every $j \in\{1, \ldots, s\}$ there is a subset $\tilde{X}_{i_{j}}$ of $X_{i_{j}}$ such that $\left|\tilde{X}_{i_{j}}\right| \geq\left|X_{i_{j}}\right|-r+1$ and for $1 \leq \mu<v \leq s, \tilde{X}_{i_{\mu}} \cap \tilde{X}_{i_{v}}=\emptyset$.

Proof. Consider a maximal subfamily $\mathcal{X}^{\prime}=\left\{X_{i_{1}}, \ldots, X_{i_{t}}\right\}$ of \mathcal{X} such that for every $j \in\{1, \ldots, t\}$ there is a subset $\tilde{X}_{i_{j}}$ of $X_{i_{j}}$ with the property that $\left|\tilde{X}_{i_{j}}\right| \geq\left|X_{i_{j}}\right|-r+1$, and $\tilde{X}_{i_{\mu}} \cap \tilde{X}_{i_{v}}=\emptyset$ for $1 \leq \mu<v \leq t$. If $t \geq s$, then $\left\{X_{i_{1}}, \ldots, X_{i_{s}}\right\}$ is the desired subfamily. Otherwise, every member of \mathcal{X} has at least r elements in $M=\bigcup_{j=1}^{t} X_{i_{j}}$. Note that $|M| \leq t A \leq(s-1) A$. Hence some r-subset is contained in at least $|\mathcal{X}| /\binom{|M|}{r} \geq$ $A^{r} s^{r+1} / A^{r} s^{r}=s$ members of \mathcal{X}. This proves the proposition.

Proof of Theorem 2.1. For $r, s, n \geq 2$, let $f(r)=2 h(r)+2 r$,

$$
N(r, s)=(2(s+r) h(r+s))^{r+1}
$$

and

$$
F(n, r, s)=f(r) \frac{n}{2}+(N(r, s)-n)
$$

Suppose that the statement of the theorem is not true, and let n be the smallest positive integer such that there exists a graph G with the properties
(a) G does not contain a minor isomorphic to $K_{r, s}$ or s disjoint copies of K_{r},
(b) $\|G\| \geq F(n, r, s)$.

We derive further properties of such G in a series of claims.

Claim 1. $2\|G\|<h(r+s) n$.
Proof. Otherwise, by the definition of h, G has a minor isomorphic to K_{r+s}, a contradiction to (a).

Claim 2. $n>N(r, s) / h(r+s)$.
Proof. Suppose that $n \leq N(r, s) / h(r+s)$. Since $h(r+s) \geq h(4) \geq 2$ and $f(r) \geq 4$, we deduce from (b) that

$$
\|G\| \geq F(n, r, s)=f(r) \frac{n}{2}+N(r, s)-n \geq N(r, s) \geq n h(r+s)
$$

a contradiction to Claim 1.
Claim 3. Every edge of G belongs to at least $0.5 f(r)-1$ triangles.
Proof. Let $e \in E(G)$ and G / e be the graph obtained from G by contracting e. If e belongs to $t(e) \leq 0.5 f(r)-2$ triangles, then

$$
\|G / e\|=\|G\|-1-t(e) \geq F(n, r, s)-1-0.5 f(r)+2=F(n-1, r, s)
$$

By the minimality of $n, G / e$ satisfies the theorem, and hence G does, a contradiction. This proves the claim.

For every $v \in V(G)$, let G_{v} be the subgraph induced by $\{v\} \cup N(v)$. Claim 3 yields that

$$
\begin{equation*}
\delta\left(G_{v}\right) \geq 0.5 f(r) \quad \text { for every } v \in V \tag{1}
\end{equation*}
$$

The next claim is directly implied by Claim 1.
Claim 4. The cardinality of the set X of vertices in G of degree less than $2 h(r+s)$ is at least $n / 2$.

Let $\mathcal{X}=\{\{x\} \cup N(x): x \in X\}$. By Claims 2 and $4,|\mathcal{X}| \geq n / 2>N(r, s) / 2 h(r+s)$. Note that $N(r, s) / 2 h(r+s)=(2 h(r+s))^{r}(r+s)^{r+1}$. Hence by Proposition 2.2, there is a subset X^{\prime} of X of cardinality at least $s+r$ such that either
(i) $\left|\bigcap_{x \in X^{\prime}}(\{x\} \cup N(x))\right| \geq r$ or
(ii) for every $x \in X^{\prime}$ there is a subset $N^{\prime}(x)$ of $\{x\} \cup N(x)$ such that $\left|N^{\prime}(x)\right| \geq$ $|\{x\} \cup N(x)|-r+1$ and $N^{\prime}(x) \cap N^{\prime}(y)=\emptyset$ whenever $x \neq y$.

Case (i). Let R be a subset of $\bigcap_{x \in X^{\prime}}(\{x\} \cup N(x))$ of cardinality r. Then the subgraph of G induced by $R \cup X^{\prime}$ contains $K_{r, s}$ with partite sets R and $X^{\prime}-R$. This contradicts (a).
Case (ii). Consider the subgraphs H_{x} of G induced by $N^{\prime}(x)$ for $x \in X^{\prime}$. By (ii) and (1),

$$
\delta\left(H_{x}\right) \geq \delta\left(G_{x}\right)-r+1 \geq 0.5 f(r)-r+1>h(r) \quad \text { for every } x \in X^{\prime}
$$

It follows that every H_{x} contains a minor isomorphic to K_{r}. Consequently, G contains a minor isomorphic to the union of s disjoint copies of K_{r}. This contradicts (a), and so the theorem is proved.

Acknowledgements

The second author's research is supported in part by the NSF grant DMS-0099608 and by the Dutch-Russian grant NWO-047-008-006.

References

[1] R. Diestel, Graph Theory, Springer-Verlag, New York, Inc., 1996.
[2] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154-168.
[3] B. Mohar, Private communication.
[4] A.V. Kostochka, On the minimum of the Hadwiger number of graphs with given mean degree of vertices, Metody Diskretn. Anal. 38 (1982) 37-58 (in Russian).
[5] A. Thomason, An external function for contractions of graphs, Math. Proc. Camb. Philos. Soc. 95 (1984) 261-265.
[6] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001) 318-338.

[^0]: * Tel.: +49-3677-69-3630; fax: +49-3677-69-3272.

 E-mail addresses: tboehme@theoinf.tu-ilmenau.de (T. Böhme), kostochk@math.uiuc.edu (A. Kostochka).

