
European Journal of Combinatorics 26 (2005) 1119–1138

www.elsevier.com/locate/ejc

Irreducible hypergraphs for Hall-type conditions,
and arc-minimal digraph expanders

Alexandr V. Kostochkaa,b, Douglas R. Woodallc

aDepartment of Mathematics, University of Illinois, Urbana, IL 61801, USA
bInstitute of Mathematics, Novosibirsk, 630090, Russia

cSchool of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

Received 15 May 2002; accepted 15 April 2004
Available online 5 August 2004

Abstract

Suppose that a hypergraphH = (V, E) satisfies a Hall-type condition of the form| ⋃F | �
r |F | + δ whenever∅ �= F ⊆ E , but that this condition fails if any vertex (element) is removed
from any edge (set) inE . How large an edge canH contain? It is proved here that there is no upper
bound to the size of an edge ifr is irrational, but that ifr = p/q as a rational inits lowest terms
thenH can have no edge with more than max{p, p + �δ�} vertices (and ifδ < 0 thenH must
have an edge with at most�(p − 1)/q� vertices). Ifδ � 0 then the upper boundp is sharp, but if
δ > 0 then the boundp + �δ� can be improved in some cases (we conjecture, in most cases). As a
generalization of this problem, suppose that a digraphD = (V, A) satisfies an expansion condition
of the form |N+(X) \ X| � r |X| + δ whenever∅ �= X ⊆ S, whereS is a fixed subset ofV , but
that this condition fails if any arc is removed fromD. It is proved that ifr = p/q as a rational in
its lowest terms, then every vertex ofShas outdegree at most max{p + q, p + q + �δ� − 1}, and at
most max{p, p + �δ�} if S is independent, but that ifr is irrational then the vertices ofS can have
arbitrarily largeoutdegree.
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1. Introduction

Throughout the paper,N denotes the set of positive integers, and we assume that
p ∈ N ∪ {0}, q ∈ N, d ∈ Z, r , δ ∈ R andr � 0. LetH = (V, E) be a hypergraph,
i.e. a familyE of subsets of a setV ; the elements ofV andE are calledverticesandedges
respectively. IfF ⊆ E , we write

⋃F as a shorthand for
⋃

F∈F F . Let C(r, δ) be the class
of all hypergraphsH = (V, E) for which

∣∣∣⋃F
∣∣∣ � r |F | + δ whenever∅ �= F ⊆ E and|F | < ∞, (1.1)

and letC(p, q, d) = C(p/q, d/q) be the class of all those for which

∣∣∣⋃F
∣∣∣ � p|F | + d

q
whenever∅ �= F ⊆ E and|F | < ∞. (1.2)

We say that a hypergraphH = (V, E) is irreducible in a classC if H ∈ C but if H′ is
obtained by removing any vertex from any edge ofH thenH′ �∈ C. If H ∈ C(r, δ) and every
edge inE is finite, then clearly (ifE is finite) or by a standard compactness argument (ifE
is infinite) one can reduceH to an irreducible member ofC(r, δ) by removing vertices from
some edges if necessary. (We allow our hypergraphs to have multiple edges, i.e. edges that
are equal as sets, althoughTheorem 6.2shows that this is unnecessary ifr � 1.) This is not
necessarily true if some edgeE ∈ E is infinite. However, in that case one can remove any
finite number of vertices fromE without violating (1.1). Hence the irreducible hypergraphs
in C(r, δ) can have no infinite edges.

We started looking at irreducible hypergraphs in the hope of proving results about
colourings [3]. Although we had some success with this approach, we found that usually it
does not work, and the present paper arose from our attempt to understand why.

We shall see inTheorem 4.3that if r is irrational then irreducible hypergraphs inC(r, δ)
can contain arbitrarily large edges. However,Theorem 2.2shows that ifr = p/q as a
fraction in its lowest terms, then an irreducible hypergraph inC(r, δ) can contain no edge
with more than max{p, p + �δ�} vertices. In this case it suffices to consider the case
when δ = d/q for some integerd, so that (1.1) reduces to (1.2); taking |F | = 1, this
clearly implies that every edge contains at least�(p+ d)/q� vertices. A hypergraph that is
irreducible inC(p, q, d) will be called(p, q, d)-irreducible.

It is easy to see fromTheorem 2.2that if d � 0 then every(p, 1, d)-irreducible
hypergraph is(p+ d)-uniform (i.e. every edge has exactlyp+ d vertices), and a(0, q, d)-
irreducible hypergraph is�d/q�-uniform. But (p, q, d)-irreducible hypergraphs are not
uniform in general. Let maxmod(p, q, d) denote the largest edge-size that is possible in a
(p, q, d)-irreducible hypergraph.Theorems 2.2and4.4 show thatmaxmod(p, q, d) = p
if d � 0, and

max{p, �(p + d)/q�} � maxmod(p, q, d) � p + �d/q� if d > 0. (1.3)

We know of no examples where this lower bound is exceeded by more than one.
Theorems 2.2and4.5show thatmaxmod(p, q, 1) = p+1 for all p andq. In Theorem 2.3
we determine maxmod(1, q, d) for all q andd; for d � 0 it always equals either�(1+d)/q�
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or �(1 + d)/q� + 1. Our construction giving the value�(p + d)/q� + 1 is described
in Theorem 4.6, but it works only for certain ranges of values ofd, for all of which
�(p + d)/q� < q. Thus we make the following conjectures.

Conjecture 1.1. For all values of p,q and d � 0, maxmod(p, q, d) is equal to either
max{p, �(p + d)/q�} or one more than this.

Conjecture 1.2. For fixed values of p and q,maxmod(p, q, d) = �(p+d)/q� if d is large
enough.

These results and conjectures can be restated in the language of expanders. Let us
say that a bipartite graphG with partite setsS, T (in that order) is an(r, δ)-expander
if |NG(X)| � r |X| + δ for every nonempty subsetX ⊆ S. Then maxmod(p, q, d) is the
largest possible degree of a vertexs ∈ S in an edge-minimal(p/q, d/q)-expander. This is
because a hypergraphH = (V, E) can be represented by a bipartite graphG with partite
setsS, T , whereT = V , the vertices inS are (in 1: 1 correspondence with) the edges in
E , and a vertexs ∈ S is adjacent to a vertext ∈ T if and only if t belongs to (the edge
in E corresponding to)s. Conversely, given a bipartite graphG with partite setsS, T , one
can represent it by a hypergraphH = (V, E) satisfying the above description. In either
case, the degree of a vertex inS is equal to the cardinality of the corresponding edge in
E , and (1.1) says precisely that|NG(X)| � r |X| + δ for every nonemptyX ⊆ S. We use
this bipartite-graph representation inSection 3to get an alternative proof ofTheorem 2.2
whend � 0, and also to get further information about(p, q, d)-irreducible hypergraphs
in this case; in particular, we prove that any such hypergraph must contain an edge with at
most�p/q� vertices ifd = 0, and with at most�(p − 1)/q� vertices ifd < 0, and these
bounds are sharp. (It seems likely that ifd > 0 then there is always an edge with at most
�(p + d)/q� vertices, but we do not have a proof of this.)

In Section 5we generalize this idea from bipartitegraphs to digraphs. Suppose a digraph
D = (V, A) satisfies an expansion condition of the form|N+(X) \ X| � r |X| + δ

whenever∅ �= X ⊆ S, whereS is a fixed subset ofV , but that this condition fails
if any arc is removed from D. If D is bipartite with bipartition(S, T) and all arcs
directed fromS towardsT , then we recover the bipartite model of hypergraphs described
in the previous paragraph. It follows from the corresponding examples for hypergraphs
(Theorem 4.3) that if r is irrational then there are bipartite digraphsD with this property
in which S contains vertices with arbitrarily large outdegree. InTheorems 5.1and 5.3,
which are the digraph analogues ofTheorems 2.2and4.4 for hypergraphs, we prove that
if r = p/q as a rational in its lowest terms, then the largest possible outdegree for a
vertex in S is exactly p + q if δ � 1, and lies between max{p + q, �(p + d)/q�} and
p + q + �δ� − 1 if δ > 1. The difference between these bounds and those in (1.3) reflects
the extra complexity in the situation for nonbipartite digraphs compared with bipartite
ones.

Weprove the main results about the size of the largest edge in an irreducible hypergraph
in Section 2, although the constructions needed for the lower bounds are left until
Section 4. An alternative proof of the upper bound using bipartite graphs, and results about
the size of the smallest edge, are given inSection 3. Arc-minimal digraph expanders are
discussed inSection 5. In Section 6we tidy up acouple of loose ends.
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2. The upper bounds

Let H = (V, E) be a hypergraph and letp, q ∈ N andd ∈ Z. For each finite subset
X ⊆ V , let e(X) = eH(X) be the number of edges ofH contained inX, anddefine

sur(X) = surH(X) := q|X| − peH(X) − d, (2.1)

so that surH(X) � 0 if H ∈ C(p, q, d) andeH(X) �= 0. LetE+(X, Y) denote the set of
edges ofH that are contained inX ∪ Y but not in X or Y. The following result is easy to
see.

Lemma 2.1. If X, Y ⊆ V then

surH(X) + surH(Y) − surH(X ∪ Y) − surH(X ∩ Y) = p|E+(X, Y)|. (2.2)

Proof. By (2.1), the LHS of (2.2) is equal to

p[eH(X ∪ Y) + eH(X ∩ Y) − eH(X) − eH(Y)]. (2.3)

An edge that iscontained inX ∩ Y contributesp(2 − 2) = 0 to (2.3). An edgethat is
contained inX or Y but not X ∩ Y contributesp(1 − 1) = 0 to (2.3). An edgethat is
contained inX ∪ Y butnot X or Y contributesp(1 − 0) = p to (2.3). �

The following theorem is our main upper bound. It is not necessary to assume here that
p andq are coprime, although naturally the bound is strongest when they are.

Theorem 2.2. maxmod(p, q, d) � max{p, p + �d/q�}.
Proof. Suppose thatH = (V, E) is (p, q, d)-irreducible and thatE contains an edge
E0 = {v1, . . . , vt } where t � p + 1. By the irreducibility ofH, there are finite sets
X1, . . . , Xt ⊆ V such that, for eachi ,

Xi ∩ E0 = E0 \ {vi } and sur(Xi ) � p − 1 (2.4)

(so that, if vi were removed fromE0, thene(Xi ) would increase by 1, and sur(Xi ) would
become negative). Fori = 1, . . . , t , let Yi := ⋂i

j =1 X j . Evidently

Yi ∩ E0 = {vi+1, . . . , vt }. (2.5)

It is easy to prove by induction oni that

sur(Yi ) � p − i . (2.6)

For, this holds by (2.4) if i = 1. And if i � 2 thenYi = Yi−1 ∩ Xi , sur(Yi−1) � p − i + 1
by the induction hypothesis, sur(Xi ) � p − 1 by (2.4), andE0 ∈ E+(Yi−1, Xi ) so that
|E+(Yi−1, Xi )| � 1 and sur(Yi−1 ∪ Xi ) � 0 by (1.2); thus sur(Yi ) � (p − i + 1) +
(p − 1) − 0 − p = p − i by Lemma 2.1.

Suppose now thatt = |E0| � p + �d/q� + 1. By (2.6), sur(Yp+1) < 0. Since
H ∈ C(p, q, d), it follows from (1.2) thate(Yp+1) = 0. But, by (2.5), |Yp+1| � t − p−1 �
�d/q�, and sosur(Yp+1) = q|Yp+1| − d � q�d/q� − d � 0. This contradiction proves
Theorem 2.2. �
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Theorems 4.4and4.5 show thatTheorem 2.2is sharp wheneverd � 1; specifically,
maxmod(p, q, d) = p if d � 0 and p + 1 if d = 1. The next theorem completely
determines the value of maxmod(p, q, d) when p = 1, and it shows thatTheorem 2.2
is not sharp in general.

Theorem 2.3. If d � 0 then maxmod(1, q, d) = 1. For each integer k � 2,
maxmod(1, q, d) = k if

(k − 1)2 − 1

k − 1
q < d � k2 − 1

k
q.

Proof. For d � 0 the resultfollows from Theorem 2.2, sinceclearly maxmod(1, q, d)

� 1. (If all edges ofH are empty, then (1.2) must fail if the number of edges is large
enough.) Ford > 0 the theorem states, more precisely, that

maxmod(1, q, d) = k = 1 + �d/q� if
(k − 1)2 − 1

k − 1
q < d � (k − 1)q (2.7)

and

maxmod(1, q, d) = k = �d/q� if (k − 1)q < d � k2 − 1

k
q. (2.8)

The lower bound maxmod(1, q, d) � k in (2.8), or in (2.7) whend = (k − 1)q, is shown
by a hypergraph comprising a single edge ofk vertices. The lower bound in the rest of (2.7)
is shown byTheorem 4.6. The upper bound maxmod(1, q, d) � k = 1 + �d/q� in (2.7)
follows directly fromTheorem 2.2. We must prove that maxmod(1, q, d) � k = �d/q�
in (2.8).

So suppose thatd is as in (2.8) andH = (V, E) is a (p, q, d)-irreducible hypergraph
containing an edgeE0 = {v1, . . . , vt } with t � k + 1. Let the setsXi be defined as in the
proof of Theorem 2.2. Then sur(Xi ) � p − 1 = 0 for eachi , and|Xi | � t − 1 � k. If
e(Xi ) = 0 then sur(Xi ) = q|Xi | − d � qk − d > 0 (sinced < qk). This contradiction
shows thate(Xi ) �= 0 and sosur(Xi ) � 0 by (1.2). Thus sur(Xi ) = 0, for eachi .

As in the proof of Theorem 2.2, sur(Xi ∩ X j ) � −1 whenever i �= j , so that
e(Xi ∩ X j ) = 0. If |Xi ∩ X j | � k then we get the contradiction sur(Xi ∩ X j ) =
q|Xi ∩ X j | − d � qk − d > 0. But E0 \ {vi , v j } ⊆ Xi ∩ X j , and so|Xi ∩ X j | �
|E0| − 2 = t − 2 � k − 1; thus equality holds throughout, and

Xi ∩ X j = E0 \ {vi , v j } wheneveri �= j . (2.9)

Therefore sur(Xi ∩ X j ) = q(k − 1) − d, ande(E0 \ {vi , v j }) = e(Xi ∩ X j ) = 0 whenever
i �= j .

For i = 1, . . . , t , let Ui := ⋃i
j =1 X j , and letxi denote the number of edges ofH that

are contained inE0 \ {vi }; note that these edges are all equal (as sets) toE0 \ {vi }, by the
last remark of the previous paragraph. We shall prove by induction that

sur(Ui ) � (i − 1)(d − qk) + q − 1 −
t∑

j =i+1

x j (2.10)
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for i = 2, . . . , t . This holds if i = 2 since, byLemma 2.1, sur(X1 ∪ X2) = 0 + 0 −
[q(k−1)−d]−|E+(X1, X2)|, and|E+(X1, X2)| � 1+∑t

j =3 x j (sinceE0 ∈ E+(X1, X2)).
So supposei � 3. ThenUi−1 ∩ Xi = E0 \ {vi } by (2.9), and so sur(Ui−1 ∩ Xi ) =
qk − pxi − d = qk − d − xi . By Lemma 2.1and the induction hypothesis,

sur(Ui ) = sur(Ui−1 ∪ Xi ) � (i − 2)(d − qk) + q − 1 −
t∑

j =i

x j + 0− (qk− d − xi )

= (i − 1)(d − qk) + q − 1 −
t∑

j =i+1

x j .

This proves (2.10).
Finally, applying (2.10) when i = t = k + 1 we find that sur(Uk+1) � k(d − qk) +

q − 1 � −1 by the upper limit ford in the statement of (2.8). But this contradicts (1.2)
since E0 ⊆ Uk+1 and soe(Uk+1) > 0; and this contradiction completes the proof of
Theorem 2.3. �

Theorem 2.3shows that, for fixedq, maxmod(1, q, d) is a nondecreasing function of
d. However, wecan prove that ifp is even andd > 0 and equality holds inTheorem 2.2,
thend − 1 is divisible by q. (The proof of this is too long to include here.) This shows
that maxmod(p, q, d) is not nondecreasing ifp is even, since then maxmod(p, q, d) = p
wheneverd � q, except that maxmod(p, q, 1) = p + 1 as remarked beforeTheorem 2.3.

3. An alternative approach

In this section we adopt an alternative approach using bipartite graphs. We give an
alternative proof ofTheorem 2.2whend � 0, and we then use the same idea to obtain
further information about(p, q, d)-irreducible hypergraphs, particularly about the size of
a smallestedge. We can use this method to proveTheorem 2.2also whend > 0, but we
omit the proof since it is longer and we have not managed to use it to obtain the same
further information in this case.

We write G = (S, T ; E) to denote thatG is a bipartite graph with vertex-setV(G) =
S∪ T and edge-setE(G) = E, where the order in which the partite setsS, T are written
is significant. IfX ⊆ V(G) then N(X) = NG(X) denotes the set of all vertices that are
adjacent to vertices inX. ThenG is an(r, δ)-expander, i.e. it represents a hypergraph in
C(r, δ) as explained inSection 1, if andonly if

|N(X)| � r |X| + δ (3.1)

for every nonempty finite subsetX ⊆ S. If δ � 0 then of course (3.1) holds even if
X = ∅. We saythatG is (r, δ)-irreducible if (3.1) holds inG but fails whenever any edge
is removed fromG.

We can now prove the following result.

Theorem 3.1. Let p, q, d be integers such that p, q> 0 and d� 0, and let G= (S, T ; E)

be a(p/q, d/q)-irreducible bipartite graph. Then:
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(a) every vertex in S has degree at most p;
(b) every vertex in T has degree at most q;
(c) somevertex in S has degree at most�p/q�;
(d) somevertex in T has degree at most�q/p�;
(e) if d < 0 then some vertex in Shas degree at most�(p − 1)/q�.

Proof. BecauseG is (p/q, d/q)-expanding,

|NG(X)| � (p|X| + d)/q (3.2)

for every finite subsetX ⊆ S. Let G1 = (S, T+; E1) be obtained fromG by replacing
every ti ∈ T by a setTi = {ti,1, . . . , ti,q} containingq copies ofti , all of which are
adjacent inG1 to precisely the neighbours ofti in G. Then (3.2) gives

|NG1(X)| � p|X| + d (3.3)

for every finite subsetX ⊆ S. Let G2 = (S+, T+; E2) be obtained fromG1 by replacing
everysi ∈ S by a setSi = {si,1, . . . , si,p} containingp copies ofsi , all of which are
adjacent inG2 to precisely the neighbours ofsi in G1. Then (3.3) gives

|NG2(X)| � |X| + d (3.4)

for every finite subsetX ⊆ S+. Finally, form G3 by adding−d new vertices toG2 that are
adjacent to all vertices inS+. Then|NG3(X)| � |X| for every finite subsetX ⊆ S+, and so
by Hall’s theorem [2] or its transfinite extension [1] G3 has a matching coveringS+. (For
reasons explained inSection 1in the language of irreducible hypergraphs, every vertex of
Shas finite degree inG, and so the result of [1] applies.)

It follows thatG2 has a matching covering all but−d vertices ofS+; call a matching
with this property ad-goodmatching inG2. For ad-good matchingP, let G′

2 = G′
2(P)

:= (S+, T+; P); then (3.4) still holds for G′
2. Let G′

1 = G′
1(P) be obtained fromG′

2 by
merging thep copies of everysi ∈ S backinto si . Then (3.3) still holds for G′

1, since if
X+ is the subset ofS+ comprising allp copies of every vertex inX, then

|NG′
1
(X)| = |NG′

2
(X+)| � |X+| + d = p|X| + d.

Now let G′ = G′(P) be the bipartite multigraph obtained fromG′
1 by merging theq

copies of everyti ∈ T backinto ti , and finally let G′′ = G′′(P) be the simple bipartite
graph obtained by identifying parallel edges inG′. Evidently (3.2) holds inG′′, andG′′ is
a subgraph ofG. SinceG is (p/q, d/q)-irreducible, thereforeG′′(P) = G; and this holds
whicheverd-good matchingP is chosen inG2.

It is clear from this construction that every vertex ofS has degree at mostp and every
vertex ofT has degree at mostq in G′′ = G. This proves (a) and (b). We now turn to the
proof of (c) and (d).

Claim 3.1.1. G is a forest.

Proof. This is obvious if p = 1 or q = 1, so supposep � 2 andq � 2. Suppose
G contains a circuitC : s1, t1, . . . , sk, tk, s1. Let f : N ∪ {0} → R be any function
that increases sufficiently rapidly thatf (n + 1) − f (n) > k[ f (i ) − f (i − 1)] whenever
1 � i � n ∈ N (e.g., f (n) := 2kn for all n). For each edgee of G, let µG′(P)(e)
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denote the multiplicity of the set of edges ofG′(P) corresponding toe, and among all
d-good matchings inG2 let P be one that maximizes the sum

∑
e∈C f (µG′(P)(e)). W.l.o.g.

assumeµG′(P)(s1t1) � µG′(P)(e) for all other edgese of C. For each edgee of C, choose
an edge ofP that maps intoe whenG = G′′(P) is constructed as above fromG′

2(P); let
the chosen edges be

s1,h1t1,i1, t1, j1s2,l2, s2,h2t2,i2, t2, j2s3,l3, . . . , sk,hk tk,ik , tk, jks1,l1.

Replacing the edges

t1, j1s2,l2, t2, j2s3,l3, . . . , tk, jks1,l1

of P by the edges

s1,l1t1, j1, s2,l2t2, j2, . . . , sk,lk tk, jk

gives anotherd-good matchingP′ in G2 such that
∑

e∈C f (µG′(P′)(e)) >
∑

e∈C
f (µG′(P)(e)). (This replacement is possible since every edgee of G corresponds to a
copy of K p,q in G2; thus sinces1,h1t1,i1 ∈ E2 it follows that s1,l1t1, j1 ∈ E2, etc.)This
contradiction shows that there can be no such circuitC, and soClaim 3.1.1is proved. �

In proving (c) we may assume that all isolated vertices and endvertices of the forest
G are in T , since otherwise (c) clearly holds. Choose a vertexs0 ∈ S such that at
most one neighbour ofs0 in G is not an endvertex ofG; such a vertexs0 must exist,
in any forest. SupposeNG(s0) = {t1, . . . , tk}, wheret1, . . . , tk−1 are endvertices ofG.
Start with an arbitraryd-good matchingP1 in G2. For i = 1, . . . , k − 1 in turn, if
νi := max{p, q} − µG′(Pi )(s0ti ) > 0, then form ad-good matchingPi+1 from Pi by
removingνi edges ofPi betweenS0 andTk and replacing them withνi edges between the
same vertices ofS0 and vertices ofTi that are notmatched byPi . (If there are not as many
asνi edges ofPi betweenS0 andTk then replace all there are, and observe thatG′′(Pi+1)

is then a proper subgraph ofG (missing the edges0tk), which is a contradiction.) Then
µG′(Pk)(s0ti ) = max{p, q} for i = 1, . . . , k − 1. If p < q then inG′(Pk) all p edges from
s0 go tot1, and sos0 has degree 1= �p/q� in G. Otherwiseq of the p edges incident with
s0 in G′(Pk) go to ti for eachi = 1, . . . , k − 1 and sos0 has degreek = �p/q� in G.

This proves (c). The proof of (d) is exactly the same but with the roles ofS and T
interchanged.

To prove (e), let P be ad-good matching inG2, wherenow d < 0. Choose a vertex
s1 ∈ S such that the corresponding setS1 = {s1,1, . . . , s1,p} of vertices in S+ contains
one of the−d vertices that is not matched byP; thens1 has degree at mostp − 1 in the
multigraphG′(P). If p = 1 thens1 has degree 0 inG′(P) and hence inG′′(P) = G, which
is all we have to prove; so we may assumep > 1. Then, as in the proof of (c), we may
assume that all isolated vertices and endvertices of the forestG are inT . Let s0 be a vertex
in the same component ofG ass1 such that at most one neighbour ofs0 in G is not an
endvertex ofG. If s0 �= s1, let the path froms1 to s0 in G have verticess1, t1, . . . , sk, tk, s0.
For each edgee of this path, choose an edge ofP that maps intoe whenG = G′′(P) is
constructed as above fromG′

2(P); let the chosen edges be

s1,h1t1,i1, t1, j1s2,l2, s2,h2t2,i2, t2, j2s3,l3, . . . , sk,hk tk,ik , tk, jks0,l0.
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Let s1,l1 be a vertex ofS1 that is not matched byP. Replacing the edges

t1, j1s2,l2, t2, j2s3,l3, . . . , tk, jks0,l0

of P by the edges

s1,l1t1, j1, s2,l2t2, j2, . . . , sk,lk tk, jk

gives anotherd-good matchingP′ in G2 in which s1,l1 is matched buts0,l0 is not. Thus,
in G′

2(P′), there are at mostp − 1 edges incident with vertices inS0. If we nowapply the
argument used above to prove (c), then we find thats0 has degree at mostk = �(p− 1)/q�
in G. This completes the proof of (e), and so ofTheorem 3.1. �

Note that there is no part ‘(f)’ inTheorem 3.1, saying that ifd < 0 then there is a vertex
in T with degree at most�(q − 1)/p�. For example, the pathabcdewith S= {a, c, e} and
T = {b, d} is a(3/4,−1/4)-irreducible bipartite graph, and each ofb, d has degree 2, but
2 > �(4 − 1)/3� = 1.

The following corollary statesthat parts (a), (c) and (e) ofTheorem 3.1are sharp. Let us
write maxminmod(p, q, d) for the maximum value of the minimum degree of all vertices in
S, where the maximum is taken over all(p/q, d/q)-irreducible bipartite graphs(S, T ; E).
Equivalently, maxminmod(p, q, d) is the maximum size of the smallest edge inE , where
the maximum is taken over all(p, q, d)-irreducible hypergraphsH = (V, E).

Corollary 3.2. Let p, q, d be integers such that p and q are positive and coprime
and d � 0. Then maxmod(p, q, d) = p, maxminmod(p, q, 0) = �p/q�, and
maxminmod(p, q, d) = �(p − 1)/q� if d < 0.

Proof. The first statement follows fromTheorem 3.1(a) andTheorem 4.4, and the third
follows from Theorem 3.1(e) and Theorem 4.1. The second statement follows from
Theorem 3.1(c), since it is clear from puttingX = {v} in (3.2) that maxminmod(p, q, d) �
(p + d)/q = p/q if d = 0. �

Finally, we consider the case of irrationalr .

Corollary 3.3. If r is irrational and δ � 0, then for every finite(r, δ)-irreducible bipartite
graph G= (S, T; E) there is a vertex in S with degree at most�r �. This is sharp.

Proof. The set of numbers

{�r � − r } ∪ {r i + δ − j : i = 0, . . . , |S|, j = 0, . . . , |T |}
is a discrete set that may or may not contain 0. Choose an integerq sufficiently large that
everypositive number in the set is greater than(|S| + 1)/q. Choose integersp andd such
that

(p − 1)/q < r < p/q and (d + |S|)/q � δ < (d + |S| + 1)/q.

Then�r � = �p/q�, since�r � − r > 1/q. Also, for i = 0, . . . , |S| and j = 0, . . . , |T |,
(pi + d)/q + (|S| − i )/q < r i + δ < (pi + d)/q + (|S| + 1)/q,

so that(pi + d)/q < r i + δ, and j � (pi + d)/q if and only if j � r i + δ (since
if j � (pi + d)/q thenr i + δ − j < (|S| + 1)/q and sor i + δ − j � 0). SoG is
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(p/q, d/q)-irreducible. Thus it follows fromTheorem 3.1(c) that there is a vertex inS
with degree at most�p/q� = �r �. The sharpness of this result is proved inTheorem 4.2.

�
If δ < 0 thenCorollary 3.3holds for infinite(r, δ)-irreducible bipartite graphs as well.

In this case we can prove that for someδ′, δ � δ′ < 0,G has an(r, δ′)-irreducible subgraph
G0 that is the union of finitely many finite components ofG. The result then follows on
applyingCorollary 3.3 to G0. This does not seem to work ifδ = 0, since then we might
have totakeδ′ > 0, and we have not proved anything about the minimum degree of vertices
in Swhenδ > 0.

4. The lower bounds

The hypergraphs that we construct in this section may apparently have multiple edges.
The question of whether they can be taken to be simple is discussed in the final section, in
and beforeTheorem 6.2.

We start with the lower bounds on the maximum size of a smallest edge whenδ < 0.
Forpositiveintegerst, m andn, letH = (V, E) = H(t, m, n) be a hypergraph in whichV
is theunion of t disjoint setsZ1, . . . , Zt , each of cardinalityn, andE comprisesm copies
of every setZi ; thus|V | = tn and|E | = tm.

Theorem 4.1. If p andq arepositive coprime integers and d< 0, then there is a(p, q, d)-
irreducible hypergraph in which every edge has at least�(p − 1)/q� vertices.

Proof. Since p and q are coprime, there exist positive integersm and n such that
qn = pm−1. LetH = H(−d, m, n). To prove thatH ∈ C(p, q, d), it suffices to consider
the setFi of edges contained inZ1 ∪ · · · ∪ Zi (1 � i � −d). But |Fi | = im and∣∣∣⋃Fi

∣∣∣ = in = i (pm− 1)

q
= p|Fi | − i

q
� p|Fi | + d

q
.

It follows thatH ∈ C(p, q, d). So one can form an irreducible hypergraphH′ ∈ C(p, q, d)

by removing vertices from edges ofH. Suppose thatH′ contains an edgeewith fewer than
(p − 1)/q vertices. W.l.o.g.e ∈ Z1, so letF be the set of all edges ofH′ contained in
e∪ Z2 ∪ · · · ∪ Z−d. Then|F | � 1 + m(−d − 1) and∣∣∣⋃F

∣∣∣ <
p − 1

q
+ n(−d − 1) = p − 1 + (pm− 1)(−d − 1)

q
� p|F | + d

q
,

which is impossible sinceH′ ∈ C(p, q, d). Thus every edge ofH′ has at least(p − 1)/q
vertices, as required. �

The next theorem is the analogous result for irrationalr . Theorem 3.1(e) and
Corollary 3.3show thatTheorems 4.1and4.2, respectively, are best possible.

Theorem 4.2. If r is a positive irrational number andδ � 0, then there is an irreducible
hypergraph inC(r, δ) in which every edgehas at least�r � vertices.

Proof. This is obvious ifδ = 0 (take |F | = 1 in (1.1)), so supposeδ < 0. Let
α := r − �r  > 0. Letq be a positive integer sufficiently large that 1/q < α/(−δ), so that
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(q −1)/q > (−α − δ)/(−δ). Sincer is irrational, numbers of the formmr −n (m, n ∈ N)

are dense inR. So letm, n be positiveintegers such that

−α − δ

q − 1
< mr − n <

−δ

q
.

The proof now follows the argument ofTheorem 4.1. LetH = H(q, m, n). If Fi is the set
of edges contained inZ1 ∪ · · · ∪ Zi (1 � i � q) then|Fi | = im and∣∣∣⋃Fi

∣∣∣ = in > imr + i δ/q � imr + δ = r |Fi | + δ.

ThusH ∈ C(r, δ). Forming an irreducible hypergraphH′ ∈ C(r, δ) fromH as in the proof
of Theorem 4.1, we seethat if H′ contains an edge with�r  or fewer vertices thenH′
contains a setF of at least 1+ m(q − 1) edges such that∣∣∣⋃F

∣∣∣ � �r  + n(q − 1) < �r  + mr(q − 1) + α + δ = r [1 + m(q − 1)] + δ

� r |F | + δ,

which is impossible sinceH′ ∈ C(r, δ). Thus every edge ofH′ has at least�r � vertices, as
required. �

We now turn to the lower bounds on the maximum size of a largest edge. For
nonnegative integerst , m, n, m′, n′, wheret > 0 andn > 0, we construct a hypergraph
H = (V, E) = H(t, m, n, m′, n′) as follows. Let V be the disjoint union of sets
Y, Z1, . . . , Zt , where|Y| = n′ and |Zi | = n for eachi . Let E comprise the following
edges:m′ copies ofY, m copies ofY ∪ Zi for eachi , and anedgeE0 containing one vertex
from each setZi . ThenH(t, m, n, m′, n′) hastn + n′ vertices andtm + m′ + 1 edges, and
|E0| = t .

We first use this construction to dealwith the case whenr is irrational.

Theorem 4.3. If r is a positive irrational number andδ is anarbitrary real number, then
ir reducible hypergraphs inC(r, δ) can contain arbitrarily large edges.

Proof. Let t ∈ N, t � max{2, r +δ}. We shall prove that there is an irreducible hypergraph
in C(r, δ) containing an edge witht vertices. Sincer is irrational, numbers of the form
n − rm (m, n ∈ N) are dense inR. So letm, n, m′, n′ be positive integers and define
ε := r + δ − (n′ − rm′), wherem, n, m′, n′ are chosen so that

0 < ε < min{r, t} and
ε

t
< n − rm <

ε

t − 1
. (4.1)

LetH := H(t, m, n, m′, n′). Note that|E0| = t � r + δ.
We shall prove first thatH ∈ C(r, δ). H has m′ edges that are copies ofY, and

|Y| = n′ = r + δ + rm′ − ε > rm′ + δ = reH(Y) + δ. To complete the proof that
H ∈ C(r, δ) it suffices to consider the setFi of all edges contained inY ∪ Z1 ∪ · · · ∪ Zi

(1 � i � t − 1) and the setF ′
i := Fi ∪ {E0} (1 � i � t). Note that, by (4.1),

in + n′ > i
(ε

t
+ rm

)
+ (r + δ + rm′ − ε) = r (im + m′ + 1) + δ − (t − i )ε

t
.
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Now, |Fi | = im + m′ if i < t , and∣∣∣⋃Fi

∣∣∣ = in + n′ > r |Fi | + r + δ − (t − i )ε

t
> r |Fi | + δ

sinceε < r ; and|F ′
i | = im + m′ + 1 and∣∣∣⋃F ′

i

∣∣∣ = in + n′ + t − i > r |F ′
i | + δ + (t − i )(t − ε)

t
� r |F ′

i | + δ

sinceε < t . It follows thatH ∈ C(r, δ).
Now let H′ be obtained fromH be deleting one vertex from the edgeE0, say the

vertex in E0 ∩ Zt , and letF consist of all edges contained inV(H′) \ Zt . Then|F | =
(t − 1)m + m′ + 1 and, by (4.1),∣∣∣⋃F

∣∣∣ = (t − 1)n + n′ < (ε + (t − 1)rm) + (r + δ + rm′ − ε) = r |F | + δ.

It follows thatH′ �∈ C(r, δ).
Now,H is not an irreducible member ofC(r, δ), butone can form an irreducible member

H′′ of C(r, δ) by removing vertices from edges ofH. SinceH′ �∈ C(r, δ), H′′ must contain
the edgeE0 with t vertices. This completes the proof ofTheorem 4.3. �

We now use the same construction to prove a universal lower bound for rationalr .

Theorem 4.4. If p andq are positive coprime integers and d is an arbitrary integer, then
maxmod(p, q, d) � p.

Proof. The structure of the proof is very similar to that of the previous theorem. Sincep
andq are coprime, there exist nonnegative integersm, n, m′, n′ suchthatqn = pm+1 and
qn′ = pm′ +d. LetH := H(p, m, n, m′, n′). We mayassume that|E0| = p > (p+d)/q,
since clearlymaxmod(p, q, d) � (p + d)/q and so the result of the theorem is obvious if
p � (p + d)/q.

We shall prove first thatH ∈ C(p, q, d). H hasm′ edges that are copies ofY, and
|Y| = n′ = (pm′ + d)/q = (peH(Y) + d)/q. To complete the proof thatH ∈ C(p, q, d),
as inTheorem 4.3it suffices to consider the setFi of edges contained inY ∪ Z1 ∪· · ·∪ Zi

(1 � i � p − 1) and the setF ′
i := Fi ∪ {E0} (1 � i � p). Now, |Fi | = im + m′ if i < p,

and ∣∣∣⋃Fi

∣∣∣ = in + n′ = i (pm+ 1) + (pm′ + d)

q
>

p(im + m′) + d

q

= p|Fi | + d

q
; (4.2)

and|F ′
i | = im + m′ + 1 and
∣∣∣⋃F ′

i

∣∣∣ = in + n′ + p − i = i (pm+ 1) + (pm′ + d) + q(p − i )

q

= p(im + m′ + 1) + d + (q − 1)(p − i )

q
�

p|F ′
i | + d

q
.

It follows thatH ∈ C(p, q, d).
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Now let H′ be obtained fromH be deleting one vertex from the edgeE0, say the
vertex in E0 ∩ Zp, and letF consist of all edges contained inV(H′) \ Zp. Then
|F | = (p − 1)m + m′ + 1 and

∣∣∣⋃F
∣∣∣ = (p − 1)n + n′ = (p − 1)(pm+ 1) + (pm′ + d)

q

= p((p − 1)m + m′ + 1) + d − 1

q
<

p|F | + d

q
.

It follows thatH′ �∈ C(p, q, d).
As in the proof of Theorem 4.3, one can form an irreducible memberH′′ of C(p, q, d)

by removing vertices from edges ofH, and sinceH′ �∈ C(p, q, d), H′′ must contain the
edgeE0 with p vertices. This completes the proof ofTheorem 4.4. �

We can improve slightly on the above lower bound in the case whend ≡ 1 (mod q). If
d = 1, thenTheorems 2.2and4.5together show that maxmod(p, q, 1) = p + 1.

Theorem 4.5. If p and q are positive coprime integers and d� 1 and d ≡ 1 (mod q)

thenmaxmod(p, q, d) � p + 1.

Proof. The proof is a simpler version of the previous proof. Sincep andq are coprime,
there exist positive integersm, n such that qn = pm + 1. Let qn′ = d − 1 and
H := H(p + 1, m, n, 0, n′). We mayassume that|E0| = p + 1 > (p + d)/q, since
the result is obvious if p + 1 � (p + d)/q.

We shall first prove thatH ∈ C(p, q, d). Let Fi be the set of edges contained in
Y ∪ Z1 ∪ · · · ∪ Zi and letF ′

i := Fi ∪ {E0} (1 � i � p + 1). Now, |Fi | = im if
i � p, and∣∣∣⋃Fi

∣∣∣ = in + n′ = i (pm+ 1) + (d − 1)

q
� p(im) + d

q
= p|Fi | + d

q
;

and|F ′
i | = im + 1 and
∣∣∣⋃F ′

i

∣∣∣ = in + n′ + p + 1 − i = i (pm+ 1) + (d − 1) + q(p + 1 − i )

q

= p(im + 1) + d + (q − 1)(p + 1 − i )

q

�
p|F ′

i | + d

q
.

It follows thatH ∈ C(p, q, d).
Now letH′ by obtained fromH be deleting one vertex from the edgeE0, say the vertex

in E0 ∩ Zp+1, and letF consist of all edges contained inV(H′)\Zp+1. Then|F | = pm+1
and ∣∣∣⋃F

∣∣∣ = pn+ n′ = p(pm+ 1) + (d − 1)

q
<

p|F | + d

q
.

It follows thatH′ �∈ C(p, q, d).
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As before, one can form an irreducible memberH′′ of C(p, q, d) by removing vertices
from edges ofH, and sinceH′ �∈ C(p, q, d), H′′ must contain the edgeE0 with p + 1
vertices. This completes the proof ofTheorem 4.5. �

The construction in the next theorem is somewhat different. It works for arbitrarily large
d, but it is only interesting ift > �(p + d)/q�, which explains the upper bound given for
d in the statement of the theorem. The theorem is nonvacuous (i.e. the range of values ofd
is nonempty) if and only ift � q, when�(p + d)/q� < q.

Theorem 4.6. If p, q, d, t are positive integers such that p, q are coprime and t>

(p/q) + 1 and

qt − p − (q − 1)t

t − 1
= q(t − 1) − p + 1 − q − 1

t − 1
� d � q(t − 1) − p, (4.3)

thenmaxmod(p, q, d) � t = �(p + d)/q� + 1.

Proof. Since p and q are coprime, there exist positive integersm, n such that qn =
p(m + 1) + d − qt + q − 1. Let V be the disjoint union of setsE0, Z1, . . . , Zt , where
E0 = {v1, . . . , vt } and|Zi | = n for eachi . LetH = (V, E) whereE comprises one copy
of E0 andm copies ofZi ∪ E0 \ {vi } for eachi .

We first prove thatH ∈ C(p, q, d). LetFi be the set of edges contained inE0 ∪ Z1 ∪
· · · ∪ Zi (1 � i � t) and letF ′

1 be the set of edges contained inZ1 ∪ E0 \ {v1}. Then
|Fi | = im + 1 and

q
∣∣∣⋃Fi

∣∣∣ = q(in + t) = i [p(m + 1) + d − qt + q − 1] + qt

= p(im + 1) + d + (i − 1)(p + d − qt) + i (q − 1)

� p(im + 1) + d − (i − 1)(q − 1)t

t − 1
+ i (q − 1) by (4.3)

= p|Fi | + d + (t − i )(q − 1)

t − 1
� p|Fi | + d

sincei � t . Also |F ′
1| = m and

∣∣∣⋃F ′
1

∣∣∣ = n + t − 1 = p(m + 1) + d − 1

q
� pm+ d

q
= p|F ′

1| + d

q
.

It follows thatH ∈ C(p, q, d).
Now letH′ be obtained fromH be deleting one vertex, sayv1, from the edgeE0, and

let F comprise all edges ofH′ contained inZ1 ∪ E0 \ {v1}. Then|F | = m + 1 and∣∣∣⋃F
∣∣∣ = n + t − 1 = p(m + 1) + d − 1

q
<

p(m + 1) + d

q
= p|F | + d

q
.

It follows thatH′ �∈ C(p, q, d).
As before, one can form an irreducible memberH′′ of C(p, q, d) by removing vertices

from edges ofH, and sinceH′ �∈ C(p, q, d), H′′ must contain the edgeE0 with t vertices.
This completes the proof ofTheorem 4.6. �
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5. Arc-minimal digraph expanders

Let D = (V, A) be a digraph with vertex-setV(D) = V and arc-setA(D) = A. We
say thatD is arc-minimalin a classC if D ∈ C but, for each arca ∈ A, D − a �∈ C. If
v ∈ V and X ⊆ V , thend−(v) andd+(v) denote the indegree and outdegree ofv, and
N+(X) denotes the set of verticesw such that there exists an arc−→uw ∈ A with u ∈ X. We
say thatX is independentif no arc has both its head and its tail inX.

By an (r, δ)-expanding digraphwe mean a tripleD = (V, A, S), where(V, A) is a
digraph (which, by an abuse of terminology, we also callD), S ⊆ V , and

|N+(X) \ X| � r |X| + δ whenever∅ �= X ⊆ S and|X| < ∞. (5.1)

(This might perhaps be described as aregional expander, since the condition (5.1) holds
only for setsX in a certain region, namely for subsets ofS, rather than for all subsets ofV
that are not too large, as is often the case in other contexts. However,Scould be the whole
of V , if V is infinite or if r |V | + δ � 0.) As remarked inSection 1, if D is bipartite with
bipartition (S, T) and all arcs directed fromS towardsT , then we recover the bipartite
model of hypergraphs used inSection 3.

It is easy to see that every vertex in an arc-minimal(r, δ)-expanding digraph has
finite outdegree, by an analogous argument to the one used inSection 1to show that the
irreducible hypergraphs inC(r, δ) can have no infinite edges. Also, as already remarked
in Section 1, it follows from the corresponding examples for hypergraphs (Theorem 4.3)
that if r is irrational then there are bipartite arc-minimal(r, δ)-expanding digraphsD =
(V, A, S) in which S contains vertices with arbitrarily large outdegree. We shall see that
this is not true ifr is rational.

If p ∈ N ∪ {0}, q ∈ N andd ∈ Z, let maxdeg(p, q, d) denote the largest outdegree
that is possible for a vertex in the setS of an arc-minimal(p/q, d/q)-expanding digraph
D = (V, A, S), i.e. one that is arc-minimal subject to the condition

|N+(X) \ X| � p|X| + d

q
whenever∅ �= X ⊆ S and|X| < ∞. (5.2)

Clearly (taking |X| = 1) (5.2) forces every vertex ofS to haveoutdegree at least
�(p + d)/q�.

The next two theorems are the digraph analogues ofTheorems 2.2and 4.4 for
hypergraphs. They show that ifp andq are coprime then maxdeg(p, q, d) = p + q if
d � q, and max{p + q, �(p + d)/q�} � maxdeg(p, q, d) � p + q + �d/q� − 1 if d > q.
The proof given below forTheorem 5.1(a) is an alternative proof ofTheorem 2.2.

Theorem 5.1. Let D = (V, A, S) be an arc-minimal(p/q, d/q)-expanding digraph, and
let v ∈ S.

(a) If d−(v) = 0 then d+(v) � max{p, p + �d/q�}.
(b) maxdeg(p, q, d) � max{p + q, p + q + �d/q� − 1}.
Proof. Let v1, . . . , vt be the outneighbours ofv. By the arc-minimality of D, there are
finite setsX1, . . . , Xt ⊆ Scontainingv such that, for eachi ,

|N+(Xi ) \ Xi | − 1 < (p|Xi | + d)/q, (5.3)
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vi ∈ N+(Xi ) \ Xi , andv is the only vertex inXi from which there is an arc going tovi

(so that,if the arcvvi were removed fromD, then (5.2) would fail; the setsXi need not be
distinct). If 1 � j � s � t , let W(s)

j consist of all vertices ofV that are in at leastj of the
setsX1, . . . , Xs. We claim that

s∑
i=1

|N+(Xi ) \ Xi | �
s∑

j =1

|N+(W(s)
j ) \ W(s)

j |. (5.4)

For, consider a typical vertexw ∈ V . Let there beh setsXi suchthat w ∈ Xi , andk
setsXi suchthat w ∈ N+(Xi ) \ Xi (1 � i � s). Thenw contributesk to the LHS of
(5.4), and it contributes at mostk to the RHS, since it can contribute to the RHS only when
j ∈ {h + 1, . . . , h + k}. (If j � h thenw ∈ W(s)

j , and if−→uw ∈ A thenu can be in at mostk

setsXi in addition to theh sets thatcontainw, so thatu �∈ W(s)
j if j > h + k.) Thisproves

(5.4).
Now, for eachi , (5.3) implies that

|N+(Xi ) \ Xi | � (p|Xi | + d + q − 1)/q;
and for eachj , |N+(W(s)

j ) \ W(s)
j | � (p|W(s)

j | + d)/q. Since
∑s

i=1 |Xi | = ∑s
j =1 |W(s)

j |,
it follows from (5.4) that

|N+(W(s)
s ) \ W(s)

s | �
s∑

i=1

|N+(Xi ) \ Xi | −
s−1∑
j =1

|N+(W(s)
j ) \ W(s)

j |

�
s∑

i=1

(p|Xi | + d + q − 1)/q −
s−1∑
j =1

(p|W(s)
j | + d)/q

= [p|W(s)
s | + d + s(q − 1)]/q. (5.5)

Note thatv ∈ W(s)
s andvi ∈ N+({v}) \ Xi for eachi (1 � i � s), and so

{v1, . . . , vs} ⊆ N+(W(s)
s ) \ W(s)

s . (5.6)

To prove (a), suppose on the contrary thatt � max{p, p + �d/q�} + 1. In this case we
takes = p+ 1. If |W(s)

s | = 1 thenW(s)
s = {v}, N+(W(s)

s ) \ W(s)
s = {v1, . . . , vt }, and (5.5)

gives the contradiction

p + �d/q� + 1 � t � [p + d + (p + 1)(q − 1)]/q = p + (d − 1)/q + 1.

Thus|W(s)
s | � 2. Let X := W(s)

s \ {v} �= ∅. For eachi (1 � i � s), W(s)
s ⊆ Xi , andv is

the only vertex ofXi from which there is an arc going tovi . It follows from this and (5.5)
and (5.6) that

|N+(X) \ X| � |N+(W(s)
s ) \ W(s)

s | − s � (p|W(s)
s | + d − s)/q

= (p|X| + d − 1)/q

sinces = p + 1. This contradicts (5.2), and this contradiction proves (a).
To prove (b), suppose on the contrary thatv can be chosen so thatt � max{p + q,

p + q + �d/q� − 1} + 1. In this case we takes = p + q + 1. If |W(s)
s | = 1 then
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W(s)
s = {v}, N+(W(s)

s ) \ W(s)
s = {v1, . . . , vt }, and (5.5) gives the contradiction

p + q + �d/q� � t � [p + d + (p + q + 1)(q − 1)]/q = p + q + (d − 1)/q.

Thus|W(s)
s | � 2. Let X := W(s)

s \ {v} �= ∅. For eachi (1 � i � s), W(s)
s ⊆ Xi , andv is

the only vertex ofXi from which there is an arc going tovi . However, it is possible now
thatv ∈ N+(X) \ X. Thus, by (5.5) and (5.6),

|N+(X) \ X| � |N+(W(s)
s ) \ W(s)

s | − s + 1 � (p|W(s)
s | + d − s + q)/q

= (p|X| + d − 1)/q

since s = p + q + 1. This again contradicts (5.2), and this completes the proof of
Theorem 5.1. �

Corollary 5.2. Let D = (V, A, S) be an arc-minimal(p/q, d/q)-expanding digraph,
where d� 1.

(a) If q = 1 then every vertex of Shas outdegree exactly p+ d.
(b) If p = 0 then every vertex of Shas outdegree exactly�d/q�.

Proof. (a) If q = 1 thenTheorem 5.1(b) says that every vertex ofShas outdegree at most
p + d. But clearly (taking|X| = 1 in (5.2)) every vertex has outdegree at leastp + d, and
the result follows.

(b) If p = 0 then (5.2) says that|N+(X)\ X| � �d/q� for every nonempty finite subset
X of S. There is no loss of generality in assuming thatq = 1, and so the result follows
from (a). �

The following theorem is very similar toTheorem 4.4, but for digraphs rather than
hypergraphs.

Theorem 5.3. If p andq are positive coprime integers and d is an arbitrary integer, then
maxdeg(p, q, d) � p + q.

Proof. Since p and q are coprime, there exist positive integersm, n, m′, n′ suchthat
qn = (p + q)m + 1, qn′ = pm′ + d andn′ > (p + q)m. LetH = H(p + q, m, n, 0, 0),
which (by the proof of Theorem 4.4) belongs toC(p+ q, q, 0), and letH′′ = (V, E) be an
irreducible member ofC(p + q, q, 0) formed by removing vertices from edges ofH. By
the proof of Theorem 4.4, H′′ contains the edgeE0 with p + q vertices.

Let D̂ be the bipartite digraph with partite setŝS, T̂ in which: T̂ = V , the vertices in
Ŝ are (in 1:1 correspondence with) the edges inE , and a vertexs ∈ Ŝ is joined by an arc
to a vertext ∈ T̂ if and only if t belongs to (the edge inE corresponding to)s. Then
|Ŝ| = |E | = (p + q)m + 1 and|T̂ | = |V | = (p + q)n. Moreover Ŝ contains a vertexy0
with outdegreep + q (corresponding to the edgeE0 of H′′), and D̂ is arc-minimal with
respect to the property that|N+

D̂
(X̂)| � (p + q)|X̂|/q for each nonempty subset̂X of Ŝ.

Form a digraph expanderD = (V, A, S) by adding toD̂ a set̃S of m′ vertices, a set̃T
of n′ − |Ŝ| vertices, and arcs from all vertices iñS∪ Ŝ\ {y0} to all vertices in̂S∪ T̃ . Let
S := S̃∪ Ŝ. The result of the theorem is obvious ifp + q � (p + d)/q, and so we may
suppose that, inD, d+(y0) = p + q � (p + d)/q.
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We shall prove first thatD is (p/q, d/q)-expanding. Suppose that∅ �= X ⊆ S. If
X ⊆ S̃ then

|N+(X) \ X| = |Ŝ∪ T̃ | = n′ = (pm′ + d)/q = (p|S̃| + d)/q � (p|X| + d)/q;
if X ∩ Ŝ= {y0} andX �= {y0} then

|N+(X) \ X| = n′ + p + q − 1 � [p(|S̃| + 1) + d]/q � (p|X| + d)/q

sincep + q − 1 � p � p/q; and if X ∩ Ŝ = X̂ �∈ {∅, {y0}} then

|N+(X) \ X| = |N+(X̂) ∩ T̂ | + n′ − |X̂| � (p + q)|X̂|/q + (p|S̃| + d)/q − |X̂|
= [p(|X̂| + |S̃|) + d]/q

� (p|X| + d)/q.

ThusD is (p/q, d/q)-expanding.
Now let D′ be obtained fromD be deleting one arc out ofy0. By thearc-minimality of

D̂, there isa subsetX̂ of Ŝsuchthat|N+
D′(X̂)∩ T̂ | < (p+q)|X̂|/q. Let X := S̃∪ X̂. Then

|N+(X) \ X| = |N+(X̂) ∩ T̂ | + n′ − |X̂| < (p + q)|X̂|/q + (p|S̃| + d)/q − |X̂|
= (p|X| + d)/q.

It follows thatD′ is not (p/q, d/q)-expanding.
Now, D is not an arc-minimal(p/q, d/q)-expander, but one can form an arc-minimal

(p/q, d/q)-expanderD′′ by removing arcs fromD. SinceD′ isnot(p/q, d/q)-expanding,
D′′ must contain allp+ q arcs leavingy0. This completes the proof ofTheorem 5.3. �

6. Two loose ends

If D = (V, A) is a digraph andX ⊆ S ⊆ V , let ∂(X) denote the set of arcs−→uw such
thatu ∈ X andw �∈ X. An analogue of (5.1) would be

|∂(X)| � r |X| + δ whenever∅ �= X ⊆ S and|X| < ∞. (6.1)

In general, a digraph that is arc-minimal subject to (6.1) can have vertices with arbitrarily
large outdegree. For example, ifr = 1, δ = 0, S = {u1, . . . , un−1, v}, V = S ∪
{w1, . . . , wn} and A = {−→u1v, . . . ,−−−→un−1v,−−→vw1, . . . ,

−−→vwn}, then it is easy to see thatD
is arc-minimal subject to (6.1); but D has maximum outdegreen, whichcan be arbitrarily
large. However, if (exceptionally)r = 0 then the maximum outdegree is bounded, as we
see in the following analogue ofCorollary 5.2(b).

Theorem 6.1. Let D = (V, A) be a digraph (with parallel edges allowed) and S⊆ V ,
and let d∈ N ∪ {0}. Suppose that D is arc-minimal subject to the condition that, for each
finite subset X⊆ S,|∂(X)| � d. Then every vertex of S has outdegree d.

Proof. The proof is a simpler version of the proof ofTheorem 5.1. If v ∈ S thenv has
outdegreed+(v) = |∂({v})| � d. We must prove thatd+(v) � d. It is clear that ifd = 0
thend+(v) = 0; so supposed > 0.

Suppose if possible thata1, . . . , ad+1 are distinct arcs withv as their tail. By the arc-
minimality of D, there are setsX1, . . . , Xd+1 ⊆ S containingv such that, for eachi ,
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ai ∈ ∂(Xi ) and|∂(Xi )| = d. (The setsXi may not be distinct.) Forj = 1, . . . , d + 1, let
Wj be the set of vertices that are in at leastj of the setsXi . We claim that

d+1∑
i=1

|∂(Xi )| �
d+1∑
j =1

|∂(Wj )|. (6.2)

For, consider a typical arca = uw. Let there beh setsXi suchthatw ∈ Xi andk setsXi

suchthatu ∈ Xi andw �∈ Xi . Then, exactly as in the proof ofTheorem 5.1, a contributes
k to the LHS of (6.2) and at mostk to the RHS. This proves (6.2).

Since each summand on the LHS of (6.2) is equal to d, and each summand on the
RHS is at leastd, it follows that each summand on the RHS is exactlyd. In particular,
|∂(Wd+1)| = d. But a1, . . . , ad+1 ∈ ∂(Wd+1), and this contradiction completes the proof
of Theorem 6.1. �

We now turn to the question of the simplicity of irreducible hypergraphs. The analogue
of Theorem 2.2is not true for simple hypergraphs (that is, ones in which the edges are
distinct assets). For example, ifH = (V, E) where|V | = 5 andE comprises the ten
2-subsets ofV , thenH is simple and| ⋃F | � |F |/2 for every subsetF ⊆ E . By
Theorem 2.2, an irreducible hypergraph with this property contains no edge with more
thanone vertex. But anysimplehypergraph obtained by removing vertices from edges of
H must contain an edge with two vertices. ThusTheorem 2.2would no longer hold if
maxmod(p, q, d) were redefined to refer to simple hypergraphs only. We now show that
this problem cannot arise whenr � 1.

Theorem 6.2. If H = (V, E) is an irreduciblehypergraph inC(r, δ), where r� 1, thenH
is simple.

Proof. Suppose not. LetE1, E2 be two edges that are equal as sets, letx ∈ E1, let
E′

1 := E1 \ {x}, and letH′ = (V, E ′) be the hypergraph obtained fromH by substituting
E′

1 for E1. By the irreducibility of H, there is a nonempty subsetF ′ ⊆ E ′ suchthat
| ⋃F ′| < r |F ′| + δ. If F is the corresponding set of edges inH, so that|F | = |F ′|, then∣∣∣⋃F

∣∣∣ � r |F | + δ = r |F ′| + δ >

∣∣∣⋃F ′
∣∣∣ .

It follows thatx ∈ ⋃F andx �∈ ⋃F ′, so that| ⋃F | = | ⋃F ′|+1, E1 ∈ F andE2 �∈ F .
If now F ′′ := F ∪ {E2}, then∣∣∣⋃F ′′

∣∣∣ =
∣∣∣⋃F

∣∣∣ =
∣∣∣⋃F ′

∣∣∣ + 1 < r |F | + δ + 1 = r |F ′′| − r + δ + 1

� r |F ′′| + δ,

contradicting the hypothesis thatH ∈ C(r, δ). This contradiction completes the proof. �
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