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Abstract

Erdős and Lovász conjectured in 1968 that for every graph G with χ(G) > ω(G)
and any two integers s, t ≥ 2 with s+ t = χ(G)+1, there is a partition (S, T ) of the
vertex set V (G) such that χ(G[S]) ≥ s and χ(G[T ]) ≥ t. Except for a few cases,
this conjecture is still unsolved. In this note we prove the conjecture for line graphs
of multigraphs.

1 Introduction

It was conjectured by Erdős and Lovász (see Problem 5.12 in [2]) that for every graph G

with χ(G) > ω(G) and any two integers s, t ≥ 2 with s+ t = χ(G)+1, there is a partition
(S, T ) of the vertex set V (G) such that χ(G[S]) ≥ s and χ(G[T ]) ≥ t. The only settled
cases of this conjecture that we know are (s, t) ∈ {(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5)}
(see [1, 3, 5, 6]). In this note we prove for the line graphs of multigraphs the following
slightly stronger statement.

Theorem 1 Let s and t be arbitrary integers with 2 ≤ s ≤ t. If the line graph L(G) of

some multigraph G has chromatic number s + t − 1 > ω(L(G)), then it contains a clique

Q of size s such that χ(L(G) − Q) ≥ t.

It will be convenient to prove the theorem in the language of edge colorings of multi-
graphs. Every multigraph in this note is finite, undirected and has no loops.

The edge set and the vertex set of G is denoted by V (G) and E(G) respectively. For
a vertex v of G, the degree, d(v), of v in G is the number of edges incident with v. The
set Nv of all neighbours of v in G may have much smaller size than d(v).
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The chromatic index of G, denoted by χ′(G), is the chromatic number of its line graph
L(G); in other words, it is the smallest number of colours with which the edges of G may
be coloured so that no two adjacent edges receive the same colour.

A triangle in G is a set of three mutually adjacent vertices in G, and the edges of
a triangle are those edges in E(G) joining the vertices of the triangle. The maximum
number of edges in a triangle in G will be denoted by τ(G). Furthermore, let ∆(G)
denote the maximum degree of G, and let ω′(G) = max{τ(G), ∆(G)}. Clearly, ω′(G) is
the clique number of the line graph of G and hence χ′(G) ≥ ω′(G).

2 Proof of Theorem 1

For given 2 ≤ s ≤ t, suppose that G is a counterexample with the fewest vertices. Then
G is connected. Since χ′(G) > ω′(G) ≥ τ(G), G contains at least four vertices. By
Shannon’s theorem [4], χ′(G) ≤ b3

2
∆(G)c. Consequently, s ≤ ∆(G).

By an s-star of G we mean a pair (E ′, v) such that E ′ ⊆ E(G) is a set of s edges
incident with the vertex v. For an s-star (E ′, v), let X(E ′, v) denote the set of all vertices
of G joined by an edge of E ′ with v.

Let (E ′, v) be an arbitrary s-star of G. The set E ′ forms an s-clique in L(G). Since G

is a counterexample to our theorem, we have χ′(G − E ′) ≤ t − 1. Let G′ = G − E ′, and
let ϕ : E(G′) −→ {1, . . . , t− 1} be a (t− 1)-edge-colouring of G′. For each vertex x of G,
let

ϕ(x) = {ϕ(e)| e ∈ E(G′) is incident with x} and ϕ̄(x) = {1, . . . , t − 1} \ ϕ(x).

Since s + t− 1 = χ′(G) > ω′(G) ≥ ∆(G) and all s edges of E ′ are incident with v, the
degree of v in G′ = G − E ′ is at most t − 2 and, therefore,

(a) ϕ̄(v) 6= ∅.

Next, we claim that

(b) for every colour α ∈ ϕ̄(v) and for any two distinct vertices x, y ∈ X(E ′, v), there is

an edge e ∈ E(G′) joining x and y with ϕ(e) = α. Consequently, |X(E ′, v)| ≤ 2.

Proof. Suppose to the contrary that no edge joining x and y is colored with α. For
u ∈ {x, y}, there is an edge eu ∈ E ′ joining u and v. Colour the s − 1 edges of E ′ \ {ex}
with colours t, t+1, . . . , t+ s− 2, so that ey is coloured with t. If α ∈ ϕ̄(x), we can colour
the edge ex with α. Otherwise, there is an edge e ∈ E(G) \ E ′ incident with x colored
with α. Since e is not incident with y, we can recolour e with colour t and then colour
ex with α. In both cases we obtain a (t + s − 2)-edge-colouring of G, a contradiction to
s + t − 1 = χ′(G). �

(c) Let w be a vertex of G with d(w) ≥ s. Then, for the neighbourhood Nw of w in G,

we have |Nw| ≥ 2, and any two vertices of Nw are adjacent in G. Furthermore, if

s ≥ 3, then |Nw| = 2.
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Proof. If Nw consists only of a single vertex w′, then d(w′) ≥ d(w) ≥ s. Since G is
connected and has at least four vertices, w′ has a neighbour x 6= w. Hence there is an
s-star (E ′, w′) of G with w, x ∈ X(E ′, w′). From (a) and (b) it then follows that x and w

are adjacent in G, a contradiction to |Nw| = 1. This proves that |Nw| ≥ 2. If x, y are two
distinct neighbours of w, then there is an s-star (E ′, w) with x, y ∈ X(E ′, w). Then (a)
and (b) imply that x and y are adjacent. If s ≥ 3 and |Nw| ≥ 3, then there is an s-star
(E ′, w) such that |X(E ′, w)| ≥ 3, a contradiction to (b). Hence (c) is proved. �

To complete the proof of Theorem 1, we consider two cases.

Case 1: s ≥ 3. Since s ≤ ∆(G), there is a vertex u in G with d(u) ≥ s. By (c), Nu

consists of two vertices, say x and y, and these two vertices are adjacent in G. Since G

is a connected graph with at least four vertices, either Nx or Ny contains more than two
vertices, say |Nx| ≥ 3. Then (c) implies that d(x) < s. Let E1 denote the set of all edges of
G joining x with u or y. Furthermore, let E2 denote the set of all edges of G joining u with
y. Then 2 ≤ |E1| < s and |E1|+|E2| ≥ s. Hence, there is a nonempty subset E ′

2
of E2 such

that E ′ = E1 ∪E ′

2
contains exactly s edges. Since E ′ is an s-clique in L(G), by the choice

of G, we have χ′(G − E ′) ≤ t − 1. Let G′ = G − E ′, and let ϕ : E(G′) −→ {1, . . . , t − 1}
be any (t − 1)-edge-colouring of G′. If ϕ(u) = {1, . . . , t − 1}, then {u, x, y} is a triangle
with at least s + t − 1 edges, a contradiction to τ(G) < χ′(G) = s + t − 1. Hence there
is a colour α ∈ ϕ̄(u). Choose two edges e1 ∈ E1 and e2 ∈ E ′

2
. Colour the s − 1 edges of

E ′ \ {e1} with colours t, t+1, . . . , t+ s− 2 so that e2 is coloured with t. If α ∈ ϕ̄(x), then
we can colour the edge e1 with α. Otherwise, there is an edge e ∈ E(G) \ E ′ such that
e is incident with x and ϕ(e) = α. Since all edges joining x with y are in E ′, the edge e

is not incident with y and we can recolour e with t and then colour e1 with α. In both
cases we obtain a (t + s − 2)-edge colouring of G, a contradiction to s + t − 1 = χ′(G).

Case 2: s = 2. Since s ≤ ∆(G), it follows from (c) that G contains a triangle T =
{x, y, z}.

For u ∈ {y, z}, there is an edge eu in G joining u and x. The pair (E ′, x) with
E ′ = {ey, ez} is an s-star of G and, therefore, χ′(G − E ′) ≤ t − 1. Let G′ = G − E ′, and
let ϕ : E(G′) −→ {1, . . . , t − 1} be any (t − 1)-edge-colouring of G′.

Since T contains at most τ(G) ≤ χ′(G) − 1 = t edges and two of these edges are not
coloured, some colour α ∈ {1, . . . , t − 1} is not present on edges of T . By (b), α ∈ ϕ(x).
Hence the following two subcases finish the proof of the theorem.

Case 2.1: α ∈ ϕ̄(y) ∪ ϕ̄(z). By the symmetry between y and z, we can suppose that
α ∈ ϕ̄(y). By (a) and (b), there is a colour β ∈ ϕ̄(x) and an edge e′ of colour β joining
y and z. Uncolour e′ and colour ez with β. This results in a (t − 1)-edge-colouring ϕ′ of
G − E ′′, where E ′′ = {ey, e

′}. Then α ∈ ϕ̄′(y) and no edge joining x and z has colour α.
Since (E ′′, y) is an s-star of G, this is a contradiction to (b).

Case 2.2: α ∈ ϕ(x) ∩ ϕ(y) ∩ ϕ(z). This means that for every u ∈ T , there is an
edge eu ∈ E(G′) of colour α joining u and some vertex vu 6∈ T . Let β ∈ ϕ̄(x) and
P be the component containing x of the subgraph Hα,β induced by the set of edges
{e ∈ E(G′) |ϕ(e) ∈ {α, β} }. Obviously, P is a path starting at x. By (b), there is an
edge e′ of colour β joining y and z and we eventually consider two cases.
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Subcase A: Edge e′ does not belong to P . If we interchange the colours α and β on P ,
then we obtain a new (t − 1)-edge-colouring ϕ′ of G′. Then ϕ′ is a (t − 1)-edge-colouring
of G′ with α ∈ ϕ̄′(x) and ϕ′(ey) = ϕ′(ez) = α. In particular, no edge of G′ = G − E ′

joining y and z has colour α, a contradiction to (b).
Subcase B: Edge e′ belongs to P . In this case, ey and ez also belong to P . By

symmetry, we may assume that the subpath P ′ of P joining y with x does not contain
z. Uncolour e′ and colour ey ∈ E ′ with β. This results in a (t − 1)-edge-colouring ϕ′ of
G − {ez, e

′} for which Subcase A with z in place of x and ey in place of e′ holds. Since
Subcase A is settled, this finishes the whole proof.
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