Note

On Ramsey numbers of uniform hypergraphs with given maximum degree

A.V. Kostochka ${ }^{\text {ab, }, 1}$, V. Rödl ${ }^{\text {c,2 }}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Institute of Mathematics, Novosibirsk-90, 630090, Russia
${ }^{\text {c }}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

Received 22 April 2005
Available online 3 February 2006

Abstract

For every $\epsilon>0$ and every positive integers Δ and r, there exists $C=C(\epsilon, \Delta, r)$ such that the Ramsey number, $R(H, H)$ of any r-uniform hypergraph H with maximum degree at most Δ is at most $C|V(H)|^{1+\epsilon}$. © 2006 Elsevier Inc. All rights reserved.

Keywords: Ramsey numbers; Uniform hypergraphs; Maximum degree

1. Introduction

For r-uniform hypergraphs H_{1} and H_{2}, the Ramsey number $R\left(H_{1}, H_{2}\right)$ is the minimum positive integer N such that in every 2-coloring of edges of the complete r-uniform hypergraph $K_{N}^{(r)}$, there is either a copy of H_{1} with edges of the first color or a copy of H_{2} with edges of the second color. The classical Ramsey number $r(k, l)$ is in our terminology $R\left(K_{k}^{(2)}, K_{l}^{(2)}\right)$.

Say that a family \mathcal{F} of r-uniform hypergraphs is $f(n)$-Ramsey if $R(G, G) \leqslant f(n)$ for every positive integer n and every $G \in \mathcal{F}$ with $|V(G)|=n$.

Burr and Erdős [2] conjectured that for every Δ and d,
(a) the family of graphs with maximum degree at most Δ is Cn-Ramsey, where $C=C(\Delta)$;
(b) the family \mathcal{D}_{d} of d-degenerate graphs is Dn-Ramsey, where $D=D(d)$.

[^0]Recall that a graph is d-degenerate if every of its induced subgraphs has a vertex of degree (in this subgraph) at most d. Equivalently, a graph G is d-degenerate if for some linear ordering of the vertex set of G every vertex of G is adjacent to at most d vertices of G that precede it in the ordering.

Chvátal, Rödl, Szemerédi and Trotter [4] proved the first conjecture. The second conjecture is open. In recent years, some subfamilies of the family \mathcal{D}_{d} were shown to be $D n$-Ramsey by Alon [1], Chen and Schelp [3], and Rödl and Thomas [10]. In [8], the authors recently proved that \mathcal{D}_{d} is n^{2}-Ramsey, and in [7] they established an $n^{1+o(1)}$ bound for a subfamily of \mathcal{D}_{d}. This approach was improved by Kostochka and Sudakov [9], who showed that for every positive integer d, the family \mathcal{D}_{d} is $n^{1+o(1)}$-Ramsey. In particular, in [9], the following Turán-type result was proved for bipartite graphs.

Theorem 1. [9] Let $0<c \leqslant 1$ be a constant and let d, N and n be positive integers satisfying

$$
\begin{equation*}
d \leqslant \frac{1}{64} \ln n \quad \text { and } \quad N \geqslant n\left(\frac{2 e}{c}\right)^{2 d^{1 / 3} \ln ^{2 / 3} n} \tag{1}
\end{equation*}
$$

Then every bipartite graph $G=\left(V_{1}, V_{2} ; E\right)$ with $\left|V_{1}\right|=\left|V_{2}\right|=N$ and $|E|=c N^{2}$ contains every d-degenerate bipartite graph of order n.

Frequently Turán-type results have implications for Ramsey-type problems. For example, Theorem 1 implies that for N satisfying the conditions of the theorem and for each coloring of the edges of $K_{N, N}$ with $\lfloor 1 / c\rfloor$ colors, the monochromatic subgraph with most edges contains every d-degenerate bipartite graph of order n.

In this paper, we discuss analogues of the above Burr-Erdős conjectures for uniform hypergraphs. Similarly to graphs, we say that a hypergraph is d-degenerate if every of its induced subgraphs has a vertex of degree (in this subgraph) at most d.

Our first result is the following extension to m-uniform m-partite hypergraphs of a weaker version of Theorem 1.

Theorem 2. For $\alpha, 0<\alpha \leqslant 1 / 2$, and integers $d \geqslant 2, l \geqslant 2$, let n and N be such that for $c=$ $\ln \frac{1}{\alpha}+2(d-1)(l-1)$ we have

$$
\ln n>(\max \{2, c\})^{l}
$$

and

$$
N>n e^{c(\ln n)^{(l-1) / l}}
$$

Let G be an l-uniform l-partite hypergraph with partite sets V_{1}, \ldots, V_{l} each of cardinality N and at least $2 \alpha N^{l}$ edges. If an l-uniform l-partite hypergraph H contains at most n edges, and the degrees of all of the partite sets of H except one are at most d, then G contains H.

We also show that for each $l \geqslant 3$, the statement of the above theorem does not hold without degree restrictions on H even if H is 1-degenerate.

Our main result is
Theorem 3. For every fixed Δ and r, for arbitrary r-uniform hypergraphs H_{1} and H_{2} with maximum degree at most Δ on m vertices,

$$
R\left(H_{1}, H_{2}\right) \leqslant m^{1+o(1)}
$$

We suspect that for every fixed Δ and r the class of r-uniform hypergraphs with maximum degree at most Δ is $D n$-Ramsey for some $D=D(\Delta, r)$ but were not able to prove this.

We also show that the r-uniform analogue of the second Burr-Erdős Conjecture fails for $r \geqslant 4$ and d-degenerate hypergraphs (even for 1-degenerate hypergraphs) if we use the above definition of d-degenerate hypergraphs.

The structure of the paper is as follows. In the next section we present examples that establish some lower bounds. In Section 3 we prove Theorem 2. The idea of the proof for a l-uniform l-partite hypergraph G is to find an $(l-1)$-uniform $(l-1)$-partite hypergraph G^{\prime} with "many" edges such that for each d-tuple $\left\{e_{1}, \ldots, e_{d}\right\}$ of the edges of G^{\prime}, there are "many" vertices v in G such that each of $e_{1}+v, \ldots, e_{d}+v$ is an edge of G. In this way, we gradually reduce the size of the hyperedges with which we work. In Section 4 we prepare for the proof of Theorem 3. We prove that every r-uniform hypergraph H with maximum degree d and n edges is a "part" of a $(d(r-1)+1)$-uniform $(d(r-1)+1)$-partite hypergraph with maximum degree d and n edges. We also recall a couple of known results. In the final section we finish the proof of Theorem 3 by constructing for given r-uniform hypergraphs G and H auxiliary $(d(r-1)+1)$-uniform $(d(r-1)+1)$-partite hypergraphs and applying Theorem 2 to them.

2. Examples

2.1. Lower bound for partite Ramsey numbers

First, we give an example of a 3-uniform 3-partite 1-degenerate hypergraph H with n edges for which the conclusion of Theorem 2 does not hold. The same example also shows that, in fact, the partite Ramsey numbers of 1-degenerate k-graphs, for $k \geqslant 3$, grow exponentially. More precisely, first we construct a 1-degenerate 3-uniform 3-partite hypergraph H with $3 t+3 t^{2}$ vertices such that, whenever $N \leqslant 2^{\lfloor t / 2\rfloor}$, a complete 3-uniform 3-partite hypergraph $K_{N, N, N}^{(3)}$ admits a 2 -coloring with no monochromatic copy of H. Consider the following example. Let $n=3 t^{2}$ and F be the complete 3-partite graph with partite sets W_{1}, W_{2}, W_{3} of cardinality t. Let $H=H_{n}$ be the 3-uniform 3-partite hypergraph obtained from F by adding to each edge e a new vertex $w_{e} \notin W_{1} \cup W_{2} \cup W_{3}$ (all w_{e} are different). Then H is a 1-degenerate hypergraph with n edges and $n+3 t$ vertices.

Let $N=2^{\lfloor t / 2\rfloor}$. Let $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=N$ and $\mathbb{C}=C_{\text {red }} \cup C_{\text {blue }}$ be a random 2-coloring of the edges of $K_{N, N}$ with partite sets V_{1} and V_{2}, where for each pair $(a, b) \in V_{1} \times V_{2}, C_{\text {red }}$ contains (a, b) with probability $1 / 2$ independently of all other choices. Standard arguments show [13, Chapter 12] that with positive probability, \mathbb{C} will be such that
(*) neither $C_{\text {red }}$ nor $C_{\text {blue }}$ contains a complete bipartite subgraph $K_{t, t}$ with partite sets of size t.
Hence there is a coloring $C_{\text {red }} \cup C_{\text {blue }}$ of $K_{N, N}$ possessing $(*)$. Let $G_{\text {red }}$ be the 3-uniform 3-partite hypergraph with partite sets V_{1}, V_{2}, and V_{3} such that $E\left(G_{\text {red }}\right)=\left\{(a, b, c) \mid(a, b) \in C_{\text {red }}\right.$ and $\left.c \in V_{3}\right\}$. Define $G_{\text {blue }}$ analogously. Note that $G_{\text {red }}$ is far from a random subhypergraph of $K_{N, N, N}^{(3)}$: each pair in $V_{1} \times V_{2}$ is contained either in N edges of $G_{\text {red }}$ or in none.

Suppose that there exists an embedding f of H into $G_{\text {red }}$. By the symmetry of H, we may assume that W_{i} maps into V_{i} for $i=1,2,3$. Since every pair $\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2}$ is contained in an edge of H, the set $f\left(W_{1}\right) \times f\left(W_{2}\right)$ should induce a complete bipartite subgraph in $C_{\text {red }}$. This contradicts $(*)$. If there exists an embedding f of H into $G_{\text {blue }}$, the argument is the same. The example also shows that the condition of H having a maximum degree d in Theorem 2 cannot
be replaced by H being 1-degenerate. Indeed, for any coloring of $K_{N, N, N}^{(3)}$ by red and blue either $G_{\text {red }}$ or $G_{\text {blue }}$ contains $0.5 N^{3}$ edges. Consequently for $\alpha=1 / 4, l=3$ and n sufficiently large one of the colors contains $2 \alpha N^{3}=0.5 N^{3}$ edges and yet, the corresponding graph does not contain a copy of H.

This construction easily generalizes to every $k \geqslant 3$ as follows. Let $n=\binom{k}{2} t^{2}$ and F be the complete k-partite graph with partite sets W_{1}, \ldots, W_{k} of cardinality t. Let $H=H_{n}^{k}$ be the k-uniform k-partite hypergraph obtained from F by adding $k-2$ new vertices $w_{e, 1}, \ldots, w_{e, k-2} \notin$ $W_{1} \cup \cdots \cup W_{k}$ to each edge e (all $w_{e, i}$ are different). Then H is a 1 -degenerate hypergraph with n edges and $(k-2) n+k t$ vertices. Moreover, each edge of H has $k-2$ vertices of degree one, so the average degree of H is less than $k /(k-2)$.

As above, let $N=2^{\lfloor t / 2\rfloor}$ and $\mathbb{C}=C_{\text {red }} \cup C_{\text {blue }}$ be a 2-coloring of $K_{N, N}$ possessing (*). Let $G_{\text {red }}$ be the k-uniform k-partite hypergraph with partite sets $V_{1}, V_{2}, \ldots, V_{k}$ such that $E\left(G_{\text {red }}\right)=$ $\left\{\left(a_{1}, \ldots, a_{k}\right) \mid\left(a_{1}, a_{2}\right) \in C_{\text {red }}\right.$ and $a_{i} \in V_{i}$ for $\left.i=3, \ldots, k\right\}$, and let $G_{\text {blue }}$ be defined analogously. The same argument as for 3-uniform hypergraphs shows that H is not a subgraph of either $G_{\text {red }}$ or $G_{\text {blue }}$.

2.2. Lower bound for k-uniform 1-degenerate hypergraphs with $k \geqslant 4$

We do not know how to construct sequences of 1-degenerate 3-uniform hypergraphs with exponentially growing Ramsey numbers, but can construct such k-uniform hypergraphs for each $k \geqslant 4$. We describe here such 4 -uniform hypergraphs.

Let $n=\binom{t}{3}$ and $K_{t}^{(3)}$ be the complete 3-uniform hypergraph with vertex set W of cardinality t. Let H be the 4-uniform hypergraph obtained from $K_{t}^{(3)}$ by adding to each edge e a new vertex $w_{e} \notin W$ (all w_{e} different). Then H is a 1-degenerate 4-uniform hypergraph with n edges and $n+t$ vertices.

We will be using the well-known fact that the logarithms of the number of (labeled) bipartite graphs and of triangle-free graphs are essentially the same. More precisely, we use the fact from [5,6] that for every $\epsilon>0$ there exists $t(\epsilon)$ such that the number of triangle-free graphs on t vertices, for $t \geqslant t(\epsilon)$, is less than $2^{\frac{t^{2}}{4}}(1+\epsilon)$.

Set $N=\left\lfloor 2^{\frac{t}{4}(1-\epsilon)}\right\rfloor$, where ϵ and t satisfy $t \geqslant t(\epsilon)$, and let $\mathbb{C}=C_{\text {red }} \cup C_{\text {blue }}$ be a random 2-coloring of $K_{N}^{(2)}$ where each pair is in $C_{\text {red }}\left(C_{\text {blue }}\right)$ with probability $1 / 2$, independently of all other choices. We now show that with positive probability, \mathbb{C} will be such that
$(* *)$ each subset $T \subset V=V\left(K_{N}^{(2)}\right)$, with $|T|=t$, contains both red and blue triangles.
Let T be a t-element subset of V and $\mathbb{R}_{T}\left(\mathbb{B}_{T}\right)$ be a random variable counting the number of red (blue) triangles in T. Set $\mathbb{X}_{T}=\min \left\{\mathbb{R}_{T}, \mathbb{B}_{T}\right\}$. Since the number of triangle-free graphs on t vertices is less than $2^{\frac{t^{2}}{4}}(1+\epsilon)$ we infer that

$$
\operatorname{Pr}\left(\mathbb{X}_{T}=0\right) \leqslant \operatorname{Pr}\left(\mathbb{B}_{T}=0\right)+\operatorname{Pr}\left(\mathbb{R}_{T}=0\right) \leqslant \frac{2 \cdot 2^{\frac{t}{2}_{4}^{4}(1+\epsilon)}}{2^{\left(\frac{t}{2}\right)}}=2^{-\frac{t^{2}}{4}(1-\epsilon)+t / 2+1}
$$

Consequently, the probability that a random coloring $\mathbb{C}=C_{\text {red }} \cup C_{\text {blue }}$ fails to have property $(* *)$ can be estimated from above by

This means that there exists a coloring $\mathbb{C}=C_{\text {red }} \cup C_{\text {blue }}$ with property ($* *$). Define the 4-uniform hypergraph $G_{\text {red }}$ on vertex set V as follows. A quadruple $Q \subset V$ is an edge of $G_{\text {red }}$ if Q contains a triangle of $C_{\text {red }}$. Set $G_{\text {blue }}=K_{N}^{(4)}-G_{\text {red }}$, and consider an embedding f of H in $K_{N}^{(4)}$. We will show that $f(H)$ is neither red nor blue (i.e. is not a subset of either $G_{\text {red }}$ or $G_{\text {blue }}$). Let $T=f(W)$. Then $|T|=t$ and so by $(* *) T$ induces both red and blue triangles in \mathbb{C}. Let $T_{\text {red }}$ be a triple of T that induces a red triangle in \mathbb{C} and $T_{\text {blue }}$ be a triple that induces a blue triangle. Since every quadruple of V containing $T_{\text {red }}$ is in $G_{\text {red }}$, not all edges of $f(H)$ are in $G_{\text {blue }}$. On the other hand, any quadruple of V containing $T_{\text {blue }}$ cannot, at the same time, contain a triple inducing a red triangle in \mathbb{C}. Consequently, such a quadruple cannot be in $G_{\text {red }}$. Thus $f(H)$ is not monochromatic. Finally, we note that since $n=\frac{t^{3}}{6}(1-o(1)), N$ is exponential in $n^{1 / 3}$.

There is a very similar construction for $k \geqslant 5$, just define that a k-tuple $Q \subset V$ is an edge of G is Q contains at least $k(k-1) / 4$ edges of B. We omit the details.

2.3. Lower bound for 3-uniform hypergraphs

We were unable to find the similar lower bounds for 1-degenerate 3-uniform hypergraphs. In fact we are not completely convinced that this is possible. Here we give a weaker result which for d fixed and n sufficiently large implies that there is a d-degenerate hypergraph H with Ramsey number greater than $n^{d^{1 / 4}}$.

The hypergraph H is the disjoint union of a 3-uniform clique $K_{s}^{(3)}$ and the 3-uniform "hedgehog," $F_{m}^{(3)}$, defined below.

Let $F_{m}^{(3)}$ be the 3-uniform hypergraph of $m+\binom{m}{2}$ vertices

$$
\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \cup\left\{u_{i j} \mid 1 \leqslant i<j \leqslant m\right\}
$$

and $\binom{m}{2}$ edges $\left\{\left\{v_{i}, v_{j}, u_{i j}\right\} \mid 1 \leqslant i<j \leqslant m\right\}$. We prove that for s sufficiently large there exists an integer $N \geqslant m^{\sqrt{s}}$ and a red-blue coloring of the triples of $K_{N}^{(3)}$ with neither red $K_{s}^{(3)}$ nor blue $F_{m}^{(3)}$.

Given an integer s, we set t to be the largest integer such that the Ramsey number $r(3, t) \leqslant s$. We will use the result of Shearer [11] which implies that

$$
t \geqslant(1-o(1)) \sqrt{(s / 2) \ln s} .
$$

Similarly, for integers t and m, let $r(t, m)$ be the (graph) Ramsey number.
Set $N=r(t, m)-1$. It is proved in [12] that

$$
\begin{equation*}
N \geqslant c_{1}\left(\frac{m}{\ln m}\right)^{(t+1) / 2} \tag{2}
\end{equation*}
$$

By the definition of $r(t, m)$ there exists a graph G with vertex set $V,|V|=N$, containing no $K_{t}^{(2)}$, the complement of which has no $K_{m}^{(2)}$, where $m=c_{2} N^{2 /(t+1)} \ln N$.

We use the edges of G to color the triples $\binom{V}{3}$ of V as follows. Color $x y z \in\binom{V}{3}$ red if at least one of the pairs $x y, y z$, or $x z$ is an edge of G. Color all other edges blue. Clearly, this coloring contains no blue copy of $F_{m}^{(3)}$. Suppose there is a red copy of $K_{s}^{(3)}$ where s is the

Ramsey number $r(3, t)$. This means that the complement of G, restricted to the vertex set of this $K_{s}^{(3)}$ would be triangle-free and consequently, due to the choice of s, G would contain $K_{t}^{(2)}$. Therefore the coloring contains neither red $K_{s}^{(3)}$ nor blue $F_{m}^{(3)}$. Now $N \geqslant c_{1}(m / \ln m)^{(t+1) / 2}$, which is greater than $m^{2 \sqrt{s}}$ for s sufficiently large.

Let H be the disjoint union of 1-degenerate $F_{m}^{(3)}$ and $\binom{s-1}{2}$-degenerate $K_{s}^{(3)}$. Then H has $n=m+\binom{m}{2}+s$ vertices and is d-degenerate for $d=\binom{s-1}{2}<s^{2}$. Since $n<m^{2}$ for m sufficiently large, it follows that H is a d-degenerate n-vertex hypergraph with Ramsey number greater than $N \geqslant m^{2 \sqrt{s}}>n^{\sqrt{s}}=n^{d^{1 / 4}}$.

3. Turán problem for l-uniform l-partite hypergraphs

Lemma 1. Let $0<\alpha \leqslant 1 / 2$ be a real number and let d, k, s, N, and n be positive integers with $s \geqslant 2$. Let G be a k-uniform k-partite hypergraph with partite sets V_{1}, \ldots, V_{k} each of size N having at least $2 \alpha N^{k}$ edges. If

$$
\begin{equation*}
\alpha N / n>N^{(k-1)(d-1) / s}, \tag{3}
\end{equation*}
$$

then there exists a $(k-1)$-uniform $(k-1)$-partite hypergraph G^{\prime} with partite sets V_{1}, \ldots, V_{k-1} with more than $2 \alpha^{s} N^{k-1}$ edges such that for each d edges e_{1}, \ldots, e_{d} of G^{\prime} there are at least n vertices $v \in V_{k}$ with $e_{1}+v, \ldots, e_{d}+v \in E(G)$.

Proof. Let $W=V_{1} \times \cdots \times V_{k-1}$ and for each $\mathbf{w} \in W$ let $N_{G}(\mathbf{w})$ denote the set of vertices $v \in V_{k}$ such that $\mathbf{w}+v$ is an edge in G. For a set $X \subseteq W$, by $N_{G}(X)$ we denote the set $\bigcap_{\mathbf{w} \in X} N_{G}(\mathbf{w})$.

Let v_{1}, \ldots, v_{s} be a sequence of s not necessarily distinct vertices of V_{k} chosen at random uniformly and independently and let $S=\left\{v_{1}, \ldots, v_{s}\right\}$. Let $U=U_{S}=\left\{\mathbf{w} \in W \mid S \subseteq N_{G}(\mathbf{w})\right\}$. Then the size of U is a random variable. Using Jensen's inequality we have

$$
\begin{aligned}
\mathbf{E}(|U|) & =\sum_{\mathbf{w} \in W} \operatorname{Pr}(\mathbf{w} \in U)=\sum_{\mathbf{w} \in W}\left(\frac{\left|N_{G}(\mathbf{w})\right|}{N}\right)^{s}=\frac{\sum_{\mathbf{w} \in W}\left(\left|N_{G}(\mathbf{w})\right|\right)^{s}}{N^{s}} \\
& \geqslant \frac{N^{k-1}\left(\frac{|E(G)|}{N^{k-1}}\right)^{s}}{N^{s}} \geqslant N^{k-1-s}\left(\frac{2 \alpha N^{k}}{N^{k-1}}\right)^{s}=(2 \alpha)^{s} N^{k-1} \geqslant 4 \alpha^{s} N^{k-1} .
\end{aligned}
$$

On the other hand, by the definition of S, for a fixed set $X \subseteq W, \operatorname{Pr}\left(X \subseteq U_{S}\right)=\left(\left|N_{G}(X)\right| / N\right)^{s}$. Denote by z the number of subsets X of W of size d with $\left|N_{G}(X)\right|<n$. The expected value of z is at most

$$
\begin{aligned}
\mathbf{E}(z) & =\sum_{\left\{X \subseteq W:|X|=d,\left|N_{G}(X)\right|<n\right\}} \operatorname{Pr}(X \subseteq U) \leqslant\binom{ N^{k-1}}{d}\left(\frac{n}{N}\right)^{s} \leqslant N^{(k-1) d}\left(\frac{n}{N}\right)^{s} \\
& =N^{(k-1) d-s} n^{s} .
\end{aligned}
$$

This together with (3) yields

$$
\mathbf{E}(z)<N^{(k-1) d-s}(\alpha N)^{s} N^{-(k-1)(d-1)}=\alpha^{s} N^{k-1}
$$

Therefore by linearity of expectation there exists a particular choice of v_{1}, \ldots, v_{s} such that $|U|-z>4 \alpha^{s} N^{k-1}-\alpha^{s} N^{k-1}=3 \alpha^{s} N^{k-1}$. Fix these v_{1}, \ldots, v_{s} and delete a $(k-1)$-tuple \mathbf{w} from every subset X of U of size d with $\left|N_{G}(X)\right|<n$. This produces a set $U_{1} \subseteq W$ of size greater than $3 \alpha^{s} N^{k-1}$ with the property that for every $X \subseteq U_{1}$ with $|X|=d,\left|N_{G}(X)\right| \geqslant n$. Now, we define G^{\prime} as the hypergraph on $V_{1} \cup \cdots \cup V_{k-1}$ with the set of edges equal to U_{1}.

By repeated application of Lemma 1, we obtain the following statement.
Lemma 2. For $\alpha, 0<\alpha \leqslant 1 / 2$, and integers $d \geqslant 2, l \geqslant 2$, let n and N be such that for some integer $s \geqslant 2$ and for all $i=1, \ldots, l$,

$$
\begin{equation*}
\alpha^{s^{l-i}} N / n>N^{(i-1)(d-1) / s} . \tag{4}
\end{equation*}
$$

Let G be an l-uniform l-partite hypergraph with partite sets V_{1}, \ldots, V_{l} each of cardinality N having at least $2 \alpha N^{l}$ edges. Then there exists a sequence G_{1}, \ldots, G_{l} of hypergraphs such that $G_{l}=G$ and for each $i \in\{1, \ldots, l-1\}$,
(i) G_{i} is an i-uniform i-partite hypergraph with the partite sets V_{1}, \ldots, V_{i};
(ii) G_{i} has at least $2 \alpha^{s^{l-i}} N^{i}$ edges;
(iii) for each d edges e_{1}, \ldots, e_{d} of G_{i}, there are at least n vertices $v \in V_{i+1}$ with $e_{1}+v, \ldots, e_{d}+$ $v \in E\left(G_{i+1}\right)$.

Now we are ready to prove Theorem 2. For convenience, we state it again.
Theorem 2. For $\alpha, 0<\alpha \leqslant 1 / 2$, and integers $d \geqslant 2, l \geqslant 2$, let n and N be such that for $c=$ $\ln \frac{1}{\alpha}+2(d-1)(l-1)$ we have

$$
\begin{equation*}
\ln n>(\max \{2,3 c\})^{l}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
N>n e^{c(\ln n)^{(l-1) / l}}=n^{1+c /(\ln n)^{1 / l}} \tag{6}
\end{equation*}
$$

Let G be an l-uniform l-partite hypergraph with partite sets V_{1}, \ldots, V_{l} each of cardinality N and at least $2 \alpha N^{l}$ edges. If an l-uniform l-partite hypergraph H contains at most n edges, and the degrees of all of the partite sets of H except one are at most d, then G contains H.

Proof. Suppose that the partite sets of H are Y_{1}, \ldots, Y_{l} and that the degree of every vertex in $V(H)-Y_{1}$ is at most d.

Set $s=\left\lfloor(\ln n)^{1 / l}\right\rfloor$ and note that $s \geqslant 2$ by (5). First we prove for this s the inequality

$$
\begin{equation*}
\alpha^{s^{l-1}} N^{1-(l-1)(d-1) / s}>n \tag{7}
\end{equation*}
$$

which implies the validity of (4) for every $1 \leqslant i \leqslant l$. By (6) and the definition of c, the expression $N^{1-(l-1)(d-1) / s}$ is greater than

$$
\begin{align*}
& n^{\left(1+c /(\ln n)^{1 / l}\right)(1-(l-1)(d-1) / s)} \\
& \quad=n^{\left.1+\ln (1 / \alpha) /(\ln n)^{1 / l}+2(d-1)(l-1) /(\ln n)^{1 / l}-\left(1+c /(\ln n)^{1 / l}\right)(l-1)(d-1) / s\right)} . \tag{8}
\end{align*}
$$

Since

$$
n^{\ln (1 / \alpha) /(\ln n)^{1 / l}}=(1 / \alpha)^{(\ln n)^{(l-1) / l}} \leqslant(1 / \alpha)^{s^{l-1}}
$$

(8) yields that to prove (7), it is enough to check that

$$
2(d-1)(l-1) /(\ln n)^{1 / l} \geqslant\left(1+c /(\ln n)^{1 / l}\right)(l-1)(d-1) / s
$$

This inequality is equivalent to

$$
\begin{equation*}
2 s \geqslant\left(1+c /(\ln n)^{1 / l}\right)(\ln n)^{1 / l} \tag{9}
\end{equation*}
$$

Recall that $s \geqslant 2$ is the floor of $(\ln n)^{1 / l}$ and that by $(5), 1+c /(\ln n)^{1 / l}<4 / 3$. Thus (9) holds and hence (7) holds. Therefore, G satisfies the conditions of Lemma 2.

Consider a sequence G_{1}, \ldots, G_{l} of hypergraphs provided by this lemma. By the lemma, the number of edges (which are singletons) in G_{1} is at least $2 \alpha^{s^{l-1}} N>2 n$. We map the vertices of Y_{1} into distinct edges (again, they are singletons) of G_{1}.

Suppose that we have already mapped the vertices in $Y_{1} \cup \cdots \cup Y_{i}$ into $V_{1} \cup \cdots \cup V_{i}$ so that the projection of each edge of H onto $Y_{1} \cup \cdots \cup Y_{i}$ is mapped into an edge of G_{i}. Let $Y_{i+1}=\left\{x_{1}, \ldots, x_{t}\right\}$. We will map x_{1}, \ldots, x_{t} one by one. Suppose that we have already mapped x_{1}, \ldots, x_{j-1} and that x_{j} belongs to edges e_{1}, \ldots, e_{r}. For each $e_{\beta}, \beta=1, \ldots, r$ consider the restriction $e_{\beta}^{\prime}=e_{\beta} \cap \bigcup_{\alpha=1}^{i} Y_{\alpha}$ to $Y_{1} \cup \cdots \cup Y_{i}$. Let f_{1}, \ldots, f_{r} be the images of $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{r}^{\prime}$ in $V_{1} \cup \cdots \cup V_{i}$. By the definition of $H, r \leqslant d$. Therefore, by (iii) of Lemma 2, there are at least n possible vertices $v_{j} \in V_{i+1}$ to which x_{j} can be properly mapped, i.e., so that

$$
\begin{equation*}
f_{\beta} \cup\left\{v_{j}\right\} \in G_{i+1} \quad \text { for } \beta=1, \ldots, r \text {. } \tag{10}
\end{equation*}
$$

At most $j-1$ of these vertices are already spoiled by the images of x_{1}, \ldots, x_{j-1}. Since $j \leqslant n$, we can find v_{j} with property (10). This proves the theorem.

Remark. Clearly, the proof of the theorem can be modified to find many edge-disjoint copies of H in G. Also, our Turán type result implies corresponding l-partite Ramsey results for many colors.

4. Reductions

In this section, we discuss several facts that will be used in the next section to deduce bounds on Ramsey number of sparse r-uniform hypergraphs using Turán type bounds for l-uniform l-partite hypergraphs.

The following is a well-known folklore fact.
Lemma 3. Let G be an l-uniform hypergraph with $l N$ vertices and M edges. Then G contains an l-uniform l-partite subhypergraph G^{\prime} with at least $M e^{-l}$ edges such that each partite set has exactly N vertices.

Proof. There are $\frac{(l N)!}{(N!)^{\prime}}$ ways to partition the set of $l N$ vertices into l (ordered) sets each of size N. Each edge e contains vertices from all l sets in $l!\frac{(l(N-1))!}{((N-1)!)^{l}}$ such partitions. Therefore, there is a partition such that the corresponding subhypergraph has at least

$$
M l!\frac{(l(N-1))!}{((N-1)!)^{l}} \frac{(N!)^{l}}{(l N)!} \geqslant M \frac{l!}{l^{l}}>M e^{-l}
$$

edges.
Lemma 4. For each l, r with $l>r$, there exist $c=c(l, r)$ and $N_{0}=N_{0}(l, r)$ such that for each $N>N_{0}$ every edge 2-coloring of $K_{N}^{(r)}$ yields at least c N^{l} monochromatic copies of $K_{l}^{(r)}$.

Proof. Let $N_{0}=R_{r}(l, l)$ be the minimum N with the property that every edge 2-coloring of $K_{N}^{(r)}$ yields a monochromatic copy of $K_{l}^{(r)}$. Let $N>N_{0}$ and consider an arbitrary edge 2-coloring f of $K_{N}^{(r)}$. By the definition of N_{0}, every N_{0}-element subset of $V\left(K_{N}^{(r)}\right)$ contains a monochromatic
copy of $K_{l}^{(r)}$. Since each such copy is contained in $\binom{N-l}{N_{0}-l} N_{0}$-element subsets of $V\left(K_{N}^{(r)}\right)$, the total number of such monochromatic subgraphs is at least

$$
\frac{\binom{N}{N_{0}}}{\binom{N-l}{N_{0}-l}}=\frac{\binom{N}{l}}{\binom{N_{0}}{l}} \geqslant \frac{N^{l}}{N_{0}^{l}}=c N^{l} .
$$

We say that a hypergraph H is the restriction of a hypergraph H^{\prime} to V, if $V(H)=V$ and $E(H)=\left\{e \cap V: e \in E\left(H^{\prime}\right)\right\}$.

A set B of vertices of a hypergraph H is strictly independent, if no edge of H contains more than one vertex of B.

Lemma 5. Let H be an r-uniform hypergraph with maximum degree at most d and let B be a strictly independent set in H. Let $l=d(r-1)+1$. Then there exists an l-uniform l-partite hypergraph H^{\prime} with the same number of edges and $V\left(H^{\prime}\right) \supset V(H)$ such that
(a) the restriction of H^{\prime} to $V(H)$ is H;
(b) the degree in H^{\prime} of each vertex $w \in V\left(H^{\prime}\right)-V(H)$ is 1 ;
(c) all vertices of B are in the same partite set of H^{\prime}.

Proof. Let H_{1} be the graph with $V\left(H_{1}\right)=V(H)$ such that $u v \in E\left(H_{1}\right)$ if and only if there is an edge of H containing both u and v. Note that B is an independent set in H_{1} and the degree in H_{1} of every other vertex is at most $d(r-1)=l-1$. It follows that there exists a proper vertex l-coloring f of H_{1} such that all vertices of B are colored with the same color. This yields the partition of $V(H)$ into l color classes (some of them could be empty) of f.

Now, for every $e \in E(H)$ and every color class C with $C \cap e=\emptyset$, we create a new vertex $v_{e, C}$ of color C. The new hypergraph H^{\prime} has vertex set $V(H) \cup \bigcup_{e \in E(H)}\left\{v_{e, C}: e \cap C=\emptyset\right\}$ and edge set $\left\{e \cup\left\{v_{e, C}: e \cap C=\emptyset\right\} \mid e \in E(H)\right\}$.

5. Ramsey number

We prove Theorem 3 in the following slightly stronger form.
Theorem 4. Let Δ and r be fixed. Let H_{1} and H_{2} be r-uniform hypergraphs on m vertices such that for $i=1,2, H_{i}$ has a strictly independent vertex set B_{i} such that the degree of every $v \in V\left(H_{i}\right)-B_{i}$ in H_{i} is at most Δ. Then

$$
R\left(H_{1}, H_{2}\right) \leqslant m^{1+o(1)} .
$$

Proof. Let $l=\Delta(r-1)+1, c$ be the constant from Lemma 4, and $\alpha=c / 2$. Let $n=\lfloor\Delta m / r\rfloor$, N_{0} be as in Lemma 4, and N be the minimum positive integer satisfying (6) and the conditions $N \geqslant e^{2^{l}}$ and $N \geqslant N_{0} / l$. Observe that for fixed Δ and r, by (6) we have $N=n^{1+o(1)}=m^{1+o(1)}$.

Consider a red-blue coloring of the complete r-uniform hypergraph on $l N$ vertices. Let G be the hypergraph consisting of all the red edges. By Lemma 4, either G or its complement contains at least $c(l N)^{l}$ monochromatic copies of $K_{l}^{(r)}$. We may assume that this is G. Consider the auxiliary l-uniform hypergraph $G^{(l)}$ whose edges are the l-tuples inducing complete subgraphs of G. By Lemma 3, $G^{(l)}$ contains an l-uniform l-partite subhypergraph $\tilde{G}^{(l)}$ with at least $c e^{-l}(l N)^{l}>c N^{l}$ edges such that each partite set has exactly N vertices.

Let B_{1} be a strictly independent vertex set in H_{1} such that the degree of every $v \in V\left(H_{1}\right)-B_{1}$ in H_{1} is at most Δ. By Lemma 5, there exists an l-uniform l-partite hypergraph H_{1}^{\prime} with the same number of edges as in H_{1} and $V\left(H_{1}^{\prime}\right) \supset V\left(H_{1}\right)$ such that
(a) the restriction of H_{1}^{\prime} to $V\left(H_{1}\right)$ is H_{1},
(b) the degree in H_{1}^{\prime} of each vertex $w \in V\left(H_{1}^{\prime}\right)-V\left(H_{1}\right)$ is 1 , and
(c) all vertices of B_{1} are in the same partite set of H_{1}^{\prime}.

The number of edges in H_{1}^{\prime} is at most $n=\lfloor\Delta m / r\rfloor$. Observe that we have chosen Δ, α, and N so that H_{1}^{\prime} and $\tilde{G}^{(l)}$ satisfy the conditions of Theorem 2. Thus $\tilde{G}^{(l)}$ contains H_{1}^{\prime}.

Let us check now that G contains H_{1}. Indeed, suppose we have an embedding f^{\prime} of H_{1}^{\prime} into $\tilde{G}^{(l)}$. Then f^{\prime} induces a mapping f of $V\left(H_{1}\right)$ into $V\left(\tilde{G}^{(l)}\right)=V(G)$. Each edge $e \in E\left(H_{1}\right)$ is a part of an edge in H_{1}^{\prime} and thus is mapped onto a part of an edge e_{1} of $G^{(l)}$. By the definition of $G^{(l)}$, this part is an edge of G.

Acknowledgments

We thank both referees for helpful comments.

References

[1] N. Alon, Subdivided graphs have linear Ramsey numbers, J. Graph Theory 18 (1984) 343-347.
[2] S.A. Burr, P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, in: Infinite and Finite Sets, vol. 1, in: Colloq. Math. Soc. János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 214-240.
[3] G. Chen, R.H. Schelp, Graphs with linearly bounded Ramsey numbers, J. Combin. Theory Ser. B 57 (1993) 138149.
[4] C. Chvátal, V. Rödl, E. Szemerédi, W.T. Trotter, The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (1983) 239-243.
[5] P. Erdős, P. Frankl, V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (2) (1986) 113-121.
[6] P. Erdős, D.J. Kleitman, B.L. Rothschild, Asymptotic enumeration of K_{n}-free graphs, in: Colloquio Internazionale sulle Teorie Combinatorie, Tomo II, Rome, 1973, in: Atti dei Convegni Lincei, vol. 17, Accad. Naz. Lincei, Rome, 1976, pp. 19-27 (in English, Italian summary).
[7] A. Kostochka, V. Rödl, On graphs with small Ramsey numbers, J. Graph Theory 37 (2001) 198-204.
[8] A.V. Kostochka, V. Rödl, On graphs with small Ramsey numbers II, Combinatorica 24 (3) (2004) 389-401.
[9] A.V. Kostochka, B. Sudakov, On Ramsey numbers of sparse graphs, Combin. Probab. Comput. 12 (2003) 627-641.
[10] V. Rödl, R. Thomas, Arrangeability and clique subdivisions, in: R. Graham, J. Nešetřil (Eds.), The Mathematics of Paul Erdős, vol. 2, Springer-Verlag, Berlin, 1997, pp. 236-239.
[11] J. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1) (1983) 83-87.
[12] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1) (1977) 69-76.
[13] P. Erdős, J. Spencer, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.

[^0]: E-mail address: rodl@mathcs.emory.edu (V. Rödl).
 ${ }^{1}$ Research of the author was supported by the NSF grant DMS-0400498 and grant 03-01-00796 of the Russian Foundation for Fundamental Research.
 2 Research of the author was supported by the NSF grant DMS-0300529.

