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Abstract

For every ε > 0 and every positive integers Δ and r , there exists C = C(ε,Δ, r) such that the Ramsey
number, R(H,H) of any r-uniform hypergraph H with maximum degree at most Δ is at most C|V (H)|1+ε .
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1. Introduction

For r-uniform hypergraphs H1 and H2, the Ramsey number R(H1,H2) is the minimum posi-
tive integer N such that in every 2-coloring of edges of the complete r-uniform hypergraph K

(r)
N ,

there is either a copy of H1 with edges of the first color or a copy of H2 with edges of the second
color. The classical Ramsey number r(k, l) is in our terminology R(K

(2)
k ,K

(2)
l ).

Say that a family F of r-uniform hypergraphs is f (n)-Ramsey if R(G,G) � f (n) for every
positive integer n and every G ∈F with |V (G)| = n.

Burr and Erdős [2] conjectured that for every Δ and d ,

(a) the family of graphs with maximum degree at most Δ is Cn-Ramsey, where C = C(Δ);
(b) the family Dd of d-degenerate graphs is Dn-Ramsey, where D = D(d).
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Recall that a graph is d-degenerate if every of its induced subgraphs has a vertex of degree
(in this subgraph) at most d . Equivalently, a graph G is d-degenerate if for some linear ordering
of the vertex set of G every vertex of G is adjacent to at most d vertices of G that precede it in
the ordering.

Chvátal, Rödl, Szemerédi and Trotter [4] proved the first conjecture. The second conjecture
is open. In recent years, some subfamilies of the family Dd were shown to be Dn-Ramsey by
Alon [1], Chen and Schelp [3], and Rödl and Thomas [10]. In [8], the authors recently proved
that Dd is n2-Ramsey, and in [7] they established an n1+o(1) bound for a subfamily of Dd . This
approach was improved by Kostochka and Sudakov [9], who showed that for every positive
integer d , the family Dd is n1+o(1)-Ramsey. In particular, in [9], the following Turán-type result
was proved for bipartite graphs.

Theorem 1. [9] Let 0 < c � 1 be a constant and let d , N and n be positive integers satisfying

d � 1

64
lnn and N � n

(
2e

c

)2d1/3 ln2/3 n

. (1)

Then every bipartite graph G = (V1,V2;E) with |V1| = |V2| = N and |E| = cN2 contains every
d-degenerate bipartite graph of order n.

Frequently Turán-type results have implications for Ramsey-type problems. For example,
Theorem 1 implies that for N satisfying the conditions of the theorem and for each coloring
of the edges of KN,N with �1/c� colors, the monochromatic subgraph with most edges contains
every d-degenerate bipartite graph of order n.

In this paper, we discuss analogues of the above Burr–Erdős conjectures for uniform hyper-
graphs. Similarly to graphs, we say that a hypergraph is d-degenerate if every of its induced
subgraphs has a vertex of degree (in this subgraph) at most d .

Our first result is the following extension to m-uniform m-partite hypergraphs of a weaker
version of Theorem 1.

Theorem 2. For α, 0 < α � 1/2, and integers d � 2, l � 2, let n and N be such that for c =
ln 1

α
+ 2(d − 1)(l − 1) we have

lnn >
(
max{2, c})l

and

N > nec(lnn)(l−1)/ l

.

Let G be an l-uniform l-partite hypergraph with partite sets V1, . . . , Vl each of cardinality N

and at least 2αNl edges. If an l-uniform l-partite hypergraph H contains at most n edges, and
the degrees of all of the partite sets of H except one are at most d , then G contains H .

We also show that for each l � 3, the statement of the above theorem does not hold without
degree restrictions on H even if H is 1-degenerate.

Our main result is

Theorem 3. For every fixed Δ and r , for arbitrary r-uniform hypergraphs H1 and H2 with
maximum degree at most Δ on m vertices,

R(H1,H2) � m1+o(1).
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We suspect that for every fixed Δ and r the class of r-uniform hypergraphs with maximum
degree at most Δ is Dn-Ramsey for some D = D(Δ, r) but were not able to prove this.

We also show that the r-uniform analogue of the second Burr–Erdős Conjecture fails for r � 4
and d-degenerate hypergraphs (even for 1-degenerate hypergraphs) if we use the above definition
of d-degenerate hypergraphs.

The structure of the paper is as follows. In the next section we present examples that establish
some lower bounds. In Section 3 we prove Theorem 2. The idea of the proof for a l-uniform
l-partite hypergraph G is to find an (l − 1)-uniform (l − 1)-partite hypergraph G′ with “many”
edges such that for each d-tuple {e1, . . . , ed} of the edges of G′, there are “many” vertices v in
G such that each of e1 + v, . . . , ed + v is an edge of G. In this way, we gradually reduce the size
of the hyperedges with which we work. In Section 4 we prepare for the proof of Theorem 3. We
prove that every r-uniform hypergraph H with maximum degree d and n edges is a “part” of a
(d(r − 1) + 1)-uniform (d(r − 1) + 1)-partite hypergraph with maximum degree d and n edges.
We also recall a couple of known results. In the final section we finish the proof of Theorem 3
by constructing for given r-uniform hypergraphs G and H auxiliary (d(r − 1) + 1)-uniform
(d(r − 1) + 1)-partite hypergraphs and applying Theorem 2 to them.

2. Examples

2.1. Lower bound for partite Ramsey numbers

First, we give an example of a 3-uniform 3-partite 1-degenerate hypergraph H with n edges
for which the conclusion of Theorem 2 does not hold. The same example also shows that, in
fact, the partite Ramsey numbers of 1-degenerate k-graphs, for k � 3, grow exponentially. More
precisely, first we construct a 1-degenerate 3-uniform 3-partite hypergraph H with 3t + 3t2

vertices such that, whenever N � 2�t/2�, a complete 3-uniform 3-partite hypergraph K
(3)
N,N,N

admits a 2-coloring with no monochromatic copy of H . Consider the following example. Let
n = 3t2 and F be the complete 3-partite graph with partite sets W1, W2, W3 of cardinality t . Let
H = Hn be the 3-uniform 3-partite hypergraph obtained from F by adding to each edge e a new
vertex we /∈ W1 ∪ W2 ∪ W3 (all we are different). Then H is a 1-degenerate hypergraph with n

edges and n + 3t vertices.
Let N = 2�t/2�. Let |V1| = |V2| = |V3| = N and C = Cred ∪ Cblue be a random 2-coloring

of the edges of KN,N with partite sets V1 and V2, where for each pair (a, b) ∈ V1 × V2, Cred
contains (a, b) with probability 1/2 independently of all other choices. Standard arguments show
[13, Chapter 12] that with positive probability, C will be such that

(∗) neither Cred nor Cblue contains a complete bipartite subgraph Kt,t with partite sets of size t .

Hence there is a coloring Cred ∪ Cblue of KN,N possessing (∗). Let Gred be the 3-uniform
3-partite hypergraph with partite sets V1, V2, and V3 such that E(Gred) = {(a, b, c) | (a, b) ∈ Cred
and c ∈ V3}. Define Gblue analogously. Note that Gred is far from a random subhypergraph of
K

(3)
N,N,N : each pair in V1 × V2 is contained either in N edges of Gred or in none.
Suppose that there exists an embedding f of H into Gred. By the symmetry of H , we may

assume that Wi maps into Vi for i = 1,2,3. Since every pair (w1,w2) ∈ W1 ×W2 is contained in
an edge of H , the set f (W1) × f (W2) should induce a complete bipartite subgraph in Cred. This
contradicts (∗). If there exists an embedding f of H into Gblue, the argument is the same. The
example also shows that the condition of H having a maximum degree d in Theorem 2 cannot
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be replaced by H being 1-degenerate. Indeed, for any coloring of K
(3)
N,N,N by red and blue either

Gred or Gblue contains 0.5N3 edges. Consequently for α = 1/4, l = 3 and n sufficiently large one
of the colors contains 2αN3 = 0.5N3 edges and yet, the corresponding graph does not contain a
copy of H .

This construction easily generalizes to every k � 3 as follows. Let n = (
k
2

)
t2 and F be the

complete k-partite graph with partite sets W1, . . . ,Wk of cardinality t . Let H = Hk
n be the

k-uniform k-partite hypergraph obtained from F by adding k−2 new vertices we,1, . . . ,we,k−2 /∈
W1 ∪ · · · ∪ Wk to each edge e (all we,i are different). Then H is a 1-degenerate hypergraph with
n edges and (k − 2)n + kt vertices. Moreover, each edge of H has k − 2 vertices of degree one,
so the average degree of H is less than k/(k − 2).

As above, let N = 2�t/2� and C = Cred ∪ Cblue be a 2-coloring of KN,N possessing (∗). Let
Gred be the k-uniform k-partite hypergraph with partite sets V1,V2, . . . , Vk such that E(Gred) =
{(a1, . . . , ak) | (a1, a2) ∈ Cred and ai ∈ Vi for i = 3, . . . , k}, and let Gblue be defined analogously.
The same argument as for 3-uniform hypergraphs shows that H is not a subgraph of either Gred

or Gblue.

2.2. Lower bound for k-uniform 1-degenerate hypergraphs with k � 4

We do not know how to construct sequences of 1-degenerate 3-uniform hypergraphs with
exponentially growing Ramsey numbers, but can construct such k-uniform hypergraphs for each
k � 4. We describe here such 4-uniform hypergraphs.

Let n = (
t
3

)
and K

(3)
t be the complete 3-uniform hypergraph with vertex set W of cardinality t .

Let H be the 4-uniform hypergraph obtained from K
(3)
t by adding to each edge e a new vertex

we /∈ W (all we different). Then H is a 1-degenerate 4-uniform hypergraph with n edges and
n + t vertices.

We will be using the well-known fact that the logarithms of the number of (labeled) bipar-
tite graphs and of triangle-free graphs are essentially the same. More precisely, we use the fact
from [5,6] that for every ε > 0 there exists t (ε) such that the number of triangle-free graphs on t

vertices, for t � t (ε), is less than 2
t2
4 (1+ε).

Set N = �2
t
4 (1−ε)�, where ε and t satisfy t � t (ε), and let C = Cred ∪ Cblue be a random

2-coloring of K
(2)
N where each pair is in Cred (Cblue) with probability 1/2, independently of all

other choices. We now show that with positive probability, C will be such that

(∗∗) each subset T ⊂ V = V (K
(2)
N ), with |T | = t , contains both red and blue triangles.

Let T be a t-element subset of V and RT (BT ) be a random variable counting the number of
red (blue) triangles in T . Set XT = min{RT ,BT }. Since the number of triangle-free graphs on t

vertices is less than 2
t2
4 (1+ε) we infer that

Pr(XT = 0) � Pr(BT = 0) + Pr(RT = 0) � 2 · 2
t2
4 (1+ε)

2(t
2)

= 2− t2
4 (1−ε)+t/2+1.

Consequently, the probability that a random coloring C = Cred ∪ Cblue fails to have property
(∗∗) can be estimated from above by
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∑
T ∈(V

t )

Pr(XT = 0) �
(

N

t

)
2− t2

4 +ε t2
4 + t

2 +1 � Nt

t ! 2− t2
4 +ε t2

4 + t
2 +1 � 2t t

4 (1−ε)

2
t2
4 −ε t2

4

2
t
2 +1

t ! = o(1).

This means that there exists a coloring C = Cred ∪ Cblue with property (∗∗). Define the
4-uniform hypergraph Gred on vertex set V as follows. A quadruple Q ⊂ V is an edge of Gred

if Q contains a triangle of Cred. Set Gblue = K
(4)
N − Gred, and consider an embedding f of H

in K
(4)
N . We will show that f (H) is neither red nor blue (i.e. is not a subset of either Gred

or Gblue). Let T = f (W). Then |T | = t and so by (∗∗) T induces both red and blue triangles
in C. Let Tred be a triple of T that induces a red triangle in C and Tblue be a triple that induces
a blue triangle. Since every quadruple of V containing Tred is in Gred, not all edges of f (H)

are in Gblue. On the other hand, any quadruple of V containing Tblue cannot, at the same time,
contain a triple inducing a red triangle in C. Consequently, such a quadruple cannot be in Gred.

Thus f (H) is not monochromatic. Finally, we note that since n = t3

6 (1 − o(1)), N is exponential
in n1/3.

There is a very similar construction for k � 5, just define that a k-tuple Q ⊂ V is an edge of
G is Q contains at least k(k − 1)/4 edges of B . We omit the details.

2.3. Lower bound for 3-uniform hypergraphs

We were unable to find the similar lower bounds for 1-degenerate 3-uniform hypergraphs. In
fact we are not completely convinced that this is possible. Here we give a weaker result which for
d fixed and n sufficiently large implies that there is a d-degenerate hypergraph H with Ramsey
number greater than nd1/4

.
The hypergraph H is the disjoint union of a 3-uniform clique K

(3)
s and the 3-uniform “hedge-

hog,” F
(3)
m , defined below.

Let F
(3)
m be the 3-uniform hypergraph of m + (

m
2

)
vertices

{v1, v2, . . . , vm} ∪ {uij | 1 � i < j � m}
and

(
m
2

)
edges {{vi, vj , uij } | 1 � i < j � m}. We prove that for s sufficiently large there exists

an integer N � m
√

s and a red–blue coloring of the triples of K
(3)
N with neither red K

(3)
s nor blue

F
(3)
m .

Given an integer s, we set t to be the largest integer such that the Ramsey number r(3, t) � s.
We will use the result of Shearer [11] which implies that

t �
(
1 − o(1)

)√
(s/2) ln s.

Similarly, for integers t and m, let r(t,m) be the (graph) Ramsey number.
Set N = r(t,m) − 1. It is proved in [12] that

N � c1

(
m

lnm

)(t+1)/2

. (2)

By the definition of r(t,m) there exists a graph G with vertex set V , |V | = N , containing no
K

(2)
t , the complement of which has no K

(2)
m , where m = c2N

2/(t+1) lnN .
We use the edges of G to color the triples

(
V
3

)
of V as follows. Color xyz ∈ (

V
3

)
red if at

least one of the pairs xy, yz, or xz is an edge of G. Color all other edges blue. Clearly, this
coloring contains no blue copy of F

(3)
m . Suppose there is a red copy of K

(3)
s where s is the
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Ramsey number r(3, t). This means that the complement of G, restricted to the vertex set of this
K

(3)
s would be triangle-free and consequently, due to the choice of s, G would contain K

(2)
t .

Therefore the coloring contains neither red K
(3)
s nor blue F

(3)
m . Now N � c1(m/ lnm)(t+1)/2,

which is greater than m2
√

s for s sufficiently large.
Let H be the disjoint union of 1-degenerate F

(3)
m and

(
s−1

2

)
-degenerate K

(3)
s . Then H has

n = m+ (
m
2

)+ s vertices and is d-degenerate for d = (
s−1

2

)
< s2. Since n < m2 for m sufficiently

large, it follows that H is a d-degenerate n-vertex hypergraph with Ramsey number greater than
N � m2

√
s > n

√
s = nd1/4

.

3. Turán problem for l-uniform l-partite hypergraphs

Lemma 1. Let 0 < α � 1/2 be a real number and let d, k, s, N , and n be positive integers with
s � 2. Let G be a k-uniform k-partite hypergraph with partite sets V1, . . . , Vk each of size N

having at least 2αNk edges. If

αN/n > N(k−1)(d−1)/s, (3)

then there exists a (k − 1)-uniform (k − 1)-partite hypergraph G′ with partite sets V1, . . . , Vk−1
with more than 2αsNk−1 edges such that for each d edges e1, . . . , ed of G′ there are at least n

vertices v ∈ Vk with e1 + v, . . . , ed + v ∈ E(G).

Proof. Let W = V1 ×· · ·×Vk−1 and for each w ∈ W let NG(w) denote the set of vertices v ∈ Vk

such that w + v is an edge in G. For a set X ⊆ W , by NG(X) we denote the set
⋂

w∈X NG(w).
Let v1, . . . , vs be a sequence of s not necessarily distinct vertices of Vk chosen at random

uniformly and independently and let S = {v1, . . . , vs}. Let U = US = {w ∈ W | S ⊆ NG(w)}.
Then the size of U is a random variable. Using Jensen’s inequality we have

E
(|U |) =

∑
w∈W

Pr(w ∈ U) =
∑
w∈W

( |NG(w)|
N

)s

=
∑

w∈W(|NG(w)|)s
Ns

�
Nk−1(

|E(G)|
Nk−1 )s

Ns
� Nk−1−s

(
2αNk

Nk−1

)s

= (2α)sNk−1 � 4αsNk−1.

On the other hand, by the definition of S, for a fixed set X ⊆ W , Pr(X ⊆ US) = (|NG(X)|/N)s .
Denote by z the number of subsets X of W of size d with |NG(X)| < n. The expected value of z

is at most

E(z) =
∑

{X⊆W : |X|=d, |NG(X)|<n}
Pr(X ⊆ U) �

(
Nk−1

d

)(
n

N

)s

� N(k−1)d

(
n

N

)s

= N(k−1)d−sns.

This together with (3) yields

E(z) < N(k−1)d−s(αN)sN−(k−1)(d−1) = αsNk−1.

Therefore by linearity of expectation there exists a particular choice of v1, . . . , vs such that
|U | − z > 4αsNk−1 − αsNk−1 = 3αsNk−1. Fix these v1, . . . , vs and delete a (k − 1)-tuple w
from every subset X of U of size d with |NG(X)| < n. This produces a set U1 ⊆ W of size
greater than 3αsNk−1 with the property that for every X ⊆ U1 with |X| = d , |NG(X)| � n. Now,
we define G′ as the hypergraph on V1 ∪ · · · ∪ Vk−1 with the set of edges equal to U1. �



A.V. Kostochka, V. Rödl / Journal of Combinatorial Theory, Series A 113 (2006) 1555–1564 1561
By repeated application of Lemma 1, we obtain the following statement.

Lemma 2. For α, 0 < α � 1/2, and integers d � 2, l � 2, let n and N be such that for some
integer s � 2 and for all i = 1, . . . , l,

αsl−i

N/n > N(i−1)(d−1)/s . (4)

Let G be an l-uniform l-partite hypergraph with partite sets V1, . . . , Vl each of cardinality N

having at least 2αNl edges. Then there exists a sequence G1, . . . ,Gl of hypergraphs such that
Gl = G and for each i ∈ {1, . . . , l − 1},

(i) Gi is an i-uniform i-partite hypergraph with the partite sets V1, . . . , Vi ;
(ii) Gi has at least 2αsl−i

Ni edges;
(iii) for each d edges e1, . . . , ed of Gi , there are at least n vertices v ∈ Vi+1 with e1 +v, . . . , ed +

v ∈ E(Gi+1).

Now we are ready to prove Theorem 2. For convenience, we state it again.

Theorem 2. For α, 0 < α � 1/2, and integers d � 2, l � 2, let n and N be such that for c =
ln 1

α
+ 2(d − 1)(l − 1) we have

lnn >
(
max{2,3c})l

, (5)

and

N > nec(lnn)(l−1)/ l = n1+c/(lnn)1/l

. (6)

Let G be an l-uniform l-partite hypergraph with partite sets V1, . . . , Vl each of cardinality N

and at least 2αNl edges. If an l-uniform l-partite hypergraph H contains at most n edges, and
the degrees of all of the partite sets of H except one are at most d , then G contains H .

Proof. Suppose that the partite sets of H are Y1, . . . , Yl and that the degree of every vertex in
V (H) − Y1 is at most d .

Set s = �(lnn)1/l� and note that s � 2 by (5). First we prove for this s the inequality

αsl−1
N1−(l−1)(d−1)/s > n (7)

which implies the validity of (4) for every 1 � i � l. By (6) and the definition of c, the expression
N1−(l−1)(d−1)/s is greater than

n(1+c/(lnn)1/l )(1−(l−1)(d−1)/s)

= n1+ln(1/α)/(lnn)1/l+2(d−1)(l−1)/(lnn)1/l−(1+c/(lnn)1/l )(l−1)(d−1)/s). (8)

Since

nln(1/α)/(lnn)1/l = (1/α)(lnn)(l−1)/ l � (1/α)s
l−1

,

(8) yields that to prove (7), it is enough to check that

2(d − 1)(l − 1)/(lnn)1/l �
(
1 + c/(lnn)1/l

)
(l − 1)(d − 1)/s.

This inequality is equivalent to

2s �
(
1 + c/(lnn)1/l

)
(lnn)1/l . (9)
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Recall that s � 2 is the floor of (lnn)1/l and that by (5), 1 + c/(lnn)1/l < 4/3. Thus (9) holds
and hence (7) holds. Therefore, G satisfies the conditions of Lemma 2.

Consider a sequence G1, . . . ,Gl of hypergraphs provided by this lemma. By the lemma, the
number of edges (which are singletons) in G1 is at least 2αsl−1

N > 2n. We map the vertices of
Y1 into distinct edges (again, they are singletons) of G1.

Suppose that we have already mapped the vertices in Y1 ∪ · · · ∪ Yi into V1 ∪ · · · ∪ Vi so
that the projection of each edge of H onto Y1 ∪ · · · ∪ Yi is mapped into an edge of Gi . Let
Yi+1 = {x1, . . . , xt }. We will map x1, . . . , xt one by one. Suppose that we have already mapped
x1, . . . , xj−1 and that xj belongs to edges e1, . . . , er . For each eβ , β = 1, . . . , r consider the
restriction e′

β = eβ ∩ ⋃i
α=1 Yα to Y1 ∪ · · · ∪ Yi . Let f1, . . . , fr be the images of e′

1, e
′
2, . . . , e

′
r in

V1 ∪ · · · ∪ Vi . By the definition of H , r � d . Therefore, by (iii) of Lemma 2, there are at least n

possible vertices vj ∈ Vi+1 to which xj can be properly mapped, i.e., so that

fβ ∪ {vj } ∈ Gi+1 for β = 1, . . . , r. (10)

At most j − 1 of these vertices are already spoiled by the images of x1, . . . , xj−1. Since j � n,
we can find vj with property (10). This proves the theorem. �
Remark. Clearly, the proof of the theorem can be modified to find many edge-disjoint copies
of H in G. Also, our Turán type result implies corresponding l-partite Ramsey results for many
colors.

4. Reductions

In this section, we discuss several facts that will be used in the next section to deduce bounds
on Ramsey number of sparse r-uniform hypergraphs using Turán type bounds for l-uniform
l-partite hypergraphs.

The following is a well-known folklore fact.

Lemma 3. Let G be an l-uniform hypergraph with lN vertices and M edges. Then G contains
an l-uniform l-partite subhypergraph G′ with at least M e−l edges such that each partite set has
exactly N vertices.

Proof. There are (lN)!
(N !)l ways to partition the set of lN vertices into l (ordered) sets each of size N .

Each edge e contains vertices from all l sets in l! (l(N−1))!
((N−1)!)l such partitions. Therefore, there is a

partition such that the corresponding subhypergraph has at least

M l! (l(N − 1))!
((N − 1)!)l

(N !)l
(lN)! � M

l!
ll

> M e−l

edges. �
Lemma 4. For each l, r with l > r , there exist c = c(l, r) and N0 = N0(l, r) such that for each
N > N0 every edge 2-coloring of K

(r)
N yields at least cNl monochromatic copies of K

(r)
l .

Proof. Let N0 = Rr(l, l) be the minimum N with the property that every edge 2-coloring of K
(r)
N

yields a monochromatic copy of K
(r)
l . Let N > N0 and consider an arbitrary edge 2-coloring f

of K
(r). By the definition of N0, every N0-element subset of V (K

(r)
) contains a monochromatic
N N
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copy of K
(r)
l . Since each such copy is contained in

(
N−l
N0−l

)
N0-element subsets of V (K

(r)
N ), the

total number of such monochromatic subgraphs is at least(
N
N0

)
(

N−l
N0−l

) =
(
N
l

)
(
N0
l

) � Nl

Nl
0

= cNl. �

We say that a hypergraph H is the restriction of a hypergraph H ′ to V , if V (H) = V and
E(H) = {e ∩ V : e ∈ E(H ′)}.

A set B of vertices of a hypergraph H is strictly independent, if no edge of H contains more
than one vertex of B .

Lemma 5. Let H be an r-uniform hypergraph with maximum degree at most d and let B be
a strictly independent set in H . Let l = d(r − 1) + 1. Then there exists an l-uniform l-partite
hypergraph H ′ with the same number of edges and V (H ′) ⊃ V (H) such that

(a) the restriction of H ′ to V (H) is H ;
(b) the degree in H ′ of each vertex w ∈ V (H ′) − V (H) is 1;
(c) all vertices of B are in the same partite set of H ′.

Proof. Let H1 be the graph with V (H1) = V (H) such that uv ∈ E(H1) if and only if there is an
edge of H containing both u and v. Note that B is an independent set in H1 and the degree in
H1 of every other vertex is at most d(r − 1) = l − 1. It follows that there exists a proper vertex
l-coloring f of H1 such that all vertices of B are colored with the same color. This yields the
partition of V (H) into l color classes (some of them could be empty) of f .

Now, for every e ∈ E(H) and every color class C with C ∩ e = ∅, we create a new vertex ve,C

of color C. The new hypergraph H ′ has vertex set V (H) ∪ ⋃
e∈E(H){ve,C : e ∩ C = ∅} and edge

set {e ∪ {ve,C : e ∩ C = ∅} | e ∈ E(H)}. �
5. Ramsey number

We prove Theorem 3 in the following slightly stronger form.

Theorem 4. Let Δ and r be fixed. Let H1 and H2 be r-uniform hypergraphs on m vertices
such that for i = 1,2, Hi has a strictly independent vertex set Bi such that the degree of every
v ∈ V (Hi) − Bi in Hi is at most Δ. Then

R(H1,H2) � m1+o(1).

Proof. Let l = Δ(r − 1) + 1, c be the constant from Lemma 4, and α = c/2. Let n = �Δm/r�,
N0 be as in Lemma 4, and N be the minimum positive integer satisfying (6) and the conditions
N � e2l

and N � N0/l. Observe that for fixed Δ and r , by (6) we have N = n1+o(1) = m1+o(1).
Consider a red-blue coloring of the complete r-uniform hypergraph on lN vertices. Let G be

the hypergraph consisting of all the red edges. By Lemma 4, either G or its complement con-
tains at least c(lN)l monochromatic copies of K

(r)
l . We may assume that this is G. Consider

the auxiliary l-uniform hypergraph G(l) whose edges are the l-tuples inducing complete sub-
graphs of G. By Lemma 3, G(l) contains an l-uniform l-partite subhypergraph G̃(l) with at least
ce−l(lN)l > cNl edges such that each partite set has exactly N vertices.
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Let B1 be a strictly independent vertex set in H1 such that the degree of every v ∈ V (H1)−B1
in H1 is at most Δ. By Lemma 5, there exists an l-uniform l-partite hypergraph H ′

1 with the same
number of edges as in H1 and V (H ′

1) ⊃ V (H1) such that

(a) the restriction of H ′
1 to V (H1) is H1,

(b) the degree in H ′
1 of each vertex w ∈ V (H ′

1) − V (H1) is 1, and
(c) all vertices of B1 are in the same partite set of H ′

1.

The number of edges in H ′
1 is at most n = �Δm/r�. Observe that we have chosen Δ, α, and

N so that H ′
1 and G̃(l) satisfy the conditions of Theorem 2. Thus G̃(l) contains H ′

1.
Let us check now that G contains H1. Indeed, suppose we have an embedding f ′ of H ′

1
into G̃(l). Then f ′ induces a mapping f of V (H1) into V (G̃(l)) = V (G). Each edge e ∈ E(H1)

is a part of an edge in H ′
1 and thus is mapped onto a part of an edge e1 of G(l). By the definition

of G(l), this part is an edge of G. �
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