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Abstract

We study packings of graphs with given maximal degree. We shall prove that the (hitherto unproved)
Bollobás–Eldridge–Catlin Conjecture holds in a considerably stronger form if one of the graphs is d-
degenerate for d not too large: if d,Δ1,Δ2 � 1 and n > max{40Δ1 lnΔ2,40dΔ2} then a d-degenerate
graph of maximal degree Δ1 and a graph of order n and maximal degree Δ2 pack. We use this result to
show that, for d fixed and n large enough, one can pack n

1500d2 arbitrary d-degenerate n-vertex graphs of
maximal degree at most n

1000d lnn
.
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1. Introduction

Let us recall one of the basic notions of graph theory, that of packing. Two graphs of the
same order, G1 and G2, are said to pack, if G1 is a subgraph of the complement G2 of G2, or,
equivalently, G2 is a subgraph of the complement G1 of G1. The study of packings of graphs
was started in the 1970s by Sauer and Spencer [12] and Bollobás and Eldridge [5].
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In particular, Sauer and Spencer [12] proved the following result. Here, and in what follows,
we shall write Δi for the maximal degree of a graph Gi . Also, our graphs Gi will have order n.
Nevertheless, we shall frequently emphasize this convention.

Theorem 1. Suppose that G1 and G2 are graphs of order n such that 2Δ(G1)Δ(G2) < n. Then
G1 and G2 pack.

The main conjecture in the area is the following Bollobás–Eldridge–Catlin (BEC) Conjecture
(see [3–5,8]).

Conjecture 1. If G1 and G2 are graphs with n vertices, maximal degrees Δ1 and Δ2, respec-
tively, and (Δ1 + 1)(Δ2 + 1) � n + 1, then G1 and G2 pack.

If true, the BEC Conjecture is a considerable extension of the Hajnal–Szemerédi Theorem [10]
on equitable colorings, which itself is an extension of the Corrádi–Hajnal Theorem on equitable
3-colorings. Indeed, the Hajnal–Szemerédi Theorem is the special case of the BEC Conjecture
when G2 is a disjoint union of cliques of the same size [10]. The conjecture has also been proved
when either Δ1 � 2 [1,2], or Δ1 = 3 and n is huge [9].3

Although, the conjecture is sharp, as we shall show, when one of the two graphs is sparse, to
be precise, d-degenerate for a small d , then much weaker conditions on Δ1 and Δ2 imply the
existence of a packing. Recall that a graph G is d-degenerate if every subgraph of it has a vertex
of degree at most d . Our main result is the following.

Theorem 2. Let d � 2. Let G1 be a d-degenerate graph of order n and maximal degree Δ1 and
G2 a graph of order n and maximal degree at most Δ2. If

40Δ1 lnΔ2 < n (1)

and

40dΔ2 < n (2)

then there is a packing of G1 and G2.

Both restrictions (1) and (2) are weakest up to a constant factor. The examples of Bollobás
and Eldridge [3–5] of n-vertex graphs G1 and G2 with (Δ1 + 1)(Δ2 + 1) = n + 2, that do not
pack show that (2) is best possible up to a constant factor. Examples in [7] show that (1) cannot
be significantly weakened either. More precisely, in [7] we proved the following fact.

Theorem 3. Let k be a positive integer and q a prime power. Then, for every n � q
qk+1−1

q−1 ,
there are graphs G1(n, k) and G2(n, q, k) of order n that do not pack and have the following
properties:

(a) G1(n, k) is a forest with n − k edges and maximal degree at most n/k;

(b) G2(n, q, k) is a qk−1
q−1 -degenerate graph of maximal degree at most 2n/q .

3 One of the referees informed us that the conjecture is also proved in the case when one of the graphs is bipartite and
has small maximum degree.
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Thus if q = 3, k � 3 and n = 3
2 (3k+1 − 1), then the graphs G1 = G1(n, k) and G2 =

G2(n,3, k) of Theorem 3 satisfy Δ(G1) lnΔ(G2) � n
k

lnn < n
k
(1 + (k + 1) ln 3) < 2n. Note

that the graph G1 is 1-degenerate. The idea of the proof of Theorem 2 is a refinement of that
used in [11] for a somewhat similar result on equitable coloring, a partial case of the packing
problem.

Note that Theorem 2 yields the following result concerning the BEC Conjecture.

Corollary 4. Let G1 be a d-degenerate graph of order n and maximal degree at most Δ1, and
G2 a graph of order n with maximal degree at most Δ2 such that Δ1Δ2 < n. If Δ2

lnΔ2
� 40 (i.e.,

Δ2 � 215) and Δ1 � 40d then there is a packing of G1 and G2.

As an immediate consequence of this corollary, note that the BEC Conjecture holds for two
graphs of ‘large’ maximal degree provided one of them is planar, since every planar graph is
5-degenerate.

Corollary 5. Let G1 be a planar graph of order n with maximal degree at most Δ1 and G2
be a graph of order n with maximal degree at most Δ2 such that Δ1Δ2 < n. If Δ1 � 200 and
Δ2 � 215, then there is a packing of G1 and G2.

Adapting the proof of Theorem 2 to control the maximal degree of the union of the two packed
graphs, we prove the following result on simultaneous packings of many graphs.

Theorem 6. Let n,d,Δ and q be positive integers such that d � 2, q � n

1500d2 , and

1000dΔ <
n

lnn
. (3)

Let F1, . . . ,Fq be d-degenerate graphs of order n and maximal degree at most Δ. Then
F1, . . . ,Fq pack.

For a fixed d , Theorem 6 allows packing linearly many (in n) d-degenerate n-vertex graphs
of moderate maximal degree. In fact, the phenomenon we come across here is similar to that
observed by Bollobás and Guy [6] for equitable colorings: it is much easier to pack graphs if the
number of vertices is significantly greater than the maximal degrees of the graphs to be packed.

The structure of the paper is as follows. In the next section, we prove an auxiliary partition
lemma that allows us to apply some ideas of Kostochka, Nakprasit and Pemmaraju [11] to the
general packing problem. In Section 3 we prove Theorem 2. In the last section we modify our
proof of Theorem 2 in order to get restriction on the maximal degree of the packing of two graphs
which almost immediately yields Theorem 6.

2. A partition lemma

Lemma 7. Let G be a graph with maximal degree at most Δ � 90 (so that Δ � 20 lnΔ) and set
m = � Δ

lnΔ
�. Then for every V ′ ⊆ V (G), there exists a partition (V1, . . . , Vm) of V ′ such that for

each vertex v of G, the neighborhood N(v) has the following properties:

(a) for each i, |N(v) ∩ Vi | � 5 lnΔ,
(b) for each i1 and i2, |N(v) ∩ (Vi1 ∪ Vi2)| � 8.7 lnΔ, and
(c) for each i1, i2, and i3, |N(v) ∩ (Vi1 ∪ Vi2 ∪ Vi3)| � 12.3 lnΔ.
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Proof. We color V ′ with m colors uniformly at random. Let B(u, c) be the event that vertex u

has more than 5 lnΔ neighbors in V ′ colored with c and let b(u, c) be the probability of B(u, c).
Then for k0 = 1 + �5 lnΔ	, we have

b(u, c) �
(

Δ

k0

)
m−k0 � 1√

6k0

(
eΔ

k0m

)k0

.

Since lnΔ > 4.4 for Δ � 90, we obtain

b(u, c) � 1√
6k0

(
eΔ

k0m

)k0

<
1√
132

(
e

5

)5 lnΔ

<
1

10
Δ5(1+ln 0.2).

Similarly, let B(u, c1, c2) be the event that vertex u has more than 8.7 lnΔ neighbors in V ′
colored with c1 or c2. Let b(u, c1, c2) be the probability of B(u, c1, c2) and k1 = 1 + �8.7 lnΔ	.
Then as above

b(u, c1, c2) �
(

Δ

k1

)(
2

m

)k1

� 1√
6k1

(
2eΔ

k1m

)k1

� 1√
228

(
20e

87

)8.7 lnΔ

� 1

15
Δ8.7(1+ln(20/87)).

Similarly, let B(u, c1, c2, c3) be the event that vertex u has more than 12.3 lnΔ neighbors
in V ′ colored with c1, c2, or c3. Let b(u, c1, c2, c3) be the probability of B(u, c1, c2, c3) and
k2 = 1 + �12.3 lnΔ	. Then as above

b(u, c1, c2, c3) �
(

Δ

k2

)(
3

m

)k2

� 1√
6k2

(
3eΔ

k2m

)k2

� 1√
320

(
10e

41

)12.3 lnΔ

� 1

17
Δ12.3(1+ln(10/41)).

Set

B(u) =
m⋃

c=1

(
B(u, c) ∪

m⋃
c1=c+1

B(u, c, c1) ∪
m⋃

c1=c+1

m⋃
c2=c1+1

B(u, c, c1, c2)

)

and write b(u) for the probability of B(u). Then, of course,

b(u) � m
1

9
Δ5(1+ln 0.20) +

(
m

2

)
1

11
Δ8.7(1+ln(20/87)) +

(
m

3

)
1

13
Δ12.3(1+ln(10/41)).

Since 5 ln 0.20 < −8, 8.7 ln 20
87 < −12.7, 12.3 ln 10

41 < −17.3, and m � 2·Δ
lnΔ

, we have

b(u) � Δ6+5 ln 0.20

5 lnΔ
+ 4Δ10.7+8.7 ln 20

87

30 ln2 Δ
+ 4Δ15.3+12.3 ln 10

41

50 ln3 Δ

<
Δ−2

5 lnΔ
+ 4Δ−2

30 ln2 Δ
+ 4Δ−2

50 ln3 Δ
<

1

10Δ2
. (4)

The event B(u) does not depend on the collection of all events B(v) such that v has no
common neighbors with u. Hence the maximal degree of the dependency graph of the events
B(u) for u ∈ V (G) is at most Δ(Δ − 1). Thus, by the Lovász Local Lemma, it suffices to check
that eb(u)Δ2 � 1 which holds by (4). This proves the lemma. �
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3. Packing two graphs

In this section we prove Theorem 2. First, we introduce some notions.
Let v1, v2, . . . , vn be an enumeration of the vertices of a graph G. For 1 � i � n, let G(i)

be the subgraph of G induced by the vertices vi, vi+1, . . . , vn; thus G(1) = G and G(n) con-
sists of the single vertex vn. We call v1, v2, . . . , vn a greedy enumeration of the vertices or,
somewhat loosely, a greedy order on G, if dG(i)(vi) = Δ(G(i)) for every i, 1 � i � n, i.e., the
vertex vi has maximal degree in G(i). Similarly, the enumeration and order are degenerate if
dG(i)(vi) = δ(G(i)) for every i, 1 � i � n, i.e., the vertex vi has minimal degree in G(i). Note
that if v1, v2, . . . , vn is a greedy order on G then vi, vi+1, . . . , vn is a greedy order on G(i),
and an analogous assertion holds for the degenerate order. Another simple observation is that
v1, v2, . . . , vn is a greedy order on G if and only if it is a degenerate order for the complement G.
Needless to say, a graph may have numerous greedy orders and degenerate orders.

If 2Δ1Δ2 < n, then we are done by the Sauer–Spencer result. Thus we assume that
2Δ1Δ2 � n which together with (1) yields Δ2/ lnΔ2 > 20. Hence, we can apply Lemma 7 to
G = G2 with V ′ = V (G2).

Let m = � Δ2
lnΔ2

�. Let (V1, . . . , Vm) be a partition of V (G2) satisfying Lemma 7. We may as-
sume that |Vi | � |Vi+1| for all i. Define V ′

i = V1 ∪ V2 ∪ · · · ∪ Vi . Then |V ′
i | � in/m for each

i � m.
We now choose disjoint subsets of V (G1) to be sets W1,W2, . . . ,Wm. For notational conve-

nience, set A0 = B0 = W0 = ∅. For each i = 1,2, . . . ,m, we construct sets Ai and Bi and set
Wi = Ai ∪ Bi .

We let A′
i = ⋃i

j=0 Aj , B ′
i = ⋃i

j=0 Bj and W ′
i = ⋃i

j=0 Wj .

Let a = � 7n
25m

	. Arrange the vertices of G1 − W ′
i−1 in a greedy order and let Ai be the set of

the first a vertices in this order. Select Bi from the set of vertices in G1 − W ′
i−1 − Ai as follows.

Initially, set Bi = ∅ and if there is a vertex w ∈ V (G1) − W ′
i−1 − Ai − Bi that has at least 4d

neighbors in Ai ∪ Bi ∪ W ′
i−1, add that vertex w to Bi . Repeat this process until every vertex

w ∈ V (G1) − W ′
i−1 − Ai − Bi has fewer than 4d neighbors in W ′

i−1 ∪ Ai ∪ Bi .

We claim that by repeatedly adding these vertices, we have |B ′
i | < ia

3 . Let e(H) denote the
number of edges in a graph H . It follows from our construction that, for each i = 0,1, . . . ,m, we
have e(G1[W ′

i ]) � 4d|B ′
i |. On the other hand, G1[W ′

i ] is a d-degenerate graph and has |A′
i |+|B ′

i |
vertices; consequently, e(G1[W ′

i ]) < (|A′
i | + |B ′

i |)d . It follows that 3|B ′
i | < |A′

i | = ia. This com-
pletes the construction of Ai and Bi and we simply set Wi = Ai ∪ Bi . Note that |W ′

i | < 4ia
3 .

Now, we start packing. We consider the vertices of G2 fixed and will place the vertices of G1
one by one on the vertices of G2. Furthermore, in the first m steps, every placement is final, but
in the final step we allow one replacement while we accommodate a vertex. For convenience, we
call the edges of G1 red and those of G2 blue.

Step 1: We pack W1 in V1. Order the vertices of W1 in a reverse degenerate order and place
them consecutively in this order.

Each vertex w in W1 at the moment of embedding has at most d embedded red neighbors
in W1. Each of these red neighbors, wj , is placed on a vertex vj of G2 that has at most 5 lnΔ2
blue neighbors in V1 by Lemma 7(a). Hence w has less than 5d lnΔ2 red–blue ‘neighbors’ in V1
preventing packing, and at most |W1| − 1 < 4a

3 − 1 vertices in V1 already occupied by vertices

of W1. But by (2) and the fact that 1.05Δ2
lnΔ2

� m,

5di lnΔ2 + 4a
<

(
5n · 1.05 + 4 · 7n

)
<

n
(0.2 + 0.38) <

n � |V1|.

3 40m 3 25m m m
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This shows that there is enough room in V1 to accommodate w so that no red edge is parallel to
a blue edge.

Step i, 2 � i � m: After we pack W ′
i−1 in V ′

i−1, we continue to pack Wi in V ′
i . Order the

vertices of Wi in a reverse degenerate order and place them consecutively in this order.
Each vertex w in Wi at the moment of embedding has at most d embedded red neighbors in

Wi and less than 4d red neighbors in W ′
i−1. Each of these red neighbors, wj , is placed on a vertex

vj of G2 that has at most 4.4i lnΔ2 blue neighbors in V ′
i by Lemma 7(b). Hence w has less than

22di lnΔ2 red–blue neighbors in V ′
i preventing packing, and at most |W ′

i |− 1 < 4ia
3 − 1 vertices

in V ′
i already occupied by vertices of W ′

i . But by (2) and the fact that 1.05Δ2
lnΔ2

� m,

22di lnΔ2 + 4ia

3
< i

(
22n · 1.05

40m
+ 4

3
· 7n

25m

)
<

ni

m
(0.58 + 0.38) <

ni

m
�

∣∣V ′
i

∣∣.
Consequently, there is enough room in V ′

i to accommodate w so that no red edge is parallel to a
blue edge.

Final step: Put the vertices of G′ = G1 − W ′
m into a reverse degenerate order, and pack them

into G2 in this order without rearranging the vertices in W ′
m. Suppose that it is the turn of vertex

w ∈ V (G1) to be packed. First of all, there is some vertex v ∈ V (G2) not occupied by a vertex
of G1. As above, there are less than 4d red neighbors of w in W ′

m (by construction), and at most d

red neighbors in G′ that are already packed. So w has less than 5d red neighbors that are packed
previously. Each red neighbor of w has at most Δ2 blue neighbors. Thus w has at most 5dΔ2
red–blue neighbors preventing packing.

Let Di denote the maximum degree of G1 − W ′
i−1. By the definition of Ai , it is the maximal

number of neighbors in G1 − W ′
i−1 of a vertex in Wi . Suppose that v has exactly xi neighbors

in Vi , i = 1, . . . ,m.
Write br(v) for the number of blue–red ‘neighbors’ of v in G′ that arise because of V ′

i ∩NG2(v).

Then br(v) �
∑i

j=1 xjDj . By Lemma 7, for all i = j = k = i, we have

0 � xi � 5 lnΔ2, xi + xj � 8.7 lnΔ2, and xi + xj + xk � 12.3 lnΔ2. (5)

Note that each vertex in Ai has at least Di+1 neighbors among the vertices that come later in
the order. Hence, as G1 is a d-degenerate graph, we have

dn > |A1|D2 + |A2|D3 + · · · + |Am−1|Dm = a(D2 + · · · + Dm).

It follows that D2 + · · · + Dm < dn/a. The maximum of the expression
∑i

j=1 xjDj under con-
ditions D2 + · · · + Dm < dn/a, D1 � · · · � Dm, and (5) is attained when xi � xi+1 for all i.
Hence

br(v) < x1Δ1 + (x2 − x3)D2 + x3dn

a
� (x1 + x2 − x3)Δ1 + x3dn

a

� (12.3 lnΔ2 − 2x3)Δ1 + x3dn

a
. (6)

Let us define the set of bad vertices as the union of the set of vertices in G2 where the vertices
of W ′

m are placed, the set of red–blue ‘neighbors’ of w, and the set of blue–red ‘neighbors’ of v.
Here by the blue–red ‘neighbors’ we mean the vertices of G1 already placed on vertices of G2.
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We have |W ′
m| � 4ma

3 . Also, by (2), 7n
25m

� 7n lnΔ2
25·1.05Δ2

> 11.4 lnΔ2 > 50 and hence 1.02a > 7n
25m

.
Therefore, the total number of bad vertices is at most

F(x3) = 4ma

3
+ 5dΔ2 + (12.3 lnΔ2 − 2x3)Δ1 + x3

(
1.02d25m

7

)
.

We want to prove that F(x3) < n for every 0 � x3 � 4.1 lnΔ2. Since F(x3) is linear, it suffices
to check this inequality for x3 = 4.1 lnΔ2 and x3 = 0. By (1) and (2),

F(4.1 lnΔ2) � 4

3

7n

25
+ 5

n

40
+ 4.1(lnΔ2)Δ1 + 4.1 lnΔ2

1.02 · 1.05 · 25dΔ2

7 lnΔ2

� 28n

75
+ 5n

40
+ 4.1n

40
+ 4.1

3.825n

40
< n(0.3734 + 0.125 + 0.1025 + 0.3921) < n.

Similarly,

F(0) � 28n

75
+ 5n

40
+ 12.3(lnΔ2)Δ1 � n(0.374 + 0.125 + 0.3075) < n.

It follows that either there is a vertex w′ ∈ V (G1) placed on a vertex v′ ∈ V (G2) or a non-
occupied vertex v′ ∈ V (G2) such that (a) w′ /∈ W ′

m, (b) w′ is not a blue–red ‘neighbor’ of v, and
(c) v′ is not a red–blue ‘neighbor’ of w.

By (b), if we move w′ from v′ onto v, no parallel red and blue edges occur. By (c), if we place
w onto the freed vertex v′, then again no parallel edges occur. By (a), we did not move vertices
of W ′

m. This proves the theorem.

4. Packing many graphs

The idea of packing many d-degenerate graphs with moderate maximal degree is to pack them
consecutively, one by one, and to control the maximal degrees of intermediate graphs. To do this,
we need the following version of Theorem 2.

Theorem 8. Let n,d,Δ1 and Δ2 be positive integers such that d � 2 and

1000dΔ1 <
n

lnn
. (7)

Let z = n
100d

and Δ2 � z. Let G1 be a d-degenerate graph of order n and maximal degree at
most Δ1 and G2 a graph of order n with at most n2

1500d
edges and maximal degree at most Δ2.

Then there is a packing of G1 and G2 such that the maximal degree of the resulting graph
H = G1 ∪ G2 is at most max{0.0028 n

d
,Δ(G2) + 10.5d}.

Proof. If Δ1 = 1 then the statement follows from the fact that the complement of G2 is hamil-
tonian. Let Δ1 � 2. Then by (7), n � 2000d lnn, which yields lnn � 10 and therefore

z = n

100d
� 200. (8)

The proof below will follow the lines of that of Theorem 2 with small changes. In particular,
we think of the edges of G1 as red, and of the edges of G2 as blue.

Since e(G2) � n2

1500d
, there exists a subset V0 of V (G2) with |V0| = �0.5n� such that

degG (v) � n for every v ∈ V0.

2 375d
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Let m = � z
ln z

�. By (8), Lemma 7 applies to G = G2 with V ′ = V0 and Δ = z. Let
(V1, . . . , Vm) be a partition of V0 whose existence is guaranteed by Lemma 7. We may assume
that |Vi | � |Vi+1| for all i. Define V ′

i = V1 ∪ V2 ∪ · · · ∪ Vi . Then |V ′
i | � in/2m for each i � m.

We now choose disjoint subsets of V (G1) to be sets W1,W2, . . . ,Wm. For notational conve-
nience, set A0 = B0 = W0 = ∅. For each i = 1,2, . . . ,m, we construct sets Ai and Bi and set
Wi = Ai ∪ Bi .

We let A′
i = ⋃i

j=0 Aj , B ′
i = ⋃i

j=0 Bj and W ′
i = ⋃i

j=0 Wj .
Let a = � n

6m
	. Arrange the vertices of G1 −W ′

i−1 in a greedy order and let Ai be the set of the
first a vertices in this order. Select Bi from the vertices in G1 − W ′

i−1 − Ai as follows. Initially
set Bi = ∅ and while there is a vertex w ∈ G1 −W ′

i−1 −Ai −Bi that has at least 4d neighbors in
Ai ∪ Bi ∪ W ′

i−1, add w to Bi . Repeat this process until every vertex w ∈ G1 − W ′
i−1 − Ai − Bi

has fewer than 4d neighbors in W ′
i−1 ∪ Ai ∪ Bi . Then we simply set Wi = Ai ∪ Bi . As in the

proof of Theorem 2, we find that |W ′
i | < 4ia

3 .

Step i, 1 � i � m: Having packed W ′
i−1 into V ′

i−1, we continue packing Wi into V ′
i . We put

the vertices of Wi into a reverse degenerate order and place them one by one in this order.
At the moment of its embedding, each vertex w in Wi has at most d embedded red neighbors

in Wi and fewer than 4d red neighbors in W ′
i−1. Each of these red neighbors, wj , is placed on

a vertex vj of G2 that has at most 5i ln z blue neighbors in V ′
i by Lemma 7(a). Hence w has

fewer than 25di ln z red–blue ‘neighbors’ in V ′
i onto which we cannot place w because of arising

parallel edges and at most |W ′
i | − 1 < 4ia

3 − 1 vertices in V ′
i already occupied by vertices of W ′

i .
Thus if

X = 25di ln z + 4ia

3
�

∣∣V ′
i

∣∣, (9)

then there are free vertices in V ′
i to accommodate w without creating parallel red and blue edges.

Since z � 200, we have m � 37 and therefore

1.03z

ln z
� m. (10)

Thus, recalling that z = n/100d ,

X < i

(
25d1.03z

m
+ 4n

18m

)
<

i

m

(
0.2575n + 2n

9

)
= ni

2m

(
0.515 + 4

9

)
� ni

2m
�

∣∣V ′
i

∣∣.
This proves (9).

Final step: Consider a reverse degenerate order of the vertices of G′ = G1 − W ′
m, and pack

them in this order into G2 without rearranging the vertices in W ′
m. Suppose that it is the turn

of a vertex w ∈ V (G1) to be packed. Let v ∈ V (G2) be not occupied by a vertex of G1. As
above, there are fewer than 4d red neighbors of w in W ′

m (by construction), and at most d red
neighbors in G′ that are already packed. So w has fewer than 5d red neighbors that had been
packed previously. Each red neighbor of w has at most Δ2 blue neighbors. Thus w has at most
5dz red–blue ‘neighbors’ that are bad for placing w on them.

Let Di denote the maximum degree of G1 −W ′
i . Suppose that v has exactly xi blue neighbors

in Vi , i = 1, . . . ,m. Then the number, br(v), of blue–red ‘neighbors’ of v with the intermediate
vertices in V ′ ∩ NG2(v) is at most

∑i
j=1 xjDj . By Lemma 7, this is at most 5 ln z

∑i
j=1 Dj .
i
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As in the proof of Theorem 2, we have D2 + · · · + Dm < dn/a. Therefore,

br(v) < 5 ln z

(
Δ1 + dn

a

)
. (11)

Now, let the set of bad vertices be the union of the set of vertices in G2 onto which the vertices
of W ′

m are placed, the set of red–blue ‘neighbors’ of w, and the set of blue–red ‘neighbors’ of v.
Here by blue–red ‘neighbors’ we mean vertices of G1 already placed on vertices of G2. We
have |W ′

m| � 4ma
3 . Also, by (8) and (10), n

6m
� n ln z

6·1.03z
> 100d ln z

6.18 > 150 and hence 1.01a > n
6m

.
Therefore, the total number of bad vertices is at most

4ma

3
+ 5dz + 5 ln z

(
Δ1 + dn

a

)

� 4

3
· n

6
+ 5dn

100d
+ 5Δ1 ln z + 5 ln z

dn6m1.01

n

� n

(
2

9
+ 1

20
+ 1

200
+ 5 ln z

6.06d1.03z

n ln z

)

� n

(
0.28 + 30.30

1.03

100

)
< 0.7n.

Similarly to the proof of Theorem 2, this means that there exists either a vertex w′ ∈ V (G1)

placed on a vertex v′ ∈ V (G2) or a non-occupied vertex v′ ∈ V (G2) such that (a) w′ /∈ W ′
m,

(b) w′ is not a blue–red ‘neighbor’ of v, and (c) v′ is not a red–blue ‘neighbor’ of w. And again,
we can safely move w′ from v′ onto v and place w onto the freed vertex v′ without creating
parallel red and blue edges. Thus the procedure will result in a graph H = G1 ∪ G2. Let us
now estimate the degrees of the vertices in H . Suppose that a vertex u ∈ V (H) is the result of
identifying a vertex w ∈ V (G1) with a vertex v ∈ V (G2).

Case 1. w ∈ W ′
m. Then v ∈ V ′ and therefore degG2

(v) � n
375d

. By (7), degG1
(w) � n

1000d lnn

and by (8), lnn � ln 20000d � ln 40000 > 10. Thus, degH (u) � n
d
( 1

375 + 0.0001) < 0.0028 n
d

.
Case 2. w /∈ W ′

m. Then w has fewer than 4d neighbors in W ′
m, since otherwise it would be

included into B ′
m. If w has more than 6.5d neighbors in G′ = G1 − W ′

m, then every w′ ∈ A′
m

should have more than 6.5d neighbors in G′. But in this case,∣∣E(G1)
∣∣ > 6.5d

∣∣A′
m

∣∣ = 6.5dma � 6.5

1.01
dm

n

6m
> dn,

which contradicts the fact that G1 is d-degenerate. Thus, degG1
(w) � 4d + 6.5d = 10.5d and

therefore, degH (u) � 10.5d + Δ2. This proves the theorem. �
Now we are ready to prove our second main result, Theorem 6.

Proof of Theorem 6. We shall prove by induction that for every i, 1 � i � q , we can pack
F1, . . . ,Fi so that the resulting graph, Hi , satisfies

Δ(Hi) � 0.0028
n

d
+ 10.5(i − 1)d. (12)

Since H1 = F1, for i = 1 inequality (12) follows from (3). Suppose that i > 1 and (12) holds
for Hi−1 = F1 ∪ · · · ∪ Fi−1. Let us check that G1 = Fi and G2 = Hi−1 satisfy the conditions of
Theorem 8. Indeed, (7) follows from (3),

Δ2 � 0.0028
n + 10.5(q − 2)d � n

(
0.0028 + 10.5

)
<

n
,

d d 1500 100d
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and |E(G2)| < (q − 1)dn < n2

1500d
. Thus, by Theorem 8, we can pack G1 and G2 so that the

maximal degree of the resulting graph, Hi , is at most

max

{
0.0028

n

d
,Δ(G2) + 10.5d

}
� 0.0028

n

d
+ 10.5(i − 2)d + 10.5d.

This proves the induction step and so completes the proof of the theorem. �
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