
Journal of Combinatorial Theory, Series B 98 (2008) 226–234

www.elsevier.com/locate/jctb

An Ore-type theorem on equitable coloring

H.A. Kierstead a,1, A.V. Kostochka b,c,2

a Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, USA
b Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

c Institute of Mathematics, Novosibirsk, Russia

Received 31 December 2006

Available online 20 August 2007

Abstract

A proper vertex coloring of a graph is equitable if the sizes of its color classes differ by at most one. In
this paper, we prove that if G is a graph such that for each edge xy ∈ E(G), the sum d(x) + d(y) of the
degrees of its ends is at most 2r + 1, then G has an equitable coloring with r + 1 colors. This extends the
Hajnal–Szemerédi Theorem on graphs with maximum degree r and a recent conjecture by Kostochka and
Yu. We also pose an Ore-type version of the Chen–Lih–Wu Conjecture and prove a very partial case of it.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

An equitable k-coloring of a graph G is a proper k-coloring, for which any two color classes
differ in size by at most one. It can be viewed as a packing of G with the |V (G)|-vertex graph,
whose components are cliques with either �|V (G)|/k� or �|V (G)|/k� vertices. Recall that two
n-vertex graphs pack if there exists an edge disjoint placement of these graphs into Kn. In other
words, G1 and G2 pack if G1 is isomorphic to a subgraph of the complement of G2 (and vice
versa). A number of important graph theoretic problems can be naturally expressed in the lan-
guage of packing. For example, the classical Dirac’s Theorem [5] on the existence of hamiltonian
cycles in each n-vertex graph with minimum degree at least n/2 can be stated in terms of pack-
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ing as follows: Let n � 3. If G is an n-vertex graph and its maximum degree, Δ(G), is at most
1
2n − 1, then G packs with the cycle Cn of length n.

Similarly, Ore’s theorem [14] on hamiltonian cycles is as follows: If n � 3 and G is an n-
vertex graph with d(x)+d(y) � n−2 for each edge xy ∈ E(G), then G packs with the cycle Cn.

One of the main known results on equitable coloring is the Hajnal–Szemerédi Theorem [6]
stating that every graph with maximum degree Δ(G) � r has an equitable (r + 1)-coloring. It
has many applications. Alon and Füredi [1], Alon and Yuster [2,3], Janson and Ruciński [7],
Pemmaraju [15], and Rödl and Ruciński [16] used this theorem to derive bounds for sums of
dependent random variables with limited dependence or to prove the existence of some special
vertex partitions of graphs and hypergraphs. We call the Hajnal–Szemerédi Theorem a Dirac-
type result, since it provides a packing of a graph G with a special graph given a restriction on
the maximum degree of G. Recently, Kostochka and Yu [11,12] conjectured that the following
Ore-type result holds true: Every graph in which d(x) + d(y) � 2r for every edge xy has an
equitable (r + 1)-coloring. Clearly, this conjecture implies the Hajnal–Szemerédi Theorem. In
this paper, we prove the following somewhat stronger result.

Theorem 1. Every graph satisfying d(x) + d(y) � 2r + 1 for every edge xy, has an equitable
(r + 1)-coloring.

The proof elaborates the ideas of the original proof of the Hajnal–Szemerédi Theorem [6] and
of the recent short proof of it in [8]. Notice that if the bound on maximum degree is weakened
from 2r + 1 to 2r + 2, then it is satisfied by Kr+2 which does not have any (r + 1)-coloring.
More subtly, Kr+1,r+1 also satisfies the weakened bound, but if r + 1 is odd, then it does not
have an equitable r-coloring; so the Hajnal–Szemerédi Theorem is tight. Of course, these graphs
also show that Theorem 1 is tight. Replacing r + 1 in the previous discussion by r , Chen, Lih
and Wu [4] proposed the following analogue of Brooks’ Theorem for equitable coloring:

Conjecture 2. (See [4].) Let G be a connected graph with Δ(G) � r . If G has no equitable
r-coloring, then either G is an odd cycle, or G = Kr+1, or r is odd and G = Kr,r .

There are more graphs for which Theorem 1 is tight, than those for which the Hajnal–
Szemerédi Theorem is tight. For example, for each odd m < r +1, the graph Km,2r+2−m satisfies
the condition d(x) + d(y) � 2r + 2 for every edge xy and has no equitable (r + 1)-coloring. We
conjecture that the following Ore-type analogue of the Chen–Lih–Wu Conjecture holds (again
we replace r + 1 by r).

Conjecture 3. Let r � 3. If G is a graph satisfying d(x) + d(y) � 2r for every edge xy, and G

has no equitable r-coloring, then G contains either Kr+1 or Km,2r−m for some odd m.

We also prove that Conjecture 3 holds for r = 3.
The structure of the text is as follows. In the next section we prove Theorem 1. The key

ingredients of the proof are a recoloring lemma and a discharging proof of the nonexistence of
a bad example. In the last section we discuss the Chen–Lih–Wu Conjecture and its extension,
Conjecture 3.

Most of our notation is standard; possible exceptions include the following. For a graph
G = (V ,E), we let |G| := |V |, ‖G‖ := |E| and σ̄ (G) := max{d(x) + d(y): xy ∈ E}. For a ver-
tex v and set of vertices X, NX(v) := {x ∈ X: vx ∈ E} and dX(v) := |NX(v)|. As usual, N(v) =
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NV (v). If μ is a function on edges, then μ(A,B) := ∑
xy∈E(A,B) μ(x, y), where E(X,Y ) :=

{xy: x ∈ X and y ∈ Y }. If G is a directed graph then E−(X) := E(V \ X,X}. For a set S and an
element x, we write S +x for S ∪{x} and S −x for S \ {x}. For a function f :V → Z, the restric-
tion of f to W ⊆ V is denoted by f |W . Functions are viewed formally as sets of ordered pairs.

2. Main proof

In this section we prove Theorem 1. For r = 0 the statement is obvious. Suppose that r � 1
and that the theorem holds for all 0 � r ′ < r . Let G be a graph satisfying σ̄ (G) � 2r + 1. We
may assume that |G| is divisible by r + 1. To see this, suppose that |G| = s(r + 1) − p, where
p ∈ [r]. Let G′ be the disjoint union of G and Kp . Then |G′| is divisible by r + 1 and σ̄ (G′) � r .
Moreover, the restriction of any equitable (r + 1)-coloring of G′ to G is an equitable (r + 1)-
coloring of G. So let |G| = (r + 1)s.

Suppose for a contradiction, that G is an edge-minimal counterexample to the theorem. Con-
sider any edge e = xy with d(x) � d(y). By minimality, there exists an equitable (r +1)-coloring
of G − e. Since G is a counterexample, some color class V contains both x and y. Since
σ̄ (G) � 2r + 1, d(x) � r . Thus there exists a class W such that x has no neighbors in W .
Moving x to W yields an (r + 1)-coloring f of G with all classes of size s, except for one small
class V −(f ) = V − x of size s − 1 and one large class V +(f ) = W + x of size s + 1. We say
that such a coloring is nearly equitable.

Given a coloring f with a unique small class V − (but possibly no large class), define an
auxiliary digraph H = H(f ) as follows. The vertices of H are the color classes of f . A directed
edge UW belongs to E(H) iff some vertex y ∈ U has no neighbors in W . In this case we say
that y is movable to W . Call W ∈ V (H) accessible, if V − is reachable from W in H. So V − is
trivially accessible.

Lemma 4. If G has a nearly equitable coloring, whose large class V + is accessible, then it has
an equitable coloring with the same number of colors.

Proof. Let P = V1, . . . , Vk be a path in H from V1 := V + to Vk := V −. This means that for
each j = 1, . . . , k − 1, Vj contains a vertex yj that has no neighbors in Vj+1. So, if we move
yj to Vj+1 for j = 1, . . . , k − 1, then we obtain an equitable coloring with the same number of
color classes. �

Let A = A(f ) denote the family of accessible classes and B denote the family of non-
accessible classes. Then V − ∈ A and, by Lemma 4, V + ∈ B. Set A := ⋃

A, B := ⋃
B,

m := |A| − 1 and q := |B| = r − m. Then |A| = (m + 1)s − 1 and |B| = qs + 1.

Each vertex y ∈ B has a neighbor in each class of A and so satisfies dA(y) � m + 1. (1)

It follows that

σ̄
(
G[B]) � σ̄ (G) − 2(m + 1) � 2q − 1.

Thus by the minimality of r ,

Every subgraph of G[B] has an equitable q-coloring. (2)

For an accessible class U ∈ A(f ), define SU := SU(f ) to be the set of classes X ∈ A such
that there is an X,V −-path in H(f )−U and TU := TU(f ) := A \ (SU +U). Call U terminal, if
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SU = A−U ; otherwise U is non-terminal. Note that if U is non-terminal then TU �= ∅. Trivially,
V − is non-terminal unless m = 0, in which case it is terminal.

Define a non-empty family A′ := A′(f ) ⊆ A(f ) as follows. If m = 0 then set A′ := A =
{V −}. Otherwise, V − is a non-terminal class, and so such classes exist. Choose a non-terminal U

so that |TU | is minimum and set A′ := TU . Let A′ := A′(f ) := ⋃
A′ and t := t (f ) := |A′|.

Lemma 5. The family A′ satisfies the following:

(P1) Every class in A′ is terminal.
(P2) dA(x) � m − t for all x ∈ A′.

Proof. If m = 0 then the only accessible class V − is terminal. So A′ = A satisfies (P1) and (P2)
trivially. Otherwise m > 0 and A′ = TU for some non-terminal U ∈ A. Consider X ∈ TU . Then
TX ⊂ TU . By the minimality of TU , X is terminal. So (P1) holds true.

No class in A′ = TU has an out-neighbor in SU . It follows that every vertex in A′ has a
neighbor in each of the m − t classes of SU . So (P2) holds true. �

An edge zy is solo if z ∈ W ∈ A′, y ∈ B and NW(y) = {z}. The ends of solo edges are called
solo vertices and vertices linked by solo edges are called special neighbors of each other.

Our interest in terminal classes and solo edges stems from the following lemma.

Lemma 6. Suppose that W ∈A′. If z ∈ W is solo then z has a neighbor in every class of A−W .
In particular dA(z) � m.

Proof. Suppose for a contradiction that z has a special neighbor y ∈ B and no neighbor in X ∈
A − W . Since W is terminal, there exists a path P from X to V − in H − W . Move z to X and
y to W . By hypothesis X∗ := X + z is independent and, since xy is solo, W ∗ := W + y − z

is independent. This yields a nearly equitable coloring f ∗ of G[A + y] with V +(f ∗) = X + z.
Moreover P∗ := P + V +(f ∗) − X is a path from V +(f ∗) to V −(f ∗) in H(f ∗). By Lemma 4,
G[A+y] has an equitable (m+1)-coloring h1. By (2), G[B]−y has an equitable q-coloring h2.
Thus h1 ∪ h2 is an equitable (r + 1)-coloring of G, a contradiction. �

We now come to a delicate point in the argument. Define an obstruction to be a nearly equi-
table (r + 1)-coloring f such that

(C1) m(f ) = |A(f )| − 1 is maximum; and
(C2) subject to (C1), t (f ) = |A′(f )| is minimum.

Given an obstruction f , the next lemma allows us to switch the colors of the ends of a solo edge
to obtain a new obstruction. When this operation is applied in the proof of Claim 10, we consider
two cases depending on whether t � q . It is important that after switching, we are still in the
same case. This is guaranteed by conditions (C1) and (C2).

Lemma 7. Suppose that f is an obstruction, W ∈ A′ and z ∈ W is a solo vertex with a special
neighbor y ∈ B . Set A− := A − z. Then G has an obstruction g such that

g|A− = f |A− and g(y) = f (z). (3)
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Proof. Set W ∗ := W + y − z. Since zy is a solo edge, W ∗ is independent. Thus switching y and
z we obtain an equitable (m + 1)-coloring h1 of G[A∗] from f , where A∗ := A + y − z. Our
plan is to extend h1 to an obstruction. Any such extension will satisfy (3). For this we will need
the following analysis of H(h1).

Set H0 := H(f )[A(f )]. For X ∈ A, let X∗ := X if X �= W ; otherwise let X∗ := W ∗. Then
H0 − W = H(h1)− W ∗. Moreover, by (1) and Lemma 6, neither y nor z is movable to any class
in H0 −W . It follows that the out-neighborhood of W in H0 is the same as the out-neighborhood
of W ∗ in H(h1). In other words,

∗ :H0 − E−(W) →H(h1) − E−(
W ∗)

is an isomorphism. Let P := X1 . . .Xt and P∗ := X∗
1 . . .X∗

t be the image of P . Then P is a
path in H0 with W /∈ V (P) − X1 iff P∗ is a path in H1 with W ∗ /∈ V (P∗) − X∗

1 . Since W is
terminal by (P1), it follows that every class of h1 is accessible in H(h1), i.e. A∗(f ) = A(h1),
where A∗(f ) is the image of A(f ).

Set B− := B − y. By (2), G[B−] has an equitable q-coloring h2. Using (1), Lemma 6, and
the fact that W is terminal, we have

2r + 1 � d(z) + d(y) = dA(z) + dA(y) + dB(z) + dB(y) � 2m + 1 + dB(z) + dB(y).

In other words,

2q � dB(z) + dB(y).

Since z is adjacent to y, dA∗(z) � dA(z)+ 1 � m+ 1 and dB−(z) � 2q − 1. If there exists a class
X ⊆ B− of h2 such that z has no neighbors in X, then move z to X to obtain a q-coloring h3
of G[B∗], where B∗ := B− + z. Then g := h1 ∪ h3 is a nearly equitable (r + 1)-coloring of G.
Otherwise dB−(z) � q and d(z) � q +m+1 = r +1. Since dB−(z) � 2q −1, some class X of h2
contains exactly one neighbor w of z. Switch z and w to obtain a q-coloring h4 of G[B∗] − w.
Then f ′ = h1 ∪h4 is an equitable coloring of G−w with one small class V − and no large class.
Since d(z) � r +1 and z is adjacent to w, d(w) � r . It follows that w can be added to some class
of f ′, yielding a large class.

First suppose that w can be added to X∗ ⊆ A∗. This yields a nearly equitable coloring h′ of
A∗ + w with large class X∗ + w. Since X∗ ∈ A(h1) we have X∗ + w ∈ A(h′). By Lemma 4,
there exist an equitable (m+ 1)-coloring h′′ of G[A∗ +w]. Then h′′ ∪h4 is an equitable (r + 1)-
coloring of G, a contradiction. So w can be moved to some X ⊆ B∗. Let g be the nearly equitable
(r + 1)-coloring obtained from h1 ∪ h4 by moving w to X. Regardless of the case, we have
constructed a nearly equitable (r + 1)-coloring g that satisfies (3). We still must show that g

satisfies (C1) and (C2).
First, we show that g satisfies (C1). Since f satisfies (C1) it suffices to show that m(f ) �

m(g), which follows from A∗(f ) = A(h1) ⊆ A(g). So g satisfies (C1) and A(h1) = A(g). Now
we show that g satisfies (C2). Suppose that A′(f ) = TU , where U is non-terminal in H(f ). Since
f satisfies (C2), it suffices to show that t (g) � t (f ). We will do this by showing that W ∗ ∈ TU(g)

and SU(f ) ⊆ SU(g). Then U is non-terminal in H(g) and t (g) � |TU(g)| � |TU(f )| = t (f ).
Suppose that P∗ is a W ∗,V −-path in Hg . Then V (P∗) ⊆ A(g) = A(h1). So its inverse P under ∗
is a W,V −-path in H(f ). Since W ∈ TU , U must be a vertex of P and thus P∗. So W ∗ ∈ TU(g).
Now suppose that X ∈ SU(f ). Then there exists an X,V −-path P in H(f ) − U . It follows
that P∗ is a path in H(h1) − U ⊆ H(g) − U and so X ∈ SU(g). So (C2) holds and g is an
obstruction. �
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Suppose that f is an obstruction and z ∈ A′ is a solo vertex with a special neighbor y ∈ B .
Let Sy be the set of special neighbors of y in A′. By (1), y has a neighbor in every class of A;
moreover if W ∈A′ and y does not have a solo neighbor in W , then y has at least two neighbors
in W . Thus

dA′(y) � 2t − ∣∣Sy
∣∣ and dA(y) � m + 1 + t − ∣∣Sy

∣∣. (4)

Set cy := max{dB(z): z ∈ Sy} if Sy �= ∅; otherwise cy := 1. Similarly, set c′
y := max{dB(z): z ∈

NA′(y) \ Sy} if NA′(y) �= Sy ; otherwise c′
y := 1. Define a weight function μ on E(A′,B) by

μ(xy) := q

dB(x)
.

We shall finish our proof by proving the following three contradictory claims.

Claim 8. For all obstructions f , there exists a vertex y ∈ B such that μ(A′, y) < t .

Claim 9. For all obstructions f and all vertices y ∈ B , if μ(A′, y) < t then y is solo. Moreover,
in this case, either cy � q + 1 or c′

y � 2q + 1.

Claim 10. There exists an obstruction f such that μ(A′, y) � t for all solo vertices y ∈ B .

Proof of Claim 8. For any x ∈ A, if NB(x) �= ∅ then

μ(x,B) =
∑

y∈NB(x)

q

dB(x)
= q;

otherwise μ(x,B) = 0. Regardless,

μ(x,B) � q.

Thus

qst = q|A′| �
∑
x∈A′

μ(x,B) = μ(A′,B) =
∑
y∈B

μ(A′, y)

� |B|min
y∈B

μ(A′, y) > qs min
y∈B

μ(A′, y)

and so μ(A′, y) < t for some y ∈ B . �
Proof of Claim 9. Let μ(A′, y) < t . Let S := {W ∈ A′: Sy ∩ W �= ∅} and D := A′ \ S . First
suppose that c′

y � 2q . Then

t > μ(A′, y) =
∑
W∈S

∑
x∈NW (y)

q

dB(x)
+

∑
W∈D

∑
x∈NW (y)

q

dB(x)

� |S| q

cy

+ 2|D| q

c′
y

� |S| q

cy

+ |D|.

Thus |D| < t and so |Sy | = |S| > 0. Thus y is solo. Moreover, q
< 1 and so cy � q + 1.
cy
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Now suppose that dB(x) � 2q + 1 for some x ∈ NA′(y). Using (P2) and (4),

2r + 1 � d(x) + d(y) = dA(x) + dB(x) + dA(y) + dB(y)

� (m − t) + (2q + 1) + (
m + 1 + t − |Sy |)

= 2(m + q + 1) − ∣∣Sy
∣∣

= 2r + 2 − ∣∣Sy
∣∣

It follows that |Sy | � 1 and so y is again solo. �
Proof of Claim 10.

CASE 1: t � q . Choose an obstruction f such that |E(A′,B)| is minimum. Let y ∈ B be
solo and choose z ∈ Sy so that dB(z) = cy . Let g be an obstruction satisfying the conclusion
of Lemma 7. Set A− := A′ − z and B− := B − y. By the choice of f , |E(A′(f ),B(f ))| �
|E(A′(g),B(g))| and so dA−(y) + dB−(z) � dA−(z) + dB−(y). Recalling that y is adjacent to z,

dA′(y) + dB(z) �
⌊

(dA−(y) + dB−(y) + dA−(z) + dB−(z))

2

⌋
+ 2.

Note that dB−(y) = dB(y) and (1) implies

dA−(y) = dA′ − 1 � dA(y) − |A \A′| − 1 = dA(y) − (m + 1 − t) − 1.

Arguing analogously (but using Lemma 6 this time) for z, we obtain dB−(z) = dB(z) − 1 and

dA−(z) = dA′(z) � dA(z) − |A \A′| = dA(y) − (m + 1 − t).

Combining terms and using d(y) + d(z) � 2r + 1, we have

dA′(y) + dB(z) �
⌊

d(y) − (m + 2 − t) + d(z) − 1 − (m + 1 − t)

2

⌋
+ 2

�
⌊

2r + 1 − 2m + 2t

2

⌋

= t + q. (5)

By (1), dA′(y) � t and hence dB(z) � q . By the choice of z, cy = dB(z) � q . By (4) and (5),∣∣Sy
∣∣ � 2t − dA′(y) � 2t − (

t + q − dB(z)
) = t − q + cy.

So

μ(A′, y) �
∑
z∈Sy

q

dB(z)
�

∣∣Sy
∣∣ q

cy

� (t − q + cy)
q

cy

= (t − q)
q

cy

+ q � t.

CASE 2: q � t . Choose an obstruction f such that ‖G[B]‖ is as large as possible. Then
dB(z) � dB(y) + 1 for all solo edges zy with z ∈ A′. Thus, using Lemma 6 and (1),

2r + 1 � dA(z) + dB(z) + dA(y) + dB(y) � 2m + 1 + dB(z) + dB(y),

2q � dB(z) + dB(y) � 2dB(z) − 1,

q � dB(z).

Since z was arbitrary, cy � q . If μ(A′, y) < t , then, by Claim 9, y has a neighbor x ∈ A′ such
that dB(x) � 2q + 1. Moreover dB(y) � cy − 1 by the maximality of ‖G[B]‖. So, using (P2),
(1) and (4),
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2r + 1 � d(x) + d(y) � (m − t + 2q + 1) + (
m + 1 + t − ∣∣Sy

∣∣ + cy − 1
)

= 2r + 1 − ∣∣Sy
∣∣ + cy.

Thus |Sy | � cy . So μ(A′, y) � |Sy | q
cy

� q � t . �
Since Claims 8–10 are contradictory, this completes the proof of the theorem.

3. On two conjectures

The Chen–Lih–Wu conjecture has been proved for some classes of graphs such as bipartite
graphs [13], outerplanar graphs [17], planar graphs with maximum degree at least 13 [18], graphs
with average degree five times less than their maximum degree [10] and others. In particular,
Chen, Lih and Wu [4] proved that their conjecture holds for r = 3 and we [9] have extended their
result to r = 4. We will use their theorem:

Theorem 11. If G is a connected graph with Δ(G) � 3 distinct from K4 and K3,3, then G has
an equitable 3-coloring.

If we consider the Ore-type setting, then for every odd m � r , the graph Gr,m = Km,2r−m has
σ(Gr,m) = 2r and has no equitable r-coloring. However, we believe that Conjecture 3 stated in
the introduction holds true. To support the conjecture, we prove that it is true for r = 3. Note that
the word ‘connected’ is not present in the statement, but this is an equivalent form: If G satisfies
σ(Gr,m) � 2r and contains H ∈ {K4,K3,3,K5,1}, then H is a component of G.

Theorem 12. If G is a graph with d(x)+d(y) � 6 for each xy ∈ E(G) and if G does not contain
any of the graphs K4, K3,3 and K5,1, then G has an equitable 3-coloring.

Proof. Let G be an edge-minimal counterexample to the theorem. Let v be a vertex of the
maximum degree in G. If d(v) = 5, then G contains K5,1, a contradiction to our assumption.
By Theorem 11, d(v) > 3. Hence d(v) = 4. Let w1,w2,w3,w4 be the neighbors of v. Under
the constraints on the graph, d(wi) � 2 for each i = 1,2,3,4. For i = 1,2,3,4, let ui be the
neighbor of wi distinct from v, if it exists.

CASE 1: u1 does not exist or u1 = w2. Consider G′ = G− v −w1 −w2. Since G′ is a proper
subgraph of G, it satisfies the conditions of the theorem. By the minimality of G, there exists an
equitable 3-coloring f of G′. We extend f to an equitable 3-coloring of G as follows: Choose a
color α ∈ {1,2,3} − f (w3) − f (w4) as f (v), then choose a color β ∈ {1,2,3} − f (u2) − α as
f (w2), and finally choose the color γ ∈ {1,2,3} − α − β as f (w1).

So, below all ui exist and are distinct from all wj .

CASE 2: u3 = u4. Consider G′′ = G−{v,w1,w2,w3,w4, u3}. By the minimality of G, there
exists an equitable 3-coloring f of G′′. We extend f to the whole G as follows. First assign to
u3 and v a color α distinct from the colors of neighbors of u3 in G′′ (there are at most two such
neighbors). Then for i = 1,2, let f (wi) ∈ {1,2,3}− f (ui)−α. Finally, for i = 3,4, let f (wi) ∈
{1,2,3} − f (wi−2) − α. Since each color appears exactly twice on {v,w1,w2,w3,w4, u3}, we
have an equitable 3-coloring of G.

Thus below all ui are distinct and the only remaining case is as follows.



234 H.A. Kierstead, A.V. Kostochka / Journal of Combinatorial Theory, Series B 98 (2008) 226–234
CASE 3: All ui exist and are distinct; furthermore the set {w1,w2,w3,w4} is independent.
Let G′′′ be the graph obtained from G − v by merging w1 with w3 into a new vertex w∗

1 and
merging w2 with w4 into a new vertex w∗

2 . Since the two new vertices have degree exactly 2
each, G′′′ does not contain any of K4, K3,3 and K5,1. Hence there exists an equitable 3-coloring
f of G′′′. We may assume that f (w∗

1) = 1. If f (w∗
2) �= 1, then we may assume that f (w∗

2) = 2
and let f (w1) = f (w3) = 1, f (w2) = f (w4) = 2, and f (v) = 3.

Suppose that f (w∗
1) = f (w∗

2) = 1. We may assume that f (u4) = 2. Then we let f (w1) =
f (w2) = f (w3) = 1, f (w4) = 3, and f (v) = 2.

Thus in all cases we find an equitable 3-coloring of G, a contradiction. �
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