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Abstract

We show that for every ε > 0, there exists n0 = n0(ε) such that for every n > n0, two n-vertex graphs
G1 and G2 with e(G1)e(G2) � (1 − ε)n2 pack, unless they belong to a well-defined family of exceptions.
This extends a well-known result by Sauer and Spencer.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

How many edges should an n-vertex graph have to contain every graph with at most n vertices
and at most m edges? Erdős and Stone [7] proved that for every positive integer d and positive
c and sufficiently large n, every graph G of order n with at least (n2/2)(1 − 1/d) + cn2 edges
contains a complete (d + 1)-partite graph with t vertices in each part, where t tends to infinity
with n. It follows that this G contains every d-colorable graph on t vertices, and, in particular, that
G contains every graph with less than

(
d+1

2

)
edges. Later Bollobás, Erdős, and Simonovits [2]

showed that t � a logn/(d log(1/c)) for some positive constant a and conjectured that this can
be improved as follows: t � b logn/ log(1/c). Chvátal and Szemerédi [6] verified this conjecture
by proving the following theorem.
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Theorem 1. (See Chvátal and Szemerédi [6].) For each positive integer d and each c > 0,
there is an n0 = n0(d, c) such that for each n � n0, every graph of order n with at
least (n2/2)(1 − 1/d) + cn2 edges contains a complete (d + 1)-partite graph with at least
(logn)/(500 log(1/c)) vertices in each part.

Bollobás and Eldridge [1] considered also Turán-type conditions guaranteeing that an n-vertex
graph contains every subgraph with αn edges for α < 1/2. They proved a bound in this direction
in the language of packing and posed a conjecture which was proved by Brandt [5]. Recall that
two graphs pack if one of the graphs is contained in the complement of the other. The next
theorem is a somewhat simplified version of Brandt’s result.

Theorem 2. (See Brandt [5].) For every 0 < α < 1/2, there exists n0 = n0(α) such that if n > n0,
e(G1) � αn, and e(G2) � 1

3
√

α
n3/2, then G1 and G2 pack.

Bollobás, Kostochka, and Nakprasit [3] extended Theorem 2 to the case α � 1
2 . A simplified

version of it is as follows.

Theorem 3. (See Bollobás, Kostochka and Nakprasit [3].) Let 1/2 � α < 1. Let G1 and G2
be graphs of order n > ( 40

1−α
)6 such that e(G1) � αn, e(G2) � 1

3n3/2, and Δ(G2) < n − 1 −√
n√

2α(1−α)
. Then G1 and G2 pack.

Sauer and Spencer [8] proved the following bound in terms of the product of the sizes of
graphs.

Theorem 4. (See Sauer and Spencer [8].) Two n-vertex graphs G1 and G2 pack, if

e(G1)e(G2) <

(
n

2

)
.

The following examples of graphs that do not pack show that the condition e(G1)e(G2) <
(
n
2

)
cannot be weakened without introducing other restrictions.

Example 1. G1 = Kn and G2 = K2 ∪ Kn−2.

Example 2. G1 = K1,n−1 and G2 has no isolated vertices.

Note that in Example 2, if n is even and G2 is a perfect matching, then e(G1)e(G2) = (
n
2

)
.

Also note that e(G1) + e(G2) can be around 3n/2. Bollobás and Eldridge [1] proved that this
may happen only if one of the graphs has an all-adjacent vertex or n is small. In a bit simplified
form, their result is as follows.

Theorem 5. (See Bollobás and Eldridge [1].) Let G1 and G2 be graphs of order n > 10 such
that Δ(G1),Δ(G2) � n − 2 and e(G1) + e(G2) � 2n − 3. Then G1 and G2 pack.

This bound is also sharp as the following examples show.

Example 3. G1 = G2 = K3 ∪ K1,n−4.
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Example 4. G1 = K1,n−2 ∪ K1 and G2 is 2-regular.

Example 5. G1 = K1,n−3 ∪ K2, n is divisible by 3, and G2 = K3 ∪ · · · ∪ K3.

Teo and Yap [9] showed that for n � 13, Examples 3–5 are the only pairs (G1,G2) of n-vertex
graphs with e(G1) + e(G2) = 2n − 2 that do not pack.

In this paper we strengthen Theorem 4 by describing (for large n) the pairs (G1,G2) of
n-vertex graphs with e(G1)e(G2) � (1 − ε)n2 that do not pack.

Theorem 6. For every ε > 0, there exists N , such that for all n > N , if two n-vertex graphs G1
and G2 with

e(G1)e(G2) � (1 − ε)n2 (1)

do not pack, then one of the following holds:

(i) one of the graphs is Kn and the other has exactly one edge; or
(ii) one of the graphs has maximum degree n − 1 and the other has minimum degree at least

one; or
(iii) one of the graphs is a triangle, and the other has independence number two.

Observe that there are exponentially many pairs (G1,G2) of n-vertex graphs satisfying (ii)
or (iii) with e(G1)e(G2) � 0.9n2. Although n-vertex graphs with independence number two and
fewer than (1 − ε)n2/3 edges may have a complicated structure, we can in polynomial time
check any graph whether it possesses this property. We believe that it will be sufficiently harder
to describe the pairs (G1,G2) of n-vertex graphs with e(G1)e(G2) � (1 + ε)n2 that do not pack
even for small positive ε. Note that Examples 3–5 fall into this category. Yet another example is
as follows.

Example 6. G1 = K4, n is divisible by 3, and G2 = Kn/3 ∪ Kn/3 ∪ Kn/3.

In the proof of Theorem 6 we will make use of the following fact.

Theorem 7. (See Bollobás, Kostochka and Nakprasit [4].) Let d � 2. Let G1 be a d-degenerate
graph of order n and maximum degree Δ1 and G2 a graph of order n and maximum degree at
most Δ2. If 40Δ1 lnΔ2 < n and 40dΔ2 < n, then G1 and G2 pack.

Recall that a graph is d-degenerate if every subgraph of it contains a vertex of degree at
most d .

2. Proof of Theorem 6

Fix an 0 < ε < 0.1. Let n be large. Suppose that Theorem 6 does not hold for ε and n, i.e.
that there are n-vertex graphs G1 and G2 satisfying (1) that do not pack and do not belong to
the families described by (i)–(iii). We may assume that e(G1) � e(G2). So, by (1), e(G1) <√

1 − εn < (1 − ε/2)n. Let α = e(G1)/n. By above,

0 < α < 1 − ε/2. (2)
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Let Δi , i = 1,2, denote the maximum degree of Gi . By Theorems 2 and 3, if e(G2) < 1
3n

3
2 and

Δ2 < n − 1 −
√

n
1−α

, then G1 and G2 pack. So we consider the following two cases: (1) Δ2 �
n −

√
n

1−α
and e(G2) < 1

3n
3
2 , and (2) e(G2) � 1

3n
3
2 .

Case 1. Δ2 � n−
√

n
1−α

and e(G2) < 1
3n

3
2 . Let w ∈ V (G2) be a vertex of maximum degree Δ2

in G2.
If e(G1) < (1 − ε/2)n/2, then since n is large and e(G2) < 1

3n
3
2 , G1 and G2 pack by Theo-

rem 2. So we assume that e(G1) � (1 − ε/2)n/2. Note that then by (1), e(G2) � (2 − ε)n.
If G1 has an isolated vertex, say w′, then let G′

1 = G1 − w′, and G′
2 = G2 − w. We have

e(G′
1) = e(G1) and

e
(
G′

2

) = e(G2) − Δ(G2) � (1 − ε)n +
√

n

1 − α
< (1 − ε/2)n (3)

for n > ( 2
ε(1−α)

)2. By (2) and (3), for such n and i ∈ {1,2}, we have

Δ
(
G′

i

)
� e

(
G′

i

)
< (1 − ε/2)n � (n − 1) − 2.

By Theorem 5, G′
1 and G′

2 pack. Thus G1 and G2 pack as well (by placing w′ at w).
Assume now that G1 has no isolated vertices. Since (ii) does not hold, G2 has no vertex of

degree n − 1. Since every connected graph H containing a cycle has |E(H)| � |V (H)| and
e(G1) < (1 − ε/2)n, G1 has at least εn

2 tree components. So there is a tree component T of G1

with at most n
εn/2 = 2

ε
vertices. We will first place on the vertices of G2 the vertices of T , and

then find a placement of the remaining vertices.
Let t = |V (T )| and let the vertices of T be ordered u1, u2, . . . , ut in such a way that u1

is a leaf and for every i = 2, . . . , t , vertex ui has exactly one neighbor in {u1, u2, . . . , ui−1}.
Place u1 at w. Since dG2(w) < n − 1, we may place u2 at a non-neighbor w2 of w in G2. Let
G′

1 = G1 − u1 and G′
2 = G2 − w. Suppose now that 2 � i � t − 1 and we have already placed

u2, . . . , ui on vertices w2, . . . ,wi of G′
2. By the ordering of V (T ), ui+1 has exactly one neighbor

uj ∈ {u1, u2, . . . , ui}. Observe that

e
(
G′

2

)
� e(G2) − Δ2 < (1 − ε/2)n. (4)

Therefore, wi has at least (1 − ε/2)n − 2 non-neighbors in G′
2. At most i � t − 1 � 2

ε
− 1 of

these vertices are already occupied by u2, . . . , ui . Thus for large n, there is a non-neighbor wi+1
of wi not yet occupied. Place there ui+1. This way, we place all vertices in V (T ) on vertices
of G2 without conflicts.

Let G′′
1 = G1 − V (T ) and G′′

2 = G2 − {w1,w2, . . . ,wt }. If we find a packing of G′′
1 with G′′

2,
then we obtain a packing of G1 with G2, a contradiction. By (4), for large n,

e
(
G′′

1

) + e
(
G′′

2

)
�

(
(1 − ε/2)n − (t − 1)

) + (1 − ε/2)n � 2(n − t) − 3.

By (2) and (4), for i = 1,2, Δ(G′′
i ) � e(G′′

i ) < (1 − ε/2)n � n(G′′
i ) − 2, and hence neither G′′

1
nor G′′

2 has an all-adjacent vertex. Thus by Theorem 5, G′′
1 and G′′

2 pack.

Case 2. e(G2) � 1
3n

3
2 . Then

e(G1) � (1 − ε)n2/

(
1

3
n

3
2

)
= 3(1 − ε)

√
n. (5)

Since e(G1) < 3
√

n, G1 has at least n − 6
√

n > n/2 isolated vertices. Let v1, v2, . . . , vn

be an ordering of V (G2) such that vi has maximum degree in G2[vi, . . . , vn]. Let G′ =
2
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G2[v�n/2�+1, . . . , vn] and Δ′
2 be the maximum degree of G′

2. Then 0 � e(G′
2) − Δ′

2 � e(G2) −
Δ′

2(n + 1)/2, and thus Δ′
2 � 2e(G2)/n. Let G′

1 be the graph obtained after removing �n/2�
isolated vertices from G1. Let n′ = �n/2	.

If G1 is a forest, then let d = 2. Otherwise, let d be the maximum positive integer such that
G1 is d-degenerate. Since e(G1) � d(d + 1)/2,

d �
⌊√

2e(G1)
⌋
. (6)

By (5), 40Δ1 lnΔ′
2 < 40e(G1) lnn < n′. Since G′

1 and G′
2 do not pack, Theorem 7 yields

40dΔ′
2 � n′. So

n/2 � 40dΔ′
2 � 40

√
2e(G1)

2e(G2)

n
� 80

√
2e(G1)

(1 − ε)n2

ne(G1)
= 80

√
2(1 − ε)n√
e(G1)

.

That is, e(G1) � (160
√

2(1 − ε))2 < 105. Let c0 = e(G1). If c0 = 1 and G1 and G2 do not pack,
then G2 = Kn and hence (i) holds.

If c0 = 2 and G1 and G2 do not pack, then the complement G2 of G2 is contained either in
a matching (if G1 is a 2-path), or in K1,n−1 or in K3 (if G1 has two isolated edges). In all cases,
G2 has at least

(
n
2

) − n edges. Therefore, e(G1)e(G2) � n2 − 3n, a contradiction to (1).
The case G1 = K3 and G1 and G2 do not pack is the other way to express (iii).
So, we have 3 � c0 � 105 and G1 
= K3. Hence the size of the complement G′

2 of G′
2 is at

least (
n

2

)
− (1 − ε)

n2

c0
= n2

2

(
1 − 2

c0

)
+ ε

c0
n2 − n

2
� n2

2

(
1 − 2

c0

)
+ ε

2c0
n2.

By Theorem 1, G′
2 contains complete (�0.5c0� + 1)-partite graph with t � logn

500 log(c0/ε)
> 105

vertices in each part. Thus, if

χ
(
G′

1

)
� 1 + �0.5c0�, (7)

then G′
2 contains G′

1, i.e., G′
1 and G′

2 pack and hence G1 and G2 pack. This is certainly the
case if c0 = 3 and G1 
= K3. If c0 ∈ {4,5}, then χ(G′

1) � 3 and 1 + �0.5c0� = 3. Similarly, if
c0 ∈ {6,7}, then χ(G′

1) � 4 and 1 + �0.5c0� = 4.
Let c0 � 8 and k = χ(G′

1). Since G1 is d-degenerate, (6) yields k � 1 + d � 1 +�√2c0�. But
for each real c0 � 8, we have

√
2c0 � 0.5c0 and so (7) holds. This proves the theorem.
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