Note

Packing of graphs with small product of sizes

Alexandr V. Kostochka ${ }^{\text {a,b,1 }}$, Gexin $\mathrm{Yu}^{\mathrm{c}, 2}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\text {c }}$ Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

Received 6 August 2007
Available online 28 March 2008

Abstract

We show that for every $\epsilon>0$, there exists $n_{0}=n_{0}(\epsilon)$ such that for every $n>n_{0}$, two n-vertex graphs G_{1} and G_{2} with $e\left(G_{1}\right) e\left(G_{2}\right) \leqslant(1-\epsilon) n^{2}$ pack, unless they belong to a well-defined family of exceptions. This extends a well-known result by Sauer and Spencer. © 2008 Elsevier Inc. All rights reserved.

Keywords: Graph packing

1. Introduction

How many edges should an n-vertex graph have to contain every graph with at most n vertices and at most m edges? Erdős and Stone [7] proved that for every positive integer d and positive c and sufficiently large n, every graph G of order n with at least $\left(n^{2} / 2\right)(1-1 / d)+c n^{2}$ edges contains a complete $(d+1)$-partite graph with t vertices in each part, where t tends to infinity with n. It follows that this G contains every d-colorable graph on t vertices, and, in particular, that G contains every graph with less than $\binom{d+1}{2}$ edges. Later Bollobás, Erdős, and Simonovits [2] showed that $t \geqslant a \log n /(d \log (1 / c))$ for some positive constant a and conjectured that this can be improved as follows: $t \geqslant b \log n / \log (1 / c)$. Chvátal and Szemerédi [6] verified this conjecture by proving the following theorem.

[^0]Theorem 1. (See Chvátal and Szemerédi [6].) For each positive integer d and each $c>0$, there is an $n_{0}=n_{0}(d, c)$ such that for each $n \geqslant n_{0}$, every graph of order n with at least $\left(n^{2} / 2\right)(1-1 / d)+c n^{2}$ edges contains a complete $(d+1)$-partite graph with at least $(\log n) /(500 \log (1 / c))$ vertices in each part.

Bollobás and Eldridge [1] considered also Turán-type conditions guaranteeing that an n-vertex graph contains every subgraph with αn edges for $\alpha<1 / 2$. They proved a bound in this direction in the language of packing and posed a conjecture which was proved by Brandt [5]. Recall that two graphs pack if one of the graphs is contained in the complement of the other. The next theorem is a somewhat simplified version of Brandt's result.

Theorem 2. (See Brandt [5].) For every $0<\alpha<1 / 2$, there exists $n_{0}=n_{0}(\alpha)$ such that if $n>n_{0}$, $e\left(G_{1}\right) \leqslant \alpha n$, and $e\left(G_{2}\right) \leqslant \frac{1}{3 \sqrt{\alpha}} n^{3 / 2}$, then G_{1} and G_{2} pack.

Bollobás, Kostochka, and Nakprasit [3] extended Theorem 2 to the case $\alpha \geqslant \frac{1}{2}$. A simplified version of it is as follows.

Theorem 3. (See Bollobás, Kostochka and Nakprasit [3].) Let $1 / 2 \leqslant \alpha<1$. Let G_{1} and G_{2} be graphs of order $n>\left(\frac{40}{1-\alpha}\right)^{6}$ such that $e\left(G_{1}\right) \leqslant \alpha n$, $e\left(G_{2}\right) \leqslant \frac{1}{3} n^{3 / 2}$, and $\Delta\left(G_{2}\right)<n-1-$ $\frac{\sqrt{n}}{\sqrt{2 \alpha}(1-\alpha)}$. Then G_{1} and G_{2} pack.

Sauer and Spencer [8] proved the following bound in terms of the product of the sizes of graphs.

Theorem 4. (See Sauer and Spencer [8].) Two n-vertex graphs G_{1} and G_{2} pack, if

$$
e\left(G_{1}\right) e\left(G_{2}\right)<\binom{n}{2} .
$$

The following examples of graphs that do not pack show that the condition $e\left(G_{1}\right) e\left(G_{2}\right)<\binom{n}{2}$ cannot be weakened without introducing other restrictions.

Example 1. $G_{1}=K_{n}$ and $G_{2}=K_{2} \cup \bar{K}_{n-2}$.
Example 2. $G_{1}=K_{1, n-1}$ and G_{2} has no isolated vertices.
Note that in Example 2, if n is even and G_{2} is a perfect matching, then $e\left(G_{1}\right) e\left(G_{2}\right)=\binom{n}{2}$. Also note that $e\left(G_{1}\right)+e\left(G_{2}\right)$ can be around $3 n / 2$. Bollobás and Eldridge [1] proved that this may happen only if one of the graphs has an all-adjacent vertex or n is small. In a bit simplified form, their result is as follows.

Theorem 5. (See Bollobás and Eldridge [1].) Let G_{1} and G_{2} be graphs of order $n>10$ such that $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leqslant n-2$ and $e\left(G_{1}\right)+e\left(G_{2}\right) \leqslant 2 n-3$. Then G_{1} and G_{2} pack.

This bound is also sharp as the following examples show.
Example 3. $G_{1}=G_{2}=K_{3} \cup K_{1, n-4}$.

Example 4. $G_{1}=K_{1, n-2} \cup K_{1}$ and G_{2} is 2-regular.

Example 5. $G_{1}=K_{1, n-3} \cup K_{2}, n$ is divisible by 3, and $G_{2}=K_{3} \cup \cdots \cup K_{3}$.
Teo and Yap [9] showed that for $n \geqslant 13$, Examples 3-5 are the only pairs (G_{1}, G_{2}) of n-vertex graphs with $e\left(G_{1}\right)+e\left(G_{2}\right)=2 n-2$ that do not pack.

In this paper we strengthen Theorem 4 by describing (for large n) the pairs (G_{1}, G_{2}) of n-vertex graphs with $e\left(G_{1}\right) e\left(G_{2}\right) \leqslant(1-\epsilon) n^{2}$ that do not pack.

Theorem 6. For every $\epsilon>0$, there exists N, such that for all $n>N$, if two n-vertex graphs G_{1} and G_{2} with

$$
\begin{equation*}
e\left(G_{1}\right) e\left(G_{2}\right) \leqslant(1-\epsilon) n^{2} \tag{1}
\end{equation*}
$$

do not pack, then one of the following holds:
(i) one of the graphs is K_{n} and the other has exactly one edge; or
(ii) one of the graphs has maximum degree $n-1$ and the other has minimum degree at least one; or
(iii) one of the graphs is a triangle, and the other has independence number two.

Observe that there are exponentially many pairs $\left(G_{1}, G_{2}\right)$ of n-vertex graphs satisfying (ii) or (iii) with $e\left(G_{1}\right) e\left(G_{2}\right) \leqslant 0.9 n^{2}$. Although n-vertex graphs with independence number two and fewer than $(1-\epsilon) n^{2} / 3$ edges may have a complicated structure, we can in polynomial time check any graph whether it possesses this property. We believe that it will be sufficiently harder to describe the pairs (G_{1}, G_{2}) of n-vertex graphs with $e\left(G_{1}\right) e\left(G_{2}\right) \leqslant(1+\epsilon) n^{2}$ that do not pack even for small positive ϵ. Note that Examples 3-5 fall into this category. Yet another example is as follows.

Example 6. $G_{1}=K_{4}, n$ is divisible by 3 , and $G_{2}=K_{n / 3} \cup K_{n / 3} \cup K_{n / 3}$.
In the proof of Theorem 6 we will make use of the following fact.
Theorem 7. (See Bollobás, Kostochka and Nakprasit [4].) Let $d \geqslant 2$. Let G_{1} be a d-degenerate graph of order n and maximum degree Δ_{1} and G_{2} a graph of order n and maximum degree at most Δ_{2}. If $40 \Delta_{1} \ln \Delta_{2}<n$ and $40 d \Delta_{2}<n$, then G_{1} and G_{2} pack.

Recall that a graph is d-degenerate if every subgraph of it contains a vertex of degree at most d.

2. Proof of Theorem 6

Fix an $0<\epsilon<0.1$. Let n be large. Suppose that Theorem 6 does not hold for ϵ and n, i.e. that there are n-vertex graphs G_{1} and G_{2} satisfying (1) that do not pack and do not belong to the families described by (i)-(iii). We may assume that $e\left(G_{1}\right) \leqslant e\left(G_{2}\right)$. So, by (1), $e\left(G_{1}\right)<$ $\sqrt{1-\epsilon} n<(1-\epsilon / 2) n$. Let $\alpha=e\left(G_{1}\right) / n$. By above,

$$
\begin{equation*}
0<\alpha<1-\epsilon / 2 \tag{2}
\end{equation*}
$$

Let $\Delta_{i}, i=1,2$, denote the maximum degree of G_{i}. By Theorems 2 and 3, if $e\left(G_{2}\right)<\frac{1}{3} n^{\frac{3}{2}}$ and $\Delta_{2}<n-1-\frac{\sqrt{n}}{1-\alpha}$, then G_{1} and G_{2} pack. So we consider the following two cases: (1) $\Delta_{2} \geqslant$ $n-\frac{\sqrt{n}}{1-\alpha}$ and $e\left(G_{2}\right)<\frac{1}{3} n^{\frac{3}{2}}$, and (2) $e\left(G_{2}\right) \geqslant \frac{1}{3} n^{\frac{3}{2}}$.

Case 1. $\Delta_{2} \geqslant n-\frac{\sqrt{n}}{1-\alpha}$ and $e\left(G_{2}\right)<\frac{1}{3} n^{\frac{3}{2}}$. Let $w \in V\left(G_{2}\right)$ be a vertex of maximum degree Δ_{2} in G_{2}.

If $e\left(G_{1}\right)<(1-\epsilon / 2) n / 2$, then since n is large and $e\left(G_{2}\right)<\frac{1}{3} n^{\frac{3}{2}}, G_{1}$ and G_{2} pack by Theorem 2. So we assume that $e\left(G_{1}\right) \geqslant(1-\epsilon / 2) n / 2$. Note that then by $(1), e\left(G_{2}\right) \leqslant(2-\epsilon) n$.

If G_{1} has an isolated vertex, say w^{\prime}, then let $G_{1}^{\prime}=G_{1}-w^{\prime}$, and $G_{2}^{\prime}=G_{2}-w$. We have $e\left(G_{1}^{\prime}\right)=e\left(G_{1}\right)$ and

$$
\begin{equation*}
e\left(G_{2}^{\prime}\right)=e\left(G_{2}\right)-\Delta\left(G_{2}\right) \leqslant(1-\epsilon) n+\frac{\sqrt{n}}{1-\alpha}<(1-\epsilon / 2) n \tag{3}
\end{equation*}
$$

for $n>\left(\frac{2}{\epsilon(1-\alpha)}\right)^{2}$. By (2) and (3), for such n and $i \in\{1,2\}$, we have

$$
\Delta\left(G_{i}^{\prime}\right) \leqslant e\left(G_{i}^{\prime}\right)<(1-\epsilon / 2) n \leqslant(n-1)-2 .
$$

By Theorem 5, G_{1}^{\prime} and G_{2}^{\prime} pack. Thus G_{1} and G_{2} pack as well (by placing w^{\prime} at w).
Assume now that G_{1} has no isolated vertices. Since (ii) does not hold, G_{2} has no vertex of degree $n-1$. Since every connected graph H containing a cycle has $|E(H)| \geqslant|V(H)|$ and $e\left(G_{1}\right)<(1-\epsilon / 2) n, G_{1}$ has at least $\frac{\epsilon n}{2}$ tree components. So there is a tree component T of G_{1} with at most $\frac{n}{\epsilon n / 2}=\frac{2}{\epsilon}$ vertices. We will first place on the vertices of G_{2} the vertices of T, and then find a placement of the remaining vertices.

Let $t=|V(T)|$ and let the vertices of T be ordered $u_{1}, u_{2}, \ldots, u_{t}$ in such a way that u_{1} is a leaf and for every $i=2, \ldots, t$, vertex u_{i} has exactly one neighbor in $\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\}$. Place u_{1} at w. Since $d_{G_{2}}(w)<n-1$, we may place u_{2} at a non-neighbor w_{2} of w in G_{2}. Let $G_{1}^{\prime}=G_{1}-u_{1}$ and $G_{2}^{\prime}=G_{2}-w$. Suppose now that $2 \leqslant i \leqslant t-1$ and we have already placed u_{2}, \ldots, u_{i} on vertices w_{2}, \ldots, w_{i} of G_{2}^{\prime}. By the ordering of $V(T), u_{i+1}$ has exactly one neighbor $u_{j} \in\left\{u_{1}, u_{2}, \ldots, u_{i}\right\}$. Observe that

$$
\begin{equation*}
e\left(G_{2}^{\prime}\right) \leqslant e\left(G_{2}\right)-\Delta_{2}<(1-\epsilon / 2) n . \tag{4}
\end{equation*}
$$

Therefore, w_{i} has at least $(1-\epsilon / 2) n-2$ non-neighbors in G_{2}^{\prime}. At most $i \leqslant t-1 \leqslant \frac{2}{\epsilon}-1$ of these vertices are already occupied by u_{2}, \ldots, u_{i}. Thus for large n, there is a non-neighbor w_{i+1} of w_{i} not yet occupied. Place there u_{i+1}. This way, we place all vertices in $V(T)$ on vertices of G_{2} without conflicts.

Let $G_{1}^{\prime \prime}=G_{1}-V(T)$ and $G_{2}^{\prime \prime}=G_{2}-\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. If we find a packing of $G_{1}^{\prime \prime}$ with $G_{2}^{\prime \prime}$, then we obtain a packing of G_{1} with G_{2}, a contradiction. By (4), for large n,

$$
e\left(G_{1}^{\prime \prime}\right)+e\left(G_{2}^{\prime \prime}\right) \leqslant((1-\epsilon / 2) n-(t-1))+(1-\epsilon / 2) n \leqslant 2(n-t)-3 .
$$

By (2) and (4), for $i=1,2, \Delta\left(G_{i}^{\prime \prime}\right) \leqslant e\left(G_{i}^{\prime \prime}\right)<(1-\epsilon / 2) n \leqslant n\left(G_{i}^{\prime \prime}\right)-2$, and hence neither $G_{1}^{\prime \prime}$ nor $G_{2}^{\prime \prime}$ has an all-adjacent vertex. Thus by Theorem 5, $G_{1}^{\prime \prime}$ and $G_{2}^{\prime \prime}$ pack.

Case 2. $e\left(G_{2}\right) \geqslant \frac{1}{3} n^{\frac{3}{2}}$. Then

$$
\begin{equation*}
e\left(G_{1}\right) \leqslant(1-\epsilon) n^{2} /\left(\frac{1}{3} n^{\frac{3}{2}}\right)=3(1-\epsilon) \sqrt{n} . \tag{5}
\end{equation*}
$$

Since $e\left(G_{1}\right)<3 \sqrt{n}, G_{1}$ has at least $n-6 \sqrt{n}>n / 2$ isolated vertices. Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordering of $V\left(G_{2}\right)$ such that v_{i} has maximum degree in $G_{2}\left[v_{i}, \ldots, v_{n}\right]$. Let $G_{2}^{\prime}=$
$G_{2}\left[v_{\lfloor n / 2\rfloor+1}, \ldots, v_{n}\right]$ and Δ_{2}^{\prime} be the maximum degree of G_{2}^{\prime}. Then $0 \leqslant e\left(G_{2}^{\prime}\right)-\Delta_{2}^{\prime} \leqslant e\left(G_{2}\right)-$ $\Delta_{2}^{\prime}(n+1) / 2$, and thus $\Delta_{2}^{\prime} \leqslant 2 e\left(G_{2}\right) / n$. Let G_{1}^{\prime} be the graph obtained after removing $\lfloor n / 2\rfloor$ isolated vertices from G_{1}. Let $n^{\prime}=\lceil n / 2\rceil$.

If G_{1} is a forest, then let $d=2$. Otherwise, let d be the maximum positive integer such that G_{1} is d-degenerate. Since $e\left(G_{1}\right) \geqslant d(d+1) / 2$,

$$
\begin{equation*}
d \leqslant\left\lfloor\sqrt{2 e\left(G_{1}\right)}\right\rfloor \tag{6}
\end{equation*}
$$

By (5), $40 \Delta_{1} \ln \Delta_{2}^{\prime}<40 e\left(G_{1}\right) \ln n<n^{\prime}$. Since G_{1}^{\prime} and G_{2}^{\prime} do not pack, Theorem 7 yields $40 d \Delta_{2}^{\prime} \geqslant n^{\prime}$. So

$$
n / 2 \leqslant 40 d \Delta_{2}^{\prime} \leqslant 40 \sqrt{2 e\left(G_{1}\right)} \frac{2 e\left(G_{2}\right)}{n} \leqslant 80 \sqrt{2 e\left(G_{1}\right)} \frac{(1-\epsilon) n^{2}}{n e\left(G_{1}\right)}=\frac{80 \sqrt{2}(1-\epsilon) n}{\sqrt{e\left(G_{1}\right)}} .
$$

That is, $e\left(G_{1}\right) \leqslant(160 \sqrt{2}(1-\epsilon))^{2}<10^{5}$. Let $c_{0}=e\left(G_{1}\right)$. If $c_{0}=1$ and G_{1} and G_{2} do not pack, then $G_{2}=K_{n}$ and hence (i) holds.

If $c_{0}=2$ and G_{1} and G_{2} do not pack, then the complement \bar{G}_{2} of G_{2} is contained either in a matching (if G_{1} is a 2-path), or in $K_{1, n-1}$ or in K_{3} (if G_{1} has two isolated edges). In all cases, G_{2} has at least $\binom{n}{2}-n$ edges. Therefore, $e\left(G_{1}\right) e\left(G_{2}\right) \geqslant n^{2}-3 n$, a contradiction to (1).

The case $G_{1}=K_{3}$ and G_{1} and G_{2} do not pack is the other way to express (iii).
So, we have $3 \leqslant c_{0} \leqslant 10^{5}$ and $G_{1} \neq K_{3}$. Hence the size of the complement $\overline{G_{2}^{\prime}}$ of G_{2}^{\prime} is at least

$$
\binom{n}{2}-(1-\epsilon) \frac{n^{2}}{c_{0}}=\frac{n^{2}}{2}\left(1-\frac{2}{c_{0}}\right)+\frac{\epsilon}{c_{0}} n^{2}-\frac{n}{2} \geqslant \frac{n^{2}}{2}\left(1-\frac{2}{c_{0}}\right)+\frac{\epsilon}{2 c_{0}} n^{2} .
$$

By Theorem 1, $\overline{G_{2}^{\prime}}$ contains complete $\left(\left\lfloor 0.5 c_{0}\right\rfloor+1\right)$-partite graph with $t \geqslant \frac{\log n}{500 \log \left(c_{0} / \epsilon\right)}>10^{5}$ vertices in each part. Thus, if

$$
\begin{equation*}
\chi\left(G_{1}^{\prime}\right) \leqslant 1+\left\lfloor 0.5 c_{0}\right\rfloor, \tag{7}
\end{equation*}
$$

then $\overline{G_{2}^{\prime}}$ contains G_{1}^{\prime}, i.e., G_{1}^{\prime} and G_{2}^{\prime} pack and hence G_{1} and G_{2} pack. This is certainly the case if $c_{0}=3$ and $G_{1} \neq K_{3}$. If $c_{0} \in\{4,5\}$, then $\chi\left(G_{1}^{\prime}\right) \leqslant 3$ and $1+\left\lfloor 0.5 c_{0}\right\rfloor=3$. Similarly, if $c_{0} \in\{6,7\}$, then $\chi\left(G_{1}^{\prime}\right) \leqslant 4$ and $1+\left\lfloor 0.5 c_{0}\right\rfloor=4$.

Let $c_{0} \geqslant 8$ and $k=\chi\left(G_{1}^{\prime}\right)$. Since G_{1} is d-degenerate, (6) yields $k \leqslant 1+d \leqslant 1+\left\lfloor\sqrt{2 c_{0}}\right\rfloor$. But for each real $c_{0} \geqslant 8$, we have $\sqrt{2 c_{0}} \leqslant 0.5 c_{0}$ and so (7) holds. This proves the theorem.

References

[1] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978) 105-124.
[2] B. Bollobás, P. Erdős, M. Simonovits, On the structure of edge graphs. II, J. London Math. Soc. (2) 12 (1975/1976) 219-224.
[3] B. Bollobás, A.V. Kostochka, K. Nakprasit, On two conjectures on packing of graphs, Combin. Probab. Comput. 14 (2005) 723-736.
[4] B. Bollobás, A.V. Kostochka, K. Nakprasit, Packing d-degenerate graphs, J. Combin. Theory Ser. B 98 (2008) 85-94.
[5] S. Brandt, An extremal result for subgraphs with few edges, J. Combin. Theory Ser. B 64 (1995) 288-299.
[6] V. Chvátal, E. Szemerédi, On the Erdős-Stone theorem, J. London Math. Soc. (2) 23 (1981) 207-214.
[7] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.
[8] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302.
[9] S.K. Teo, H.P. Yap, Packing two graphs of order n having total size at most $2 n-2$, Graphs Combin. 6 (1990) 197-205.

[^0]: E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), gexin.yu@ vanderbilt.edu (G. Yu).
 ${ }^{1}$ Research supported in part by NSF grant DMS-0650784 and RFBR grant 05-01-00816.
 2 Research supported in part by NSF grant DMS-0652306.

