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Abstract: A k -decomposition (G1, . . . ,Gk ) of a graph G is a partition of its
edge set to form k spanning subgraphs G1, . . . ,Gk . The classical theorem of
Nordhaus and Gaddum bounds �(G1)þ �(G2) and �(G1)�(G2) over all 2-
decompositions of Kn. For a graph parameter p, let p(k;G) denote the
maximum of

Pk
i¼1 p(Gi ) over all k -decompositions of the graph G. The

clique number !, chromatic number �, list chromatic number �‘, and
Szekeres–Wilf number � satisfy !(2;Kn) ¼ �(2;Kn) ¼ �‘(2;Kn) ¼ �(2;Kn) ¼
n þ 1. We obtain lower and upper bounds for !(k ;Kn),�(k;Kn),�‘(k ;Kn), and
�(k ;Kn). The last three behave differently for large k . We also obtain lower
and upper bounds for the maximum of �(k;G) over all graphs embedded on
a given surface. � 2005 Wiley Periodicals, Inc. J Graph Theory 50: 273–292, 2005

Keywords: graph decomposition; Nordhaus–Gaddum Theorem; chromatic number; coloring

number; list chromatic number; surface embedding

1. INTRODUCTION

A k-decomposition of a (hyper)graph G is a decomposition of G into k spanning

sub(hyper)graphs G1; . . . ;Gk. That is, each Gi has the same vertices as G, and

every edge of G belongs to exactly one of G1; . . . ;Gk. Such decompositions can

be viewed as unrestricted k-edge-colorings of G (color classes may be empty).

For a parameter p, a positive integer k, and a (hyper)graph G, let

pðk;GÞ ¼ max
Pk

i¼1 pðGiÞ: ðG1; . . . ;GkÞ is a k-decomposition of G
n o

:

A p-optimal k-decomposition of G is a k-decomposition ðG1; . . . ;GkÞ such that

pðk;GÞ ¼
Pk

i¼1 pðGiÞ: We will also comment (in Section 2) on the minimum ofPk
i¼1 pðGkÞ and on the extreme values of the product

Qk
i¼1 pðGkÞ.

The parameters we study are the clique number !, the chromatic number �,

the list-chromatic number �‘, and the Szekeres–Wilf number �, where � is defined

by �ðGÞ ¼ 1 þ maxH�G�ðHÞ. Every graph G satisfies !ðGÞ � �ðGÞ � �‘ðGÞ �
�ðGÞ. Therefore, for every k and G,

!ðk;GÞ � �ðk;GÞ � �‘ðk;GÞ � �ðk;GÞ: ð1Þ

Clearly, ðG1;G2Þ is a 2-decomposition of the complete graph Kn if and only if

G1 is the complement of G2 and has n vertices. Thus the Nordhaus–Gaddum

Theorem can be stated as follows.

Theorem 1 (Nordhaus–Gaddum [16]). Let n be a positive integer. If ðG1;G2Þ is
a 2-decomposition of Kn, then the following statements hold:
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(a) d2
ffiffiffi
n

p
e � �ðG1Þ þ �ðG2Þ � nþ 1;

(b) n � �ðG1Þ � �ðG2Þ � b
�
nþ1

2

�2c:
The proof of Theorem 1 implies that !ð2;KnÞ ¼ �ð2;KnÞ ¼ �‘ð2;KnÞ ¼

�ð2;KnÞ ¼ nþ 1, achieving equalities in (1) (see also Section 5). Finck [9] des-

cribed the �-optimal 2-decompositions of Kn.

Plesnı́k [17] studied �ðk;KnÞ for k > 2 and proved that �ðk;KnÞ � nþ 2
kþ1

2ð Þ
for every n. He also proved (see Lemma 3 in [17]) that

nþ k

2

� �
� !ðk;KnÞ � �ðk;KnÞ if n � k

2

� �
ð2Þ

and conjectured (see also Bosák [3]) that �ðk;KnÞ ¼ nþ k
2

� �
. Our first result is

the following.

Theorem 2. If k and n are positive integers, then !ðk;KnÞ � nþ k
2

� �
. If n � k

2

� �
,

then !ðk;KnÞ ¼ nþ k
2

� �
.

Watkinson [24] improved Plesnı́k’s upper bound to �ðk;KnÞ � nþ k!
2
. It

follows that !ð3;KnÞ ¼ �ð3;KnÞ ¼ nþ 3 for every n � 3. Our second result

improves Watkinson’s bound for large k.

Theorem 3. If k and n are positive integers, then �ðk;KnÞ � nþ 7k.

Thus for chromatic number, the ‘‘lower order term’’ is independent of n. This

does not hold for list chromatic number.

Theorem 4. There exists a positive constant c such that, if k ¼ ‘þ1
2

� �
and

n ¼ ‘m with ‘ and m being integers greater than 1, then

�‘ðk;KnÞ � nþ ck ln
nffiffiffi
k

p
� �

:

On the other hand, for all positive integers k and n,

�‘ðk;KnÞ � nþ 3k!ð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ:

Thus, the leading behavior of �‘ðk;KnÞ for fixed k as n ! 1 is still n, but the

additive term grows with n. The leading behavior for �ðk;KnÞ is larger.

Theorem 5. If k ¼ p2 þ pþ 1 for some prime power p, and n � 0 mod k, then

�ðk;KnÞ � ð
ffiffiffi
k

p
� 1Þnþ k:

On the other hand, for all positive integers k and n,

�ðk;KnÞ �
ffiffiffi
k

p
nþ k:
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Furthermore, we determine �ðk;KnÞ exactly for k � 4.

We consider also decompositions of the complete r-uniform hypergraph Kr
n.

Since �ðKr
nÞ ¼ dn=ðr � 1Þe, we have �ðk;Kr

nÞ � dn=ðr � 1Þe þ k � 1. Although

it is easy to improve the bound for large n, we will prove that up to a summand

ck;r independent of n, this is the correct value of �ðk;Kr
nÞ.

Theorem 6. If k and r are positive integers with r � 2, then there exists an

integer ck;r such that, for every positive integer n,

�ðk;Kr
nÞ �

n

r � 1
þ ck;r:

Finally, we consider decompositions of graphs embedded on a given surface �.

For a graph parameter p and positive integer k, let pðk; �Þ denote the maximum of

pðk;GÞ over all graphs G embeddable on �. Let g be the Euler genus of �. We

show that for fixed k and large g, the values of !ðk; �Þ, �ðk; �Þ, �‘ðk; �Þ, and

�ðk; �Þ are asymptotically equal, unlike !ðk;KnÞ and �ðk;KnÞ.
In the next section, we comment on the analogous problems for maximizingQk
i¼1 pðGiÞ and for minimizing the sum or product. Section 3 then introduces

terminology we use in discussing the problems for maximum sum. In subsequent

sections, we treat consecutively the clique number, the chromatic number, the list

chromatic number, and the Szekeres–Wilf number of graphs. The last two sec-

tions are devoted to the chromatic number of r-uniform hypergraphs and to de-

compositions of graphs embedded on surfaces.

2. MAXIMUM PRODUCT AND MINIMUM SUM

To study the problem of maximum product for a parameter p, define

p�ðk;GÞ ¼ maxf
Qk

i¼1pðGiÞ: ðG1; . . . ;GkÞ is a k-decomposition of Gg:

Using the Cauchy–Schwarz Inequality, our bounds on pðk;KnÞ yield correspond-

ing bounds on p�ðk;KnÞ. For fixed k,

!�ðk;KnÞ � ��ðk;KnÞ � ��
‘ ðk;KnÞ � ð1 þ oð1ÞÞðn=kÞk;

��ðk;KnÞ � ð1 þ oð1ÞÞðn=
ffiffiffi
k

p
Þk; and

��ðk;Kr
nÞ � ð1 þ oð1ÞÞðn=kðr � 1ÞÞk:

Decomposing Kn and Kr
n into almost disjoint complete subgraphs of about the

same size (pairwise sharing at most r � 1 vertices) shows that except for

the bound on ��, these upper bounds are asymptotically tight for fixed k. The

construction in Theorem 5 yields that ��ðk;KnÞ � e�
ffiffi
k

p
ðn=

ffiffiffi
k

p
Þk: Thus, for

��ðk;KnÞ, we at least know the order of magnitude.
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We can also study the minimum sum or product of the values of p over a

decomposition. Let

pðk;GÞ ¼ min
Pk

i¼1 pðGiÞ: ðG1; . . . ;GkÞ is a k-decomposition of G
n o

;

and

p�ðk;GÞ ¼ min
Qk

i¼1 pðGiÞ: ðG1; . . . ;GkÞ is a k-decomposition of G
n o

:

Comparing the arithmetic mean and the geometric mean, we infer that

k k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ðk;GÞ

p
� pðk;GÞ

for every integer k � 2 and every hypergraph G.

Now consider �ðk;GÞ and ��ðk;GÞ, the lower bounds for the sum and the

product of the chromatic numbers in a k-decomposition. We apply the natural

extension of the argument of Nordhaus and Gaddum [16]. If ðG1; . . . ;GkÞ is a k-

decomposition of a graph G, then �ðGÞ �
Qk

i¼1 �ðGiÞ. For k � 2, we thus have

��ðk;KnÞ � n and �ðk;KnÞ � k k
ffiffiffi
n

p
:

On the other hand, if n ¼ pk, then Kn has a k-decomposition ðG1; . . . ;GkÞ
such that each Gi is a p-partite graph with pk�1 vertices in each class. Hence the

lower bounds for both �� and � are tight infinitely often. For the chromatic

number, the simplicity of this solution motivates our focus on the maximization

problem.

For the clique number, it is well known that the minimization problem is

closely related to the Ramsey numbers. We use Rr
kðq1; . . . ; qkÞ to denote the

minimum n such that every k-coloring of the r-sets of an n-set yields, for some i,

a qi-set whose r-sets all receive color i. Since !ðk;KnÞ � N if and only if some

decomposition has clique numbers summing to at most N, we have !ðk;KnÞ � N

if and only if R2
kðq1 þ 1; . . . ; qk þ 1Þ > n for some q1; . . . ; qk with

Pk
i¼1 qi ¼ N.

It is generally believed that R2
kðq1; . . . ; qkÞ is maximized for fixed

Pk
i¼1 qi when

q1; . . . ; qk differ by at most 1. If this holds and R2
kðq; . . . ; qÞ ¼ n, then kðq� 1Þ <

!ðk;KnÞ � !ðk;Kn�1Þ þ 1 � kðq� 1Þ þ 1.

Although the Ramsey numbers are not known, there are bounds. For example,

it is known that 2cq
2 � R2

3ðq; q; qÞ � 22c
0q

for constants c and c0 [11]. From the

lower bound, we have !ðk;KnÞ < 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c

log2n
q

. Assuming again that R2
3ðq; q; qÞ

maximizes R2
3ðq1; q2; q3Þ such that q1 þ q2 þ q3 ¼ 3q, the upper bound yields

!ðk;KnÞ > 31
c0 log2 log2 n� 3. Improving these bounds would require improving

the bounds on the Ramsey numbers, so again we focus henceforth on the

maximization problem !ðk;KnÞ.
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3. PRELIMINARIES

Concepts and notation not defined in this paper are as in standard textbooks.

Though the main objects of our study are graphs, we also consider the central

concepts for hypergraphs.

A hypergraph G is a pair consisting of a finite set VðGÞ of vertices and a set

EðGÞ of subsets of VðGÞ, called edges, each having size at least two. A

hypergraph G is r-uniform if jej ¼ r for every e 2 EðGÞ. A graph is a 2-uniform

hypergraph.

Let G be a hypergraph. The degree dGðxÞ of a vertex x 2 VðGÞ is the number

of edges in G that contain x. If dGðxÞ ¼ s for every vertex x 2 VðGÞ, then G is

s-regular. Let �ðGÞ denote the minimum degree of G.

If H and G are hypergraphs with VðHÞ � VðGÞ and EðHÞ � EðGÞ, then H is a

subhypergraph of G. In this case, we write H � G.

Let G be a hypergraph. For X � VðGÞ, the sub(hyper)graph of G induced by X,

written G½X�, is defined by VðG½X�Þ ¼ X and EðG½X�Þ ¼ fe 2 EðGÞ: e � Xg. Let

G� X denote G½VðGÞ � X�.
For an r-uniform hypergraph G, a set X � VðGÞ is a clique or an independent

set if EðG½X�Þ consists of all r-subsets of X or is empty, respectively. For an

r-uniform hypergraph G, the clique number !ðGÞ is the maximum size of a

clique in G. We write Kr
n for an r-uniform complete hypergraph on n vertices

(the edges are all r-subsets of the vertices). Thus K2
n denotes simply a complete

graph Kn.

For a (hyper)graph G, a list assignment L is a function that assigns to each

vertex x of G a set LðxÞ of colors (usually each color is a positive integer). An

L-coloring of G is a function c that assigns a color to each vertex of G such that

cðxÞ 2 LðxÞ for all x 2 VðGÞ and jfcðxÞ: x 2 egj � 2 for each e 2 EðGÞ. If G

admits an L-coloring, then G is L-colorable. When LðxÞ ¼ ½k� for all x 2 VðGÞ
(where ½k� denotes the set f1; . . . ; kg), the corresponding terms become k-

coloring and k-colorable, respectively. G is k-list-colorable if G is L-colorable for

every list assignment L satisfying jLðxÞj ¼ k for all x 2 VðGÞ.
The chromatic number of G, denoted by �ðGÞ, is the least k such that G is

k-colorable. The list-chromatic number of G, denoted by �‘ðGÞ, is the least k such

that G is k-list-colorable.

The Szekeres–Wilf number �ðGÞ of a graph G, introduced by Szekeres and Wilf

[21] in 1968, is equal to the coloring number introduced and studied by Erdös and

Hajnal [7] in 1966. It is the smallest integer d such that in some linear ordering of

VðGÞ, every vertex of G has at most d � 1 neighbors following it. It has been

observed repeatedly that �ðGÞ can be easily computed by iteratively letting xi be

a vertex of minimum degree in the subgraph Gi obtained by deleting fxj: j < ig.

It follows that �ðGÞ ¼ 1 þ maxif�ðGiÞg.

Let p be a (hyper)graph parameter. A graph G is p-critical if pðHÞ < pðGÞ for

every proper subgraph H of G. For p 2 f!; �; �‘; �g, every graph G contains a

p-critical subgraph H satisfying pðHÞ ¼ pðGÞ.
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4. CLIQUE NUMBER AND CHROMATIC NUMBER

In discussing !ðk;KnÞ, we noted that a lower bound of nþ k
2

� �
is proved in [17]

for the case n � k
2

� �
. We include a simple construction for this before proving our

upper bound.

Construction. If n � k
2

� �
, then !ðk;KnÞ � nþ k

2

� �
.

The construction for n ¼ k
2

� �
can be extended for each additional vertex by

adding all the edges incident to the new vertex to one graph in the decomposition.

For n ¼ k
2

� �
, we provide k cliques of order k � 1 that are pairwise edge-disjoint

and together use each vertex twice. The edges not covered can be added to one of

these subgraphs to complete the decomposition of Kn. The sum of the orders of

the cliques is kðk � 1Þ, which equals nþ k
2

� �
.

Let VðKnÞ ¼ fði; jÞ: 1 � i < j � kg. For 1 � r � k, let Qr be the set of vertices

whose names have r in one coordinate; note that jQrj ¼ k � 1. The only vertex

shared by Qi and Qj with i < j is ði; jÞ, so the cliques are edge-disjoint. &

The following short proof of optimality of this construction is based on a

comment by D. Fon-Der-Flaass.

Theorem 2. If k and n are positive integers, then !ðk;KnÞ � nþ k
2

� �
. If n � k

2

� �
,

then !ðk;KnÞ ¼ nþ k
2

� �
.

Proof. By the construction above, it suffices to show that !ðk;KnÞ � nþ k
2

� �
.

Given a decomposition ðG1; . . . ;GkÞ, let Si be a maximum clique in Gi. Each

time vj 2 Si and i is not the least index of such a clique, there is a pair ði0; iÞ with

i0 < i and vj 2 Si0 \ Si. Each pair ði0; iÞ is generated at most once in this way, since

two cliques cannot share two vertices.

Hence there are at most k
2

� �
incidences of the form vj 2 Si such that i is not the

least-indexed clique containing vj. Also there are at most n incidences of the form

vj 2 Si where i is the least-indexed clique containing vj. Hence the sum of the

sizes satisfies the claimed bound. &

To obtain our upper bound on �ðk;KnÞ, we need an upper bound on chromatic

number in terms of Ramsey numbers. In our language, Ramsey’s Theorem states

that every k-decomposition of a sufficiently large r-uniform complete hypergraph

has an r-uniform complete hypergraph of specified size in some factor.

Theorem 7 (Ramsey [20]). For positive integers k, r, and n1; . . . ; nk satisfying
k; r � 2, there is a smallest integer R ðwritten as Rr

kðn1; . . . ; nkÞÞ such that if

ðG1; . . . ;GkÞ is a k-decomposition of Kr
n with n � R, then for some i 2 ½k�, the

subhypergraph Gi contains an r-uniform complete hypergraph with ni vertices.

Our bound uses the observation that proper colorings of the subgraphs induced

by a partition of the vertices, with different colors, combine to form a proper

coloring of the full graph. We call this subadditivity of �.
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Proposition 8. For positive integers k, ‘, and r with r � 2, let R be the Ramsey

number Rr
2ð‘; kÞ. If G is an r-uniform n-vertex hypergraph containing no r-

uniform complete hypergraph on ‘ vertices, then

�ðGÞ � n� R

k
þ R:

Proof. We use induction on n. If n � R, then

�ðGÞ � n ¼ n

k
þ n

k � 1

k
� n

k
þ R

k � 1

k
� n� R

k
þ R:

Now consider n > R. By the definition of the Ramsey number, G has an

independent set X with jXj � k. By the induction hypothesis and subadditivity

of �,

�ðGÞ � �ðG� XÞ þ 1 � n� jXj � R

k
þ Rþ 1 � n� R

k
þ R: &

In Theorem 3, our attention is on ordinary graphs, and we use only the case

r ¼ 2 of Proposition 8.

Theorem 3. If k and n are positive integers, then �ðk;KnÞ � nþ 7k.

Proof. The claim is trivial for n ¼ 1 or k ¼ 1. For k > 1, we use induction on

n. For the induction step, consider n � 2. Let ðG1; . . . ;GkÞ be a k-decomposition

of Kn. To show that
Pk

i¼1 �ðGiÞ � nþ 7k, we distinguish two cases.

Case 1. In some subgraph of the decomposition, there is a maximum clique

whose deletion leaves a clique of size at least 2k � 2. We may assume that this

occurs in G1. Thus G1 has a maximum clique X such that !ðG1 � XÞ � 2k � 2.

Let Y be a maximum clique of G1 � X, and let Z ¼ X [ Y . The subgraph G1½Z� is

the complement of a bipartite graph, and each Gi½Z� for i � 2 is bipartite. Hence

all these subgraphs are perfect. Moreover, �ðG1½Z�Þ ¼ !ðG1½Z�Þ ¼ jXj, and

�ðGi½Z�Þ � 2 for 2 � i � k. Thus

Xk
i¼1

�ðGi½Z�Þ � jXj þ 2ðk � 1Þ � jXj þ jYj ¼ jZj:

Furthermore, ðG1 � Z; . . . ;Gk � ZÞ is a k-decomposition of Kn�jZj. By the

induction hypothesis,
Pk

i¼1 �ðGi � ZÞ � n� jZj þ 7k. Using subadditivity,

Xk
i¼1

�ðGiÞ �
Xk
i¼1

�ðGi½Z�Þ þ
Xk
i¼1

�ðGi � ZÞ � jZj þ n� jZj þ 7k ¼ nþ 7k:
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Case 2. For each i, if X is a maximum clique of Gi, then !ðGi � XÞ � 2k � 3.

Define a sequence of subsets of VðKnÞ as follows. Let X0 ¼ ;. For j � 1, let Xj be

a maximum clique among the graphs G1 �
Sj�1

i¼0 Xi; . . . ;Gk �
Sj�1

i¼0 Xi.

Let ‘j be the index i such that Xj is a clique in Gi. For i 6¼ ‘j, Xj is an

independent set in Gi. For j � 1, this yields
Pk

i¼1 �ðGi½Xj�Þ � jXjj þ k � 1. Let p

be the least index such that ‘p 2 f‘1; . . . ; ‘p�1g. Let X ¼ X1 [ � � � [ Xp�1, and let

m ¼ jXj. By subadditivity,

Xk
i¼1

�ðGi½X�Þ � jXj þ ðp� 1Þðk � 1Þ � mþ kðk � 1Þ:

Let G0
i ¼ Gi � X for each i. Since the second clique taken from Gp has size at

most 2k � 3 and is a largest clique remaining in any subgraph when it is chosen,

!ðG0
iÞ � 2k � 3 for all i. Let R ¼ R2

2ðk; 2k � 2Þ. By Proposition 8, �ðG0
iÞ �

ðn� m� RÞ=k þ R for each i. Therefore,

Xk
i¼1

�ðG0
iÞ � n� m� Rþ kR ¼ n� mþ ðk � 1ÞR:

By subadditivity,

Xk
i¼1

�ðGiÞ � mþ kðk � 1Þ þ n� mþ ðk � 1ÞR ¼ nþ ðk � 1Þðk þ RÞ:

It remains only to supply an upper bound on R. From the well-known bound

R2
2ðp; qÞ � pþq�2

p�1

� �
, we have R ¼ R2

2ðk; 2k � 2Þ � 3k�4
k�1

� �
. Let t ¼ k � 1. From

Stirling’s Formula for factorials, 3t�1
t

� �
is approximately ð3�tÞ�1=2ð27

4
Þt. For all k,

we have ðk � 1Þðk þ RÞ < 7k, and the desired bound follows. &

The proof of Theorem 3 shows that in fact nþ Oð
ffiffiffi
k

p
ð27

4
ÞkÞ is an upper bound.

As was mentioned in the introduction, !ðk;KnÞ ¼ �ðk;KnÞ for k � 3. We do not

know whether !ðk;KnÞ ¼ �ðk;KnÞ for any larger k.

5. THE LIST-CHROMATIC NUMBER

The list-chromatic number is not subadditive, but a weaker statement holds.

Lemma 9. If H is a graph with at most n vertices, and X1; . . . ;Xk are disjoint

sets with union VðHÞ, then

�‘ðHÞ �
Xk
i¼1

�‘ðH½Xi�Þ þ
�
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p 	
:
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Proof. If any Xi is empty, then we can delete it, reduce k, and obtain a better

upper bound. Hence we may assume that X1; . . . ;Xk are non-empty, which

requires k � n. Since �‘ðHÞ � n, the statement is trivial if n �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ln n

p
, so we

may also assume that n >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ln n

p
. Let q ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ln n

p
, so n > q=k.

Let L be a list assignment for H such that jLðxÞj ¼ m for all x 2 VðHÞ, where m

is the claimed upper bound. We show that H is L-colorable. To prove this, we use

a probabilistic argument due to Alon [2]. Let S ¼
S

x2VðHÞ LðxÞ. The idea is to

restrict each color in S to be used on only one H½Xi� and show that some such

restriction yields an L-coloring.

For 1 � i � k, let mi ¼ �‘ðH½Xi�Þ, and let pi ¼ ðmi þ q=kÞ=m. Thus 0 � pi � 1

and p1 þ � � � þ pk � 1. For each s 2 S, independently, place s into one of

S1; . . . ; Sk, letting the choice be Si with probability pi.

For each graph H½Xi�, define a list assignment Li by letting LiðxÞ ¼ LðxÞ \ Si
for each x 2 Xi. The list assignment Li is good if jLiðxÞj � mi for all x 2 Xi. If Li
is good, then H½Xi� is Li-colorable. If each H½Xi� is Li-colorable, then H is L-

colorable. Therefore, it suffices to show that for some outcome of the experiment,

each Li is good.

Fix i and x 2 Xi, and let � ¼ EðjLiðxÞjÞ. Note that � ¼ mpi ¼ mi þ q=k. By

Chernoff’s inequality (see Theorem 2.1 in [13]), we obtain

PrðjLiðxÞj < miÞ ¼ PrðjLiðxÞj < �� q=kÞ � e�ðq=kÞ2=2�:

Since n > q=k, we have � ¼ mi þ q=k � nþ q=k < 2n. Therefore,

e�ðq=kÞ2=2� < e�8n ln n=4n ¼ 1

n2
� 1

kn
:

Since PrðjLiðxÞj < miÞ < 1=ðknÞ, and we want to avoid kn such events, there is an

outcome of the experiment such that each Li is good. &

Now we are ready to prove Theorem 4.

Theorem 4. There exists a positive constant c such that, if k ¼ ‘þ1
2

� �
and

n ¼ ‘m with ‘ and m being integers greater than 1, then

�‘ðk;KnÞ � nþ ck ln ðn=
ffiffiffi
k

p
Þ:

On the other hand, for all positive integers k and n,

�‘ðk;KnÞ � nþ 3k! ð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ:

Proof. We provide a construction for the lower bound. For k and n of the

given form, Kn has a k-decomposition using ‘ graphs isomorphic to Km and ‘
2

� �
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graphs isomorphic to the complete bipartite graph Km;m. Alon [2] proved that

�‘ðKm;mÞ � c1 lnm for some positive constant c1. Also �‘ðKmÞ ¼ m, so

�‘ðk;KnÞ � ‘mþ c1

‘

2

� �
ln m � nþ c1ðk � lÞ ln

n

l

� �
� nþ 0:5c1k ln

nffiffiffi
k

p
� �

:

For the upper bound, we first define ak for k � 1 by

ak ¼
3 � e if k ¼ 1;
k!
�
a1 þ

Pk�2
j¼0

1
j!

�
if k � 2:




For k � 2, we have ak ¼ kðk � 1Þ þ kak�1 and k! � ak � 3k!. Therefore, it

suffices to show that �‘ðk;KnÞ � nþ akð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ, which we prove by in-

duction on k. The inequality is trivial for k ¼ 1.

Suppose that k � 2. Let ðG1; . . . ;GkÞ be a �‘-optimal k-decomposition of Kn.

For each i, let Hi be a �‘-critical subgraph of Gi with �‘ðHiÞ ¼ �‘ðGiÞ; note that

�ðHiÞ � �‘ðHiÞ � 1. If some vertex x belongs to every Hi, then

�‘ðk;KnÞ ¼
Xk
i¼1

�‘ðHiÞ �
Xk
i¼1

ðdHi
ðxÞ þ 1Þ � n� 1 þ k � nþ akð1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ:

Otherwise, each vertex avoids some Hj, so we can choose disjoint X1; . . . ;Xk

with union VðKnÞ such that Xj \ VðHjÞ ¼ ; for all j. Now let Kj ¼ Kn½Xj� and

H
j
i ¼ Hi½Xj�. Since Xj avoids Hj and H1; . . . ;Hk are pairwise edge-disjoint,

ðHj
1; . . . ;H

j
j�1;H

j
jþ1; . . . ;H

j
kÞ is a ðk � 1Þ-decomposition of Kj. With nj ¼ jXjj, the

induction hypothesis yields

X
i

�‘ðHj
iÞ � �‘ðk � 1;KnjÞ � nj þ ak�1ð1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8nj ‘n nj

p
Þ

� nj þ ak�1ð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ:

For fixed i, on the other hand, Lemma 9 implies that

�‘ðHiÞ �
X
j

�‘ðHj
iÞ þ ðk � 1Þð1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ:

Consequently,

&

�‘ðk;KnÞ ¼
Xk
i¼1

�‘ðHiÞ �
Xk
j¼1

nj þ kðak�1 þ ðk � 1ÞÞð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ

� nþ akð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n ‘n n

p
Þ:
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6. THE SZEKERES–WILF NUMBER

Recall that �ðGÞ ¼ 1 þ maxH�G�ðHÞ.
Theorem 5. If k ¼ p2 þ pþ 1 for some prime power p, and n � 0 mod k, then

�ðk;KnÞ � ð
ffiffiffi
k

p
� 1Þnþ k;

On the other hand, for all positive integers k and n,

�ðk;KnÞ �
ffiffiffi
k

p
nþ k:

Proof. For the upper bound, let ðG1; . . . ;GkÞ be a k-decomposition of Kn.

Let di ¼ �ðGiÞ and D ¼
Pk

i¼1 di. We show that D �
ffiffiffi
k

p
nþ k. Each Gi has

a subgraph Hi such that di ¼ �ðHiÞ � 1. Thus jEðGiÞj � jEðHiÞj � di
2

� �
. Since

G1; . . . ;Gk are edge-disjoint subgraphs of Kn, we obtain

n2

2
� n

2

� �
�
Xk
i¼1

di

2

� �
¼ 1

2

Xk
i¼1

ðd2
i � diÞ �

1

2

D2

k
� D

� �
:

Consequently, D2 � kD� kn2 � 0, and thus D � ðk=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2=4Þ þ kn2

p
�

k þ
ffiffiffi
k

p
n.

We provide a construction for the lower bound. Let p be a prime power, and let

k ¼ p2 þ pþ 1 and n ¼ mk for some integer m � 1. There is a projective plane

with points ½k� and lines fg1; . . . ; gkg. Partition VðKnÞ into sets X1; . . . ;Xk of size

m. Each line gi is a subset of ½k�; let Hi be the complete ðpþ 1Þ-partite graph

whose color classes are the elements of fX1; . . . ;Xkg indexed by gi. The graphs

H1; . . . ;Hk are edge-disjoint subgraphs of Kn. Thus there is a k-decomposition

ðG1; . . . ;GkÞ of Kn such that Hi � Gi for each i. We have �ðGiÞ � �ðHiÞþ
1 � pmþ 1. Hence,

�ðk;KnÞ � kðpmþ 1Þ ¼ pnþ k � ð
ffiffiffi
k

p
� 1Þnþ k: &

The construction in the proof of Theorem 5 works only for special values of k.

For small k, there are other natural candidates for �-optimal k-decompositions

of Kn.

Construction. Given n ¼ mðk � 1Þ þ 1, with k � 2 and m � 1, let V1; . . . ;
Vk�1; fvg be a partition of ½n� into m-sets plus one singleton. For 1 � i � k � 1,

let Gi be the complete graph with vertex set Vi [ fvg. Let Gk be the complete

ðk � 1Þ-partite graph with color classes V1; . . . ;Vk�1. The k-decomposition

ðG1; . . . ;GkÞ of Kn yields �ðk;KnÞ � ðk � 1Þmþ ðk � 2Þmþ k.
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For general n, let m ¼ ðn� 1Þ=ðk � 1Þb c and r ¼ n� 1 � mðk � 1Þ. Form

G1; . . . ;Gk as above, except enlarge each of V1; . . . ;Vr by one vertex. Since

m ¼ ðn� 1 � rÞ=ðk � 1Þ, this yields �ðk;KnÞ � ð2k � 3Þðn� 1 � rÞ=ðk � 1Þþ
2r � 2 þ k ¼ ð2k � 3Þðn� 1Þ=ðk � 1Þ � ðk � 2Þ=ðk � 1Þ þ k: Since �ðk;KnÞ is

an integer, we obtain

�ðk;KnÞ �
ð2k � 3Þðn� 1Þ

k � 1

� �
þ k:

In particular, for n � 1, we have �ð2;KnÞ � nþ 1; �ð3;KnÞ � bð3nþ 3Þ=2c, and

�ð4;KnÞ � bð5nþ 7Þ=3c. &

By the next theorem, this construction is optimal for k � 4. The bounds for

k � 3 are easy. The non-optimal bound stated for k � 5 is what follows when the

argument that proves optimality for k ¼ 4 is applied for larger k.

Theorem 10. If k � 2 and n � 2, then �ðk;KnÞ � f ðk; nÞ, where

f ðk; nÞ ¼

nþ 1 if k ¼ 2;

ð3nþ 3Þ=2 if k ¼ 3;

ð5nþ 7Þ=3 if k ¼ 4;

ðk � 1Þðnþ 1Þ=2 if k � 5:

8>>><
>>>:

Proof. Use induction on n. If n ¼ 2 and k � 2, then �ðk;K2Þ ¼ k þ 1 �
f ðk; 2Þ. For n � 3, let ðG1; . . . ;GkÞ be a �-optimal k-decomposition of Kn. Let Hi

be a smallest subgraph of Gi with �ðGiÞ ¼ �ðHiÞ þ 1. Let ni ¼ jVðHiÞj and

�i ¼ �ðHiÞ.
If Hi and Hj are disjoint, then �i þ �j � ðni � 1Þ þ ðnj � 1Þ � n� 2. If they

share x, then �i þ �j � dHi
ðxÞ þ dHj

ðxÞ � n� 1. Thus �i þ �j � n� 1 when i 6¼ j.

Summing yields the claim for k � 3. Now consider k � 4 (and n � 3).

Case 1. Some vertex x is in at most one of H1; . . . ;Hk. Criticality of Hi and

the induction hypothesis yield

�ðk;KnÞ ¼
Xk
i¼1

ð�ðHiÞ þ 1Þ � 1 þ
Xk
i¼1

ð�ðHi � xÞ þ 1Þ

� 1 þ �ðk;Kn�1Þ � 1 þ f ðk; n� 1Þ < f ðk; nÞ:

Case 2. Every vertex is in exactly two of H1; . . . ;Hk. Let Xi;j ¼ VðHiÞ \
VðHjÞ and ni;j ¼ jXi;jj; the sets Xi;j for i < j partition VðKnÞ. Let �i;j ¼ �ðHi½Xi;j�Þ
if ni;j 6¼ 0 and �i;j ¼ �1 otherwise. Since Hi½Xi;j� and Hj½Xi;j� decompose Kni;j , we

have �i;j þ �ji � ni;j � 1. For i 6¼ j, a vertex of minimum degree in Hi½Xi;j� yields

�i � �i;j þ
P

‘=2fi;jg ni‘. Summing over all ordered pairs ði; jÞ yields

ðk � 1Þ
Xk
i¼1

�i �
X

1�i<j�k

ðnij � 1Þ þ 2ðk � 2Þ
X

1�i<j�k

nij ¼ ð2k � 3Þn� k

2

� �
;

NORDHAUS–GADDUM-TYPE THEOREMS 285



and hence

�ðk;KnÞ ¼ k þ
Xk
i¼1

�i � k þ 2k � 3

k � 1
n� k

2
� 2k � 3

k � 1
nþ k

2
� f ðk; nÞ:

Case 3. Some vertex x of Kn is in at least three of H1; . . . ;Hk. Indexing the

decomposition so that fi: x 2 VðHiÞg ¼ ½m�, we have �1 þ �2 þ � � � þ �m �
n� 1. If m ¼ k, we are done. If m ¼ k � 1 and �1 � . . . � �m, then �1 þ � � � þ
�m�1 � ððm� 1Þ=mÞðn� 1ÞÞ. Using also �m þ �k � n� 1 yields

�ðk;KnÞ � k þ m� 1

m
ðn� 1Þ þ n� 1 ¼ k þ 2k � 3

k � 1
ðn� 1Þ � f ðk; nÞ:

For m � k � 2, considering G� x yields �i þ �j � n� 2 for i; j 2 ½k� � ½m�.
Summing over all such pairs yields

Pk
i¼mþ1 �i � ðk � mÞðn� 2Þ=2. Since m � 3

and k � 4, we obtain

�ðk;KnÞ � k þ ðn� 1Þ þ ðk � mÞðn� 2Þ
2

� k þ n� 1 þ ðk � 3Þðn� 2Þ
2

¼ 1

2
ðk � 1Þnþ 2 � f ðk; nÞ: &

Corollary 11. If n is a positive integer, then �ð2;KnÞ ¼ nþ 1; �ð3;KnÞ ¼
3
2
nþ 3

2


 �
, and �ð4;KnÞ ¼ 5

3
nþ 7

3


 �
.

7. CHROMATIC NUMBER OF r-UNIFORM HYPERGRAPHS

We next obtain an upper bound for �ðk;Kr
nÞ. Again we need an auxiliary result.

Proposition 12. If G is an r-uniform hypergraph with n vertices, then

�ðGÞ � 1 þ !ðGÞ
r � 1

þ n� !ðGÞ
r

:

Proof. We produce a proper coloring. If VðGÞ is not a clique, then it has an

independent set of size r; choose color classes of size r until the vertex set X that

remains is a clique. Let s ¼ ðn� jXjÞ=r.
Since X is a clique, we have jXj � !ðGÞ. Since sets of size r � 1 contain no

edge, G½X� is ðqþ 1Þ-colorable, where q ¼ bjXj=ðr � 1Þc. Thus �ðGÞ � sþqþ 1.

Since q
r
� !ðGÞ

rðr�1Þ ¼ !ðGÞ 1
r�1

� 1
r

� �
and rsþ ðr � 1Þq � n, we have

&sþ q � n

r
� r � 1

r
qþ q � nþ q

r
� n� !ðGÞ

r
þ !ðGÞ
r � 1

:
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Now we are ready to prove Theorem 6.

Theorem 6. If k and r are positive integers with r � 2, then there exists an

integer ck;r such that, for every positive integer n,

�ðk;Kr
nÞ �

n

r � 1
þ ck;r:

Proof. Let ðG1; . . . ;GkÞ be an arbitrary k-decomposition of the r-uniform

complete hypergraph Kr
n. As in Theorem 3, we define a sequence of vertex

subsets. Let X0 ¼ ;. For j � 1, let Xj be a maximum clique among the induced

subhypergraphs G1 �
Sj�1

i¼0 Xi; . . . ;Gk �
Sj�1

i¼0 Xi.

If jX1j < krðr � 1Þ, then n < R, where R is the Ramsey number

Rr
kðkrðr � 1Þ; . . . ; krðr � 1ÞÞ. Since

Pk
i¼1 �ðGiÞ � kn, we have

Pk
i¼1 �ðGiÞ <

kR, and it suffices to have ck;r � kR in this case.

Otherwise, there is a largest positive integer s such that jXjj � krðr � 1Þ for

1 � j � s. Let X ¼
Ss

j¼1 Xj. For 1 � i � k, let Yi ¼
S
fXj: Xj is a clique in Gi

and j � sg. Let ni ¼ jYij; G0
i ¼ Gi½Yi�; !i ¼ !ðG0

iÞ, and !	 ¼
Pk

i¼1 !i. The sets

Y1; . . . ; Yk are pairwise disjoint and have union X. Furthermore, !i ¼ jXjj for

some Xj � Yi. Since jXjj � krðr � 1Þ for j � s, we conclude that jXj � !	 �
ðs� kÞkrðr � 1Þ.

By Proposition 12, �ðG0
iÞ � !i=ðr � 1Þ þ ððni � !iÞ=rÞ þ 1. We rewrite the

upper bound as ni=ðr � 1Þ � ððni � !iÞ=rðr � 1ÞÞ þ 1. Summing the upper

bounds yields

Xk
i¼1

�ðG0
iÞ �

jXj
r � 1

� jXj � !	

rðr � 1Þ þ k � n

r � 1
� kðs� kÞ þ k:

A clique in Gi is an independent set in Gj for j 6¼ i. Therefore, the inequality

above implies

Xk
i¼1

�ðGi½X�Þ �
Xk
i¼1

�ðG0
iÞ þ ðk � 1Þs � n

r � 1
þ k2 þ k:

By construction, !ðGi � XÞ < krðr � 1Þ. Therefore, �ðGi � XÞ � n� jXj < R.

By the subadditivity of �, this yields

Xk
i¼1

�ðGiÞ �
n

r � 1
þ k2 þ k þ kR;

which proves the claim with ck;r ¼ k2 þ k þ kR. &

NORDHAUS–GADDUM-TYPE THEOREMS 287



8. GRAPHS ON SURFACES

This section considers graphs embedded on a surface �. For a graph parameter p

and a positive integer k, let pðk; �Þ ¼ maxfpðk;GÞ: G embeds on �g.

Surfaces can be classified by their genus and orientability. For h � 0, the

orientable surface �h is obtained by adding h handles to a sphere. For h � 1, the

non-orientable surface �h is obtained from a sphere with h holes by attaching h

Möbius bands along their boundaries to the boundaries of the holes. For example,

�1 is the projective plane, �2 is the Klein bottle, etc. The Euler genus gð�Þ of the

surface � is 2h if � ¼ �h and is h if � ¼ �h. The Euler characteristic of � is

2 � gð�Þ.
For a simple graph G with vertex set V and edge set E embedded on a surface

� of Euler genus g, Euler’s Formula states that jV j � jEj þ jFj � 2 � g, where F

is the set of faces, with equality holding if and only if every face is a 2-cell. When

jVj � 3, this yields jEj � 3jV j � 6 þ 3g. For g � 1, this implies that every sub-

graph of G has a vertex of degree at most HðgÞ � 1, where

HðgÞ ¼ 7 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24gþ 1

p

2

� �
:

In particular, �ðGÞ � HðgÞ. Consequently, if g � 1, then

!ðGÞ � �ðGÞ � �‘ðGÞ � �ðGÞ � HðgÞ:

For every surface � other than the Klein bottle, the Heawood number HðgÞ is,

in fact, the maximum chromatic number of graphs embeddable on �, attained by

KHðgÞ. This landmark result conjectured by Heawood [12] was proved by Ringel

[19] and Ringel–Youngs [18]. Furthermore, every graph with chromatic number

HðgÞ embedded on � contains a complete graph on HðgÞ vertices as a subgraph.

This was proved by Dirac [4,5] for the torus and for g � 4 and was proved by

Albertson and Hutchinson [1] for g 2 f1; 3g.

Although Hð2Þ ¼ 7, Franklin [10] proved that the maximum chromatic

number for the Klein bottle is 6. Furthermore, there are 6-chromatic graphs on the

Klein bottle not containing K6. Such a graph appears in [1].

The version of Brooks’ Theorem for list-chromatic number implies that if G is

a graph on the Klein bottle, then also �‘ðGÞ � 6. For graphs on the sphere, the

maximum chromatic number is 4, but the maximum list-chromatic number is 5

(upper bound by Thomassen [22], lower bound by Voigt [23]).

Further results about the chromatic number of graphs embedded on given

surfaces appear in the book of Jensen and Toft [14].

For a surface � and a positive integer k, we have the familiar inequalities

!ðk; �Þ � �ðk; �Þ � �‘ðk; �Þ � �ðk; �Þ:
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When a graph embeds on the sphere �0, the disjoint union of k copies of G

also embeds on �0. Hence �ðk; �0Þ ¼ 6k and !ðk; �0Þ ¼ �ðk; �0Þ ¼ 4k. For all

other surfaces, this is not true. We begin by establishing a lower bound for

!ðk; �Þ.

Theorem 13. Let � be a surface with positive Euler genus g.

ðaÞ If � is orientable, then !ðk; �Þ � k Hð2bg=2kcÞ:
ðbÞ If � is non-orientable and bg=kc � 3, then !ðk; �Þ � k Hðbg=kcÞ:

Proof. If � is orientable, then let g0 ¼ 2bg=2kc and m ¼ Hðg0Þ; since g0 is

even, Km embeds on an orientable surface with Euler genus g0. If � is non-

orientable, then let g0 ¼ bg=kc and m ¼ Hðg0Þ; since g0 � 3; Km embeds on a non-

orientable surface with Euler genus g0.
In either case, let G be the disjoint union of k copies of Km. Since kg0 � g, it

then follows (see [15]) that G embeds on �. Thus !ðk;GÞ � km. &

For a surface � of Euler genus g, this lower bound on !ðk; �Þ is approximately

ð7k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24gk þ k2

p
Þ=2. We next establish an upper bound on �ðk; �Þ that is

asymptotic to this for fixed k and large g.

Theorem 14. If � is a surface with positive Euler genus g, then

�ðk; �Þ �
�

7k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24kgþ 49k2 � 48k

p
2

�
:

Proof. Given a graph G embedded on �, let ðG1; . . . ;GkÞ be a k-

decomposition of G. For each i, let Hi be a �-critical subgraph of Gi with

�ðHiÞ ¼ �ðGiÞ, and let di ¼ �ðHiÞ, so �ðGiÞ ¼ di þ 1.

We may assume that d1 � . . . � dk. Let s be the unique non-negative integer

such that di > 5 if and only if i � s. If s ¼ 0, then

Xk
i¼1

�ðGiÞ � 5k �
�

7k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24kgþ 49k2 � 48k

p
2

�
:

If s � 1, then let H ¼
S

j2½s� Hj. Let n ¼ jVðHÞj and e ¼ jEðHÞj. For

I � ½s�, denote by VI the set of all vertices of H that belong to each graph

Hi with i 2 I and to no graph Hi with i 2 ½s� � I. Let nI ¼ jVI j and ni ¼ nfig.
Thus,

jVðHiÞj ¼
X
i2I�½s�

nI and n ¼
X
I�½s�

nI :
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Since s � 1, we have n � 7. Since H � G, also H embeds on �. By Euler’s

Formula, 6nþ 6g� 12 � 2e. Every vertex of VI has degree at least
P

i2I di.
Thus,

6
X
I�½s�

nI þ 6g� 12 � 2e �
X
I�½s�

nI
X
i2I

di:

By rearranging the inequality and interchanging the order of summation

(subtracting more copies of 6 when jIj > 1), we obtain

6g� 12 �
X
I�½s�

nI �6 þ
X
i2I

di

 !
�
Xs
i¼1

�
ðdi � 6Þ

X
i2I�½s�

nI

�
¼
Xs
i¼1

ðdi � 6ÞjVðHiÞj:

Since jVðHiÞj � di þ 1 and di � 6 for i 2 ½s�, we have

6g� 12 �
Xs
i¼1

ðdi � 6Þðdi þ 1Þ ¼
Xs
i¼1

di �
5

2

� �2

�49

4

 !
:

Consequently,

6g� 12 þ 49

4
s �

Xs
i¼1

di �
5

2

� �2

� 1

s

�Xs
i¼1

di �
5

2

� ��2

¼ 1

s

�Xs
i¼1

di � s
5

2

�2

;

and therefore

Xs
i¼1

di �
1

2
ð5 sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24 s gþ 49s2 � 48s

p
Þ:

For i > s, we have di � 5. Thus we conclude that

Xk
i¼1

�ðGiÞ ¼ k þ
Xk
i¼1

di � 6k � 5sþ
Xs
i¼1

di �
1

2
ð12k � 5sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24 s gþ 49 s2 � 48s

p
Þ:

This upper bound increases with s in the domain s � 0. Since s � k, we thus

set s ¼ k to obtain

Xk
i¼1

�ðGiÞ �
�

7k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24kgþ 49k2 � 48k

p
2

�
:

This completes the proof. &

290 JOURNAL OF GRAPH THEORY



REFERENCES

[1] M. O. Albertson and J. P. Hutchinson, The three excluded cases

of Dirac’s map-color theorem, Ann New York Acad Sci 319 (1979),

7–17.

[2] N. Alon, Choice numbers of graphs: A probabilistic approach, Combin Prob

Comput 1 (1992), 107–114.

[3] J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers

(Mathematics and Its Application, Volume 47), Dordrecht, 1990.

[4] G. A. Dirac, Map colour theorems related to the Heawood colour formula,

J Lond Math Soc 31 (1956), 460–471.

[5] G. A. Dirac, Short proof of a map-colour theorem, Canad J Math 9 (1957),

225–226.

[6] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.

[7] P. Erdös and A. Hajnal, On chromatic number of graphs and set-systems,

Acta Math Acad Sci Hungar 17 (1966), 61–99.

[8] P. Erdös, A. L. Rubin, and H. Taylor, Choosability in graphs, Proc. West

Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus

Numerantium XXVI (1979), 125–157.
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