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Abstract: A k-decomposition (Gy, ..., Gk) of a graph G is a partition of its
edge set to form k spanning subgraphs G;, ..., Gg. The classical theorem of
Nordhaus and Gaddum bounds x(Gi) + x(Gz) and x(Gq)x(Gy) over all 2-
decompositions of K,. For a graph parameter p, let p(k;G) denote the
maximum of Z,k:1 p(G)) over all k-decompositions of the graph G. The
cligue number w, chromatic number x, list chromatic number x,, and
Szekeres-Wilf number o satisfy w(2;K,) = x(2;K,) = x¢(2;K,) = 0(2;,K,) =
n+ 1. We obtain lower and upper bounds for w(k;K,), x(k; Kn),xe(k;K,), and
o(k;Ky). The last three behave differently for large k. We also obtain lower
and upper bounds for the maximum of x(k;G) over all graphs embedded on
a given surface. © 2005 Wiley Periodicals, Inc. J Graph Theory 50: 273-292, 2005

Keywords: graph decomposition; Nordhaus—Gaddum Theorem; chromatic number; coloring
number; list chromatic number; surface embedding

1. INTRODUCTION

A k-decomposition of a (hyper)graph G is a decomposition of G into k spanning

sub(hyper)graphs Gy, ..., Gi. That is, each G; has the same vertices as G, and

every edge of G belongs to exactly one of Gy, ..., Gi. Such decompositions can

be viewed as unrestricted k-edge-colorings of G (color classes may be empty).
For a parameter p, a positive integer k, and a (hyper)graph G, let

pk;G) = maX{Zf;lp(Gi): (Gy,...,Gy) is a k-decomposition of G}.

A p-optimal k-decomposition of G is a k-decomposition (Gy, ..., Gy) such that
plk;G) = Zf:l p(G;). We will also comment (in Section 2) on the minimum of
S p(Gy) and on the extreme values of the product [I-_, p(Gy).

The parameters we study are the clique number w, the chromatic number Y,
the list-chromatic number Y/, and the Szekeres—Wilf number o, where o is defined
by 0(G) = 1 + maxycg6(H). Every graph G satisfies w(G) < x(G) < x/(G) <
o(G). Therefore, for every k and G,

w(k; G) < x(k; G) < xu(k; G) < a(k; G). (1)

Clearly, (G1, G,) is a 2-decomposition of the complete graph K, if and only if
G is the complement of G, and has n vertices. Thus the Nordhaus—Gaddum
Theorem can be stated as follows.

Theorem 1 (Nordhaus—-Gaddum [16]). Let n be a positive integer. If (G, G,) is
a 2-decomposition of K, then the following statements hold:
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(@ [2v/n] < x(G1) + x(Gy) < Y21+ I;
() n < x(G1) - x(G2) < [(1)7].

The proof of Theorem 1 implies that w(2;K,) = x(2;K,) = x¢(2;K,) =
0(2;K,) = n+ 1, achieving equalities in (1) (see also Section 5). Finck [9] des-
cribed the y-optimal 2-decompositions of K,.

Plesnik [17] studied x(k; K,,) for k > 2 and proved that x(k; K,) < n+ 2(3")
for every n. He also proved (see Lemma 3 in [17]) that

"+ @ < wlkK) < x(kK,) if n> @ 2)

and conjectured (see also Bosak [3]) that x(k; K,) =n + (]2‘) Our first result is
the following.

Theorem 2. If k and n are positive integers, then w(k; K,) < n + (12‘) Ifn> (12‘),
then w(k; K,) =n+ (%).

Watkinson [24] improved Plesnik’s upper bound to x(k;K,) < n—i—%!. It
follows that w(3;K,) = x(3;K,) =n+ 3 for every n > 3. Our second result
improves Watkinson’s bound for large k.

Theorem 3. If k and n are positive integers, then x(k;K,) < n + 7.

Thus for chromatic number, the “lower order term” is independent of n. This
does not hold for list chromatic number.

Theorem 4. There exists a positive constant ¢ such that, if k= (Zerl) and
n = {m with ¢ and m being integers greater than 1, then

n
(k;K,) >n+ckInl — |.

On the other hand, for all positive integers k and n,
xe(k; Ky) < n+3k!(1+ vV8n n n).

Thus, the leading behavior of x,(k, K,) for fixed k as n — oo is still n, but the
additive term grows with n. The leading behavior for o(k; K,) is larger.

Theorem 5. If k = p*> + p + 1 for some prime power p, and n = 0 mod k, then
o(k;K,) > (Vk — Dn +k.
On the other hand, for all positive integers k and n,

o(k;K,) < Vkn + k.
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Furthermore, we determine o(k; K,,) exactly for k < 4.

We consider also decompositions of the complete r-uniform hypergraph K.
Since x(K!) = [n/(r — 1)], we have x(k;K!) > [n/(r — 1)]| + k — 1. Although
it is easy to improve the bound for large n, we will prove that up to a summand
¢k, independent of n, this is the correct value of x(k; K)).

Theorem 6. If k and r are positive integers with r > 2, then there exists an
integer cy, such that, for every positive integer n,

n
kK) < —— r
X(’ n)—r_1+ck7

Finally, we consider decompositions of graphs embedded on a given surface 3.
For a graph parameter p and positive integer k, let p(k; ¥) denote the maximum of
p(k; G) over all graphs G embeddable on X. Let g be the Euler genus of . We
show that for fixed k and large g, the values of w(k; ), x(k;X), xe(k; X), and
o(k; X) are asymptotically equal, unlike w(k; K,,) and o(k; K,,).

In the next section, we comment on the analogous problems for maximizing
]_[f:l p(G;) and for minimizing the sum or product. Section 3 then introduces
terminology we use in discussing the problems for maximum sum. In subsequent
sections, we treat consecutively the clique number, the chromatic number, the list
chromatic number, and the Szekeres—Wilf number of graphs. The last two sec-
tions are devoted to the chromatic number of r-uniform hypergraphs and to de-
compositions of graphs embedded on surfaces.

2. MAXIMUM PRODUCT AND MINIMUM SUM

To study the problem of maximum product for a parameter p, define
p*(k;G) = maX{Hf:lp(G,-): (Gy,...,Gy) is a k-decomposition of G}.

Using the Cauchy—Schwarz Inequality, our bounds on p(k; K,,) yield correspond-
ing bounds on p* (k; K,). For fixed &,

W (k;Ky) < X (ki Ky) < X/ (k:K,) < (14 0(1))(n/k)",
o (k;Ky) < (1+0(1))(n/Vk)", and
X (k K) < (14 0(1)) (n/k(r — 1))~.

Decomposing K, and K| into almost disjoint complete subgraphs of about the
same size (pairwise sharing at most r — 1 vertices) shows that except for
the bound on ¢*, these upper bounds are asymptotically tight for fixed k. The
construction in Theorem 5 yields that o*(k;K,) > e*‘/’:(n/\/l;)k. Thus, for
o*(k; K,), we at least know the order of magnitude.
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We can also study the minimum sum or product of the values of p over a
decomposition. Let

pk;G) = min{Zlep(G,-): (Gy,...,Gy) is a k-decomposition of G},

and
" (k;G) = min{Hf:]p(Gi): (Gy,...,Gy) is a k-decomposition of G}.
Comparing the arithmetic mean and the geometric mean, we infer that

k /P (k; G) < p(k; G)

for every integer k > 2 and every hypergraph G.

Now consider X (k; G) and X*(k; G), the lower bounds for the sum and the
product of the chromatic numbers in a k-decomposition. We apply the natural
extension of the argument of Nordhaus and Gaddum [16]. If (Gy,...,Gy) is a k-
decomposition of a graph G, then x(G) < Hle X(G;). For k > 2, we thus have
X (k; Kn) > n and X(k; K,) > k §/n.

On the other hand, if n = p*, then K, has a k-decomposition (G, ...,Gy)
such that each G; is a p-partite graph with p*~! vertices in each class. Hence the
lower bounds for both }* and X are tight infinitely often. For the chromatic
number, the simplicity of this solution motivates our focus on the maximization

problem.
For the clique number, it is well known that the minimization problem is
closely related to the Ramsey numbers. We use Rj(qi,...,qx) to denote the

minimum » such that every k-coloring of the r-sets of an n-set yields, for some i,
a g;-set whose r-sets all receive color i. Since W(k; K,) < N if and only if some
decomposition has clique numbers summing to at most N, we have w(k; K,,) < N
if and only if R?(q; + 1,...,qx + 1) > n for some ¢, ..., q; with Zle gi=N.
It is generally believed that R:(qi, . .., qx) is maximized for fixed Zf:] g; when
q1, - -, qx differ by at most 1. If this holds and R}(q, .. .,q) = n, then k(g — 1) <
w(k;K,) <wk;Kyo1) + 1 <k(g—1)+1.

Although the Ramsey numbers are not known, there are bounds. For example,
it is known that 2¢¢" < R3(q,q,q) <2*" for constants ¢ and ¢’ [11]. From the

lower bound, we have w(k; K,) < 31/% log,n. Assuming again that R3(q,q,q)
maximizes R3(q1,¢2,¢3) such that g; + ¢» + g3 = 3¢, the upper bound yields
w(k; K,) > 35 log, log, n — 3. Improving these bounds would require improving
the bounds on the Ramsey numbers, so again we focus henceforth on the
maximization problem w(k; K, ).
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3. PRELIMINARIES

Concepts and notation not defined in this paper are as in standard textbooks.
Though the main objects of our study are graphs, we also consider the central
concepts for hypergraphs.

A hypergraph G is a pair consisting of a finite set V(G) of vertices and a set
E(G) of subsets of V(G), called edges, each having size at least two. A
hypergraph G is r-uniform if |e| = r for every e € E(G). A graph is a 2-uniform
hypergraph.

Let G be a hypergraph. The degree dg(x) of a vertex x € V(G) is the number
of edges in G that contain x. If dg(x) = s for every vertex x € V(G), then G is
s-regular. Let §(G) denote the minimum degree of G.

If H and G are hypergraphs with V(H) C V(G) and E(H) C E(G), then H is a
subhypergraph of G. In this case, we write H C G.

Let G be a hypergraph. For X C V(G), the sub(hyper)graph of G induced by X,
written G[X], is defined by V(G[X]) = X and E(G[X]) = {e € E(G): ¢ C X}. Let
G — X denote G[V(G) — X].

For an r-uniform hypergraph G, a set X C V(G) is a clique or an independent
set if E(G[X]) consists of all r-subsets of X or is empty, respectively. For an
r-uniform hypergraph G, the clique number w(G) is the maximum size of a
clique in G. We write K] for an r-uniform complete hypergraph on n vertices
(the edges are all r-subsets of the vertices). Thus K> denotes simply a complete
graph K,,.

For a (hyper)graph G, a list assignment L is a function that assigns to each
vertex x of G a set L(x) of colors (usually each color is a positive integer). An
L-coloring of G is a function c that assigns a color to each vertex of G such that
c(x) € L(x) for all x € V(G) and |[{c(x): x € e}| > 2 for each e € E(G). If G
admits an L-coloring, then G is L-colorable. When L(x) = [k] for all x € V(G)
(where [k] denotes the set {l1,...,k}), the corresponding terms become k-
coloring and k-colorable, respectively. G is k-list-colorable if G is L-colorable for
every list assignment L satisfying |L(x)| = k for all x € V(G).

The chromatic number of G, denoted by x(G), is the least k such that G is
k-colorable. The list-chromatic number of G, denoted by x,(G), is the least k such
that G is k-list-colorable.

The Szekeres—Wilf number o(G) of a graph G, introduced by Szekeres and Wilf
[21] in 1968, is equal to the coloring number introduced and studied by Erdos and
Hajnal [7] in 1966. It is the smallest integer d such that in some linear ordering of
V(G), every vertex of G has at most d — 1 neighbors following it. It has been
observed repeatedly that o(G) can be easily computed by iteratively letting x; be
a vertex of minimum degree in the subgraph G; obtained by deleting {x;: j < i}.
It follows that o(G) = 1 + max;{6(G;)}.

Let p be a (hyper)graph parameter. A graph G is p-critical if p(H) < p(G) for
every proper subgraph H of G. For p € {w, x, x¢, 0}, every graph G contains a
p-critical subgraph H satisfying p(H) = p(G).
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4. CLIQUE NUMBER AND CHROMATIC NUMBER

In discussing w(k; K,,), we noted that a lower bound of n + (]2‘) is proved in [17]
for the case n > (]2‘) We include a simple construction for this before proving our
upper bound.

Construction. If n > (%), then w(k;K,) > n+ (5).

The construction for n = (;) can be extended for each additional vertex by
adding all the edges incident to the new vertex to one graph in the decomposition.
For n = (';) we provide k cliques of order k — 1 that are pairwise edge-disjoint
and together use each vertex twice. The edges not covered can be added to one of
these subgraphs to complete the decomposition of K,,. The sum of the orders of
the cliques is k(k — 1), which equals n + (]2‘)

Let V(K,) = {(i,j): 1 <i<j<k}.Forl <r <k, let Q, be the set of vertices
whose names have r in one coordinate; note that |Q,| = k — 1. The only vertex
shared by Q; and Q; with i < j is (i,j), so the cliques are edge-disjoint. ]

The following short proof of optimality of this construction is based on a
comment by D. Fon-Der-Flaass.

Theorem 2. If k and n are positive integers, then w(k; K,) < n + (12‘) Ifn> (12‘),
then w(k;K,) =n+ (5).

Proof. By the construction above, it suffices to show that w(k; K,,) < n + (12‘)

Given a decomposition (Gy, ..., Gy), let S; be a maximum clique in G;. Each
time v; € S; and i is not the least index of such a clique, there is a pair (¢, ) with
i’ < iand v; € Sy N S;. Each pair (7, i) is generated at most once in this way, since
two cliques cannot share two vertices.

Hence there are at most (12‘) incidences of the form v; € §; such that i is not the
least-indexed clique containing v;. Also there are at most n incidences of the form
vj € S; where i is the least-indexed clique containing v;. Hence the sum of the
sizes satisfies the claimed bound. [

To obtain our upper bound on x(k; K,,), we need an upper bound on chromatic
number in terms of Ramsey numbers. In our language, Ramsey’s Theorem states
that every k-decomposition of a sufficiently large r-uniform complete hypergraph
has an r-uniform complete hypergraph of specified size in some factor.

Theorem 7 (Ramsey [20]). For positive integers k, r, and ny, . .., ny satisfying
k,r > 2, there is a smallest integer R (written as R} (ni,...,ny)) such that if
(Gy,...,Gy) is a k-decomposition of K with n > R, then for some i € [k|, the
subhypergraph G; contains an r-uniform complete hypergraph with n; vertices.

Our bound uses the observation that proper colorings of the subgraphs induced
by a partition of the vertices, with different colors, combine to form a proper
coloring of the full graph. We call this subadditivity of x.
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Proposition 8. For positive integers k, £, and r with r > 2, let R be the Ramsey
number R5((,k). If G is an r-uniform n-vertex hypergraph containing no r-
uniform complete hypergraph on { vertices, then

(G)< _n+ k—1<n+ k—1 n—R
XS =T =% k k

Now consider n > R. By the definition of the Ramsey number, G has an
independent set X with |X| > k. By the induction hypothesis and subadditivity
of x,

n—|X|—R

X(6) SX(G-X) +1 <=1

_R
+R+1§nT+R. -

In Theorem 3, our attention is on ordinary graphs, and we use only the case
r = 2 of Proposition 8.

Theorem 3. If k and n are positive integers, then x(k; K,) < n+ 7.

Proof. The claim is trivial forn = 1 or k = 1. For k > 1, we use induction on
n. For the induction steg consider n > 2. Let (Gy, . .., Gy) be a k-decomposition
of K,. To show that >";_, x(G;) <n+ 7%, we dlstlngulsh two cases.

Case 1. In some subgraph of the decomposition, there is a maximum clique
whose deletion leaves a clique of size at least 2k — 2. We may assume that this
occurs in Gy. Thus G; has a maximum clique X such that w(G; — X) > 2k — 2.
Let Y be a maximum clique of G; — X, and let Z = X U Y. The subgraph G,[Z] is
the complement of a bipartite graph, and each G;[Z] for i > 2 is bipartite. Hence
all these subgraphs are perfect. Moreover, x(Gi[Z]) = w(G[Z]) = |X|, and
x(Gi[Z]) <2 for 2 <i < k. Thus

k
Y X(GilZ]) < |X| +2(k = 1) < [X| +|Y| = |Z].

i=1

Furthermore, (G; — .Gy —Z) is a k-decomposition of K, 7. By the
induction hypothesis, Zl L\ X(G; — Z) < n—|Z| 4+ 7*. Using subadditivity,

k k
> X(G) <D X(GZ) + D x(Gi—-2Z)<|Z|+n—|Z|+T* =n+T".
i i=1 i=1
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Case 2. Foreach i, if X is a maximum clique of G;, then w(G; — X) < 2k — 3.
Define a sequence of subsets of V(K,,) as follows Let XO Q) For J > 1, let X; be
a maximum clique among the graphs G; — \J_y X;, - . ., Gx — Uy X:.

Let ¢; be the index i such that X; is a chque in G For i # /;, X; is an
1ndependent set in G;. For j > 1, this ylelds S x(GHX)) < 1X| + k- 1 Let p
be the least index such that /, € {1, .. 4, 1 boLetX=X,U--- UX,_1, and let
m = |X|. By subadditivity,

k
> XGIX) < X[+ (p— Dk —1) <m+k(k—1).

i=1

Let G; = G; — X for each i. Since the second clique taken from G, has size at
most 2k — 3 and is a largest clique remaining in any subgraph when it is chosen,
w(G}) <2k —3 for all i. Let R = R3(k,2k —2). By Proposition 8, x(G}) <
(n —m — R)/k + R for each i. Therefore,

k
> X(G)<n—m—R+kR=n—m+ (k—1)R.

i-1
By subadditivity,

k
> Xx(G) <m+k(k—1)+n—m+ (k—1)R=n+ (k—1)(k+R).

i=1

It remains only to supply an upper bound on R. From the well-known bound
R3(p,q) < ("}97?), we have R = Rj(k,2k —2) < (3). Let 1 =k — 1. From
Stirling’s Formula'for factorials, (*'; 1) is approximately (377)~"/*(22)". For all k,
we have (k — 1)(k + R) < 7%, and the desired bound follows. [ |

The proof of Theorem 3 shows that in fact n + O(vk (77) ) is an upper bound.
As was mentioned in the introduction, w(k; K,,) = x(k; K,,) for k < 3. We do not
know whether w(k; K,) = x(k; K,,) for any larger k.

5. THE LIST-CHROMATIC NUMBER

The list-chromatic number is not subadditive, but a weaker statement holds.

Lemma 9. If H is a graph with at most n vertices, and X1, ..., Xy are disjoint
sets with union V(H), then

zk: kv8n£nn]
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Proof. If any X; is empty, then we can delete it, reduce k, and obtain a better
upper bound. Hence we may assume that Xi,...,X; are non-empty, which
requires k < n. Since x¢(H) < n, the statement is trivial if n < v/8nlnn, so we
may also assume that n > /8nlnn. Let ¢ = kv/8nlnn, so n > g/k.

Let L be a list assignment for H such that |L(x)| = m for all x € V(H), where m
is the claimed upper bound. We show that H is L-colorable. To prove this, we use
a probabilistic argument due to Alon [2]. Let § = (J,cy ) L(x). The idea is to
restrict each color in S to be used on only one H[X;] and show that some such
restriction yields an L-coloring.

For 1 <i <k, letm; = x(H[X;]), and let p; = (m; + g/k)/m. Thus 0 < p; < 1
and p; +---+pr < 1. For each s €S, independently, place s into one of
S1,...,S, letting the choice be S; with probability p;.

For each graph H[X;], define a list assignment L; by letting L;(x) = L(x) N S;
for each x € X;. The list assignment L; is good if |L;(x)| > m; for all x € X;. If L;
is good, then H[X;] is L;-colorable. If each H[X;| is L;-colorable, then H is L-
colorable. Therefore, it suffices to show that for some outcome of the experiment,
each L; is good.

Fix i and x € X;, and let A = E(|L;(x)|). Note that A = mp; = m; + q/k. By
Chernoff’s inequality (see Theorem 2.1 in [13]), we obtain

Pr(|Li(x)| < m;) = Pr(|Li(x)] < A — q/k) < e @R/,
Since n > g/k, we have A = m; + q/k < n+ gq/k < 2n. Therefore,

ef(q/k)z/Z/\ < 678n1nn/4n _ l < i

n? ~ kn
Since Pr(|L;(x)| < m;) < 1/(kn), and we want to avoid kn such events, there is an
outcome of the experiment such that each L; is good. [ |

Now we are ready to prove Theorem 4.

Theorem 4. There exists a positive constant ¢ such that, if k = ((;]) and
n = {m with ¢ and m being integers greater than 1, then

xe(k; K,) > n+ ckIn (n/Vk).
On the other hand, for all positive integers k and n,

xe(k; Ky) < n+3k!(1+ V8ninn).

Proof. We provide a construction for the lower bound. For k& and n of the
given form, K, has a k-decomposition using ¢ graphs isomorphic to K, and (ﬁ)
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graphs isomorphic to the complete bipartite graph K,,,,. Alon [2] proved that
X¢(Kmm) > c1Inm for some positive constant ¢;. Also x¢(K,,) = m, so

/
xe(k; Ky) > Im + ¢ <2>ln m>n+ci(k—1)In (?) >n+0.5¢ikIn (\%)

For the upper bound, we first define a; for k > 1 by

3-e if k=1,
T K +X50)) k=2

For k > 2, we have a;y =k(k— 1) + kay—, and k! < a; < 3k!. Therefore, it
suffices to show that x(k; K,) < n+ ax(1 + v/8n{n n), which we prove by in-
duction on k. The inequality is trivial for k = 1.

Suppose that k > 2. Let (Gy, ..., Gy) be a x,-optimal k-decomposition of K,,.
For each i, let H; be a x,-critical subgraph of G; with x,(H;) = x/(G;); note that
8(H;) > x¢(H;) — 1. If some vertex x belongs to every H,, then

k k
xe(k; K,) Z gZdH )<n—14k<n+a(l+V8nlnn).

Otherwise, each vertex avoids some Hj, so we can choose disjoint X Lo Xk
with union V(K,) such that X’ N V(H;) = 0 for all j. Now let K/ = K,[X’] and
H! = H;[X’]. Since X’ avoids H; and Hi,...,H; are pairwise edge-disjoint,

(H,..., H ],HH“...,H{;) isa(k— 1)-decomposition of K/. With n; = |X’|, the

inductlon hypothes1s yields
D xelH]) < xelk = LiKy) <yt a1 (14 /8y )
< nj+ a1 (1 + V8ntnn).
For fixed i, on the other hand, Lemma 9 implies that

(H) <D xe(H) + (k= 1)(1 + V8nlnn).
J
Consequently,

k
xe(k; K,) = Z)@(Hi) < an +k(ag—1 + (k—1))(1 + V8nitnn)

i=1 j=1

<n+a(l+V8ninn). [ ]
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6. THE SZEKERES-WILF NUMBER

Recall that 0(G) = 1 + maxgcgo(H).
Theorem 5. If k = p> + p + 1 for some prime power p, and n = 0mod k, then

o(kiKn) = (VE - D+,
On the other hand, for all positive integers k and n,

o(k; K,) < Vkn + k.

Proof. For the upper bound, let (Gy,...,Gy) be a k-decomposition of K.
Let d; = 0(G;) and D = Zf;ldi. We show that D < vkn + k. Each G; has
a subgraph H; such that d; = 6(H;) — 1. Thus |E(G;)| > |E(H;)| > (%). Since
Gy, ..., Gy are edge-disjoint subgraphs of K, we obtain

n* _ (n Lol 1, 1 /D?
27 (2) Z;:(z) _2;(‘11‘ ) Z2<k D)'
Consequently, D? —kD —kn? <0, and thus D < (k/2) + +/(k2/4) + kn? <
k + Vkn.

We provide a construction for the lower bound. Let p be a prime power, and let
k = p?> 4+ p+ 1 and n = mk for some integer m > 1. There is a projective plane
with points [k] and lines {g1, ..., g }. Partition V(K,) into sets X, ..., X; of size
m. Each line g; is a subset of [k]; let H; be the complete (p + 1)-partite graph
whose color classes are the elements of {Xi,...,X;} indexed by g;. The graphs
Hy, ..., H; are edge-disjoint subgraphs of K,. Thus there is a k-decomposition
(Gi,...,Gy) of K, such that H; C G; for each i. We have o(G;) > 6(H;) +
1 > pm + 1. Hence,

o(k;K,) > k(pm +1) = pn+k > (Vk — 1)n + k. -

The construction in the proof of Theorem 5 works only for special values of k.
For small k, there are other natural candidates for o-optimal k-decompositions
of K,.

Construction. Given n =m(k— 1)+ 1, with k >2 and m > 1, let Vy,...,
Vi—1, {v} be a partition of [r] into m-sets plus one singleton. For 1 <i <k — 1,
let G; be the complete graph with vertex set V; U {v}. Let Gy be the complete
(k — 1)-partite graph with color classes Vi,..., Vi ;. The k-decomposition
(Gy,...,Gy) of K, yields o(k; K,,) > (k— 1)m+ (k — 2)m + k.
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For general n, let m=[(n—1)/(k—1)] and r=n—1—m(k — 1). Form
Gy,...,Gy as above, except enlarge each of Vi,...,V, by one vertex. Since
m=n—1-r)/(k—1), this yields o(k;K,) > 2k —-3)(n—1—r)/(k—1)+
2r—2+4+k=02k—-3)(n—1)/(k—1)— (k—2)/(k— 1) + k. Since o(k;K,) is

an integer, we obtain
2k—3)(n—1

In particular, for n > 1, we have 0(2;K,) > n+ 1, 0(3;K,) > |(3n+ 3)/2], and
o(4;K,) > [(5n+17)/3]. [ |

By the next theorem, this construction is optimal for k < 4. The bounds for
k < 3 are easy. The non-optimal bound stated for k > 5 is what follows when the
argument that proves optimality for k = 4 is applied for larger k.

Theorem 10. Ifk > 2 and n > 2, then o(k;K,) < f(k,n), where

n—+1 if k=2,
(3n+3)/2 if k =3,
(5n+7)/3 if k=4,

(k—1)(n+1)/2 ifk>5.

Proof. Use induction on n. If n =2 and k > 2, then o(k;K;) =k+1 <
f(k,2). Forn > 3, let (G, ..., Gy) be a g-optimal k-decomposition of K. Let H;
be a smallest subgraph of G; with o(G;) = 6(H;) + 1. Let n; = |V(H;)| and
6; = 6(H;).

If H; and H; are disjoint, then 6; + ¢; < (n; — 1) + (n; — 1) < n — 2. If they
share x, then ¢; + ¢; < dp,(x) +dy,(x) <n— 1. Thus 6; + 6; <n — 1 when i #j.
Summing yields the claim for k£ < 3. Now consider k£ > 4 (and n > 3).

Case 1. Some vertex x is in at most one of Hy, ..., Hy. Criticality of H; and
the induction hypothesis yield

k
o(k;K,) =Y (8(H) Z +1)
<140kKe) < 1+flk,n—1) < flk,n).

Case 2. Every vertex is in exactly two of Hy,...,Hy. Let X;; = V(H;)N
V(H;) and n;; = |X;}|; the sets X;; for i < j partition V(K,). Let 6;; = 6(H;[X;,])
if n;; # 0 and 6;; = —1 otherwise. Since H;[X;;| and H;[X;,] decompose K, , we
have 6;; + 6j; < n;j — 1. For i # j, a vertex of minimum degree in H;[X;;| yields
6 < bij+ Z[¢ (ijy ie- Summing over all ordered pairs (i, ) yields

k—1) Z5< Z (nj — 1)+ 2(k — 2) Z ni = (2k — 3)n—<§>,

1<i<j<k 1<i<j<k
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and hence
2k—3 k 2k—3 k
k;K,) = —=< =< f(k,n).
o(k; K») - 1" 2oty sk
Case 3. Some vertex x of K, is in at least three of Hy, ..., H. Indexing the

decomposition so that {i: x € V(H;)} = [m], we have 6, + 62+ -+ O <
n—1.If m=k, we are done. f m =k —1and 6; <...<$6,, then 6; +--- +
Om—1 < ((m—1)/m)(n—1)). Using also 6,, + & < n — 1 yields

—1 2k -3
J(k;Kn)Sk—i—m (n—l)—l—n—l—k—i-ﬁ( n—1) <f(k,n).
m _

For m < k — 2, considering G — x ylelds 6i+6; <n—2 for i,j € [k] — [m].
Summing over all such pairs yields > 6; < (k m)(n —2)/2. Since m >3
and k£ > 4, we obtain

i=m+1

o(k; K) §k+(n—1)+(k_’")2(”_2)
Sk_'_n_1+&2(n_2):%(k—1)’1+2§f(k,n) n

Corollary 11. If n is a positive integer, then o(2;K,) =n+1, 0(3;K,) =
En—{—%, and o(4;K,) L%n—k%J

7. CHROMATIC NUMBER OF r-UNIFORM HYPERGRAPHS

We next obtain an upper bound for x(k; K”). Again we need an auxiliary result.

Proposition 12. [f G is an r-uniform hypergraph with n vertices, then

w(G) Lo w(G) .

r—1 r

Proof. 'We produce a proper coloring. If V(G) is not a clique, then it has an
independent set of size r; choose color classes of size r until the vertex set X that
remains is a clique. Let s = (n — |X|)/r.

Since X is a clique, we have |X| < w(G). Since sets of size r — 1 contain no

edge, G[X ?—i— )-colorable, where ¢ = ||X|/(r — 1)]. Thus x(G) < s+q + 1.
Smcqur w(G) (-4 —1) and rs + (r — 1)g < n, we have
n r—1 n+ n—w(G) w(G
srqt-Tlgpg<tta 19 UG .
r r r r r—1
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Now we are ready to prove Theorem 6.

Theorem 6. If k and r are positive integers with r > 2, then there exists an
integer ¢y, such that, for every positive integer n,

- n
X(k§ Kn) < 1 + Ci -

Proof. Let (Gy,...,Gy) be an arbitrary k-decomposition of the r-uniform
complete hypergraph K. As in Theorem 3, we define a sequence of vertex
subsets. Let Xy = (). For _] > 1, let X be a max1mum clique among the induced
subhypergraphs G, — J_y X;, . .., Gy — Uy Xi.

If |Xi| <kr(r—1), then n< R where R is the Ramsey number
R (kr(r —1),...,kr(r —1)). Since 25:1 X(G)) < kn, we have SF x(G;) <
kR, and it suffices to have c¢;, > kR in this case.

Otherwise, there is a largest positive integer s such that |X;| > kr(r — 1) for
1 <j<s LetX=U_ X;. For 1 <i<k, let ¥; =J{X;: X; is a clique in G;
and j < s}. Let n; = (Yi], G = Gi[Y], wi = w(G}), and w* = Z;‘:] w;. The sets
Yi,..., Y, are pairwise disjoint and have union X. Furthermore, w; = |X;| for
some X; C Y;. Since |X;| > kr(r — 1) for j <s, we conclude that |X| —w* >
(s — k)kr(r —1).

By Proposition 12, x(G!) < w;/(r — 1) + ((n; — w;)/r) + 1. We rewrite the
upper bound as n;/(r —1) — ((n; — w;)/r(r — 1)) + 1. Summing the upper
bounds yields

k

|X]| 1X| — w* n
E G < — k< — k(s — k) +k.
i:lX( l)_r—l r(r—1)+ —r—1 (s = k) +

A clique in G; is an independent set in G; for j # i. Therefore, the inequality
above implies

k
;X Z: —1)s<—1+k2+k

By construction, w(G; — X) < kr(r — 1). Therefore, x(G; — X) < n— |X| < R.
By the subadditivity of y, this yields

D oX(G) S =+ kIR,
r—

which proves the claim with ¢, = k* + k + kR. [
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8. GRAPHS ON SURFACES

This section considers graphs embedded on a surface . For a graph parameter p
and a positive integer k, let p(k; ¥) = max{p(k; G): G embeds on X}.

Surfaces can be classified by their genus and orientability. For & > 0, the
orientable surface Y, is obtained by adding 4 handles to a sphere. For & > 1, the
non-orientable surface 11, is obtained from a sphere with 4 holes by attaching &
Mobius bands along their boundaries to the boundaries of the holes. For example,
IT; is the projective plane, II, is the Klein bottle, etc. The Euler genus g(X) of the
surface X is 2h if ¥ = 3, and is h if ¥ = II,,. The Euler characteristic of X is
2 —g(®).

For a simple graph G with vertex set V and edge set E embedded on a surface
Y. of Euler genus g, Euler’s Formula states that |V| — |E| + |F| > 2 — g, where F
is the set of faces, with equality holding if and only if every face is a 2-cell. When
|V| > 3, this yields |E| < 3|V| — 6+ 3g. For g > 1, this implies that every sub-
graph of G has a vertex of degree at most H(g) — 1, where

g = |V,

In particular, o(G) < H(g). Consequently, if g > 1, then
w(G) < x(G) < xu(G) < o(G) < H(g).

For every surface ¥ other than the Klein bottle, the Heawood number H(g) is,
in fact, the maximum chromatic number of graphs embeddable on ¥, attained by
Kp(g)- This landmark result conjectured by Heawood [12] was proved by Ringel
[19] and Ringel-Youngs [18]. Furthermore, every graph with chromatic number
H(g) embedded on X contains a complete graph on H(g) vertices as a subgraph.
This was proved by Dirac [4,5] for the torus and for g > 4 and was proved by
Albertson and Hutchinson [1] for g € {1,3}.

Although H(2) =7, Franklin [10] proved that the maximum chromatic
number for the Klein bottle is 6. Furthermore, there are 6-chromatic graphs on the
Klein bottle not containing Kg. Such a graph appears in [1].

The version of Brooks” Theorem for list-chromatic number implies that if G is
a graph on the Klein bottle, then also x,;(G) < 6. For graphs on the sphere, the
maximum chromatic number is 4, but the maximum list-chromatic number is 5
(upper bound by Thomassen [22], lower bound by Voigt [23]).

Further results about the chromatic number of graphs embedded on given
surfaces appear in the book of Jensen and Toft [14].

For a surface ¥ and a positive integer k, we have the familiar inequalities

wk; X) < x(k; ) < xe(k; 2) < o(k; X).
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When a graph embeds on the sphere 3, the disjoint union of k copies of G
also embeds on . Hence o(k;¥g) = 6k and w(k; ¥o) = x(k; Xo) = 4k. For all
other surfaces, this is not true. We begin by establishing a lower bound for
w(k; X).

Theorem 13. Let 3 be a surface with positive Euler genus g.

(a) If ¥ is orientable, then w(k;¥) > kH(2|g/2k]).
(b) If ¥ is non-orientable and |g/k| > 3, then w(k;¥) > kH(|g/k]).

Proof. 1f X is orientable, then let ¢’ = 2|g/2k| and m = H(g'); since g’ is
even, K,, embeds on an orientable surface with Euler genus g’. If ¥ is non-
orientable, then let ¢’ = |g/k| and m = H(g'); since ¢’ > 3, K,, embeds on a non-
orientable surface with Euler genus g'.

In either case, let G be the disjoint union of k copies of K,,. Since kg’ < g, it
then follows (see [15]) that G embeds on X. Thus w(k; G) > km. [}

For a surface ¥ of Euler genus g, this lower bound on w(k; XJ) is approximately
(Tk + \/24gk + k?)/2. We next establish an upper bound on o(k;X) that is
asymptotic to this for fixed k and large g.

Theorem 14. [If X is a surface with positive Euler genus g, then

Tk 24kg + 49k* — 48k
U(k;E)SL T V/24kg +49 J

2

Proof. Given a graph G embedded on ¥, let (Gy,...,Gi) be a k-
decomposition of G. For each i, let H; be a o-critical subgraph of G; with
U(H,') = U(G,’), and let d; = (5(H,'), SO O'(G,') =d;+ 1.

We may assume that d; > ... > d;. Let s be the unique non-negative integer
such that d; > 5 if and only if i <s. If s = 0, then

k

Tk + \/24kg + 49K% — 48k
Ea(Gi)SSkg{ /24K +49 J
i=1

2

If s>1, then let H=J;gyH;. Let n=|[V(H)| and e=|E(H)|. For
I C [s], denote by V; the set of all vertices of H that belong to each graph
H; with i € I and to no graph H; with i € [s] —I. Let n; = |V;| and n; = ng;.
Thus,

VH) = > n and n=> n.
] Ich]

i€IC[s
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Since s > 1, we have n > 7. Since H C G, also H embeds on . By Euler’s
Formula, 6n + 6g — 12 > 2e. Every vertex of V; has degree at least )
Thus,

tel

6Zn1+6g— 12>2e>) "n ) d.

IC]s] iel

By rearranging the inequality and interchanging the order of summation
(subtracting more copies of 6 when |I| > 1), we obtain

6g — 12>Zn1< 6+Zd>>z( —6)Zn1>:lzsl: . —6)|V(H;)|.

IC][s] i€l i€lCls]

Since |V(H;)| > d; + 1 and d; > 6 for i € [s], we have

Consequently,

49 s 5\? 1/ \\? 1/ 5\2
6g — 12 + 5> di—2)>= d—->)) == di—s>) ,
ez (a-3) = (2(a-3)) =5(Sa)

and therefore

p—

Z ~(554 /2458 + 4952 — 48s).

l\)

For i > 5, we have d; < 5. Thus we conclude that

=~

k s
1
> o(G)=k+> di<6k—55+) d; < (12 =55+ V2458 +4952 — 48s).
i=1

i=1 i=1

This upper bound increases with s in the domain s > 0. Since s < k, we thus
set s = k to obtain

i Vk + \/24kg + 49k% — 48kJ
O' .
2

i=1

This completes the proof. [ |
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