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Abstract: We introduce the notion of H-linked graphs, where H is a fixed
multigraph with vertices w1; . . . ;wm. A graph G is H-linked if for every
choice of vertices v1; . . . ; vm in G, there exists a subdivision of H in G such
that vi is the branch vertex representing wi (for all i). This generalizes the
notions of k -linked, k -connected, and k-ordered graphs. Given k and
n � 5k þ 6, we determine the least integer d such that, for every loopless
graph H with k edges and minimum degree at least two, every n-vertex
graph with minimum degree at least d is H-linked. This value D1(k; n)
appears to equal the least integer d 0 such that every n-vertex graph with
minimum degree at least d 0 is k -connected. On the way to the proof, we
extend a theorem by Kierstead et al. on the least integer d 00 such that every
n-vertex graph with minimum degree at least d 00 is k-ordered.
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1. INTRODUCTION

Let H be a multigraph. An H-subdivision in a graph G is a pair ðf ; gÞ of

mappings, where f maps VðHÞ into VðGÞ and g maps EðHÞ into the set of paths in

G such that:

(a) f ðuÞ 6¼ f ðvÞ for all distinct u; v 2 VðHÞ;
(b) for every uv 2 EðHÞ, gðuvÞ is an f ðuÞ; f ðvÞ-path in G, and distinct edges

map into internally disjoint paths in G.

A graph G is H-linked if every injective mapping f : VðHÞ ! VðGÞ can be

extended to an H-subdivision in G. This is a natural generalization of k-linkage.1

Recall that a graph is k-linked if for every list of 2k vertices fs1; . . . ; sk;
t1; . . . ; tkg, there exist internally disjoint paths P1; . . . ;Pk such that each Pi is an

si; ti-path. From the definitions of k-linked and H-linked graphs, we immediately

see that a graph G is k-linked if and only if G is H-linked for every graph H with

jEðHÞj ¼ k.

It is known that to check that a graph on at least 2k vertices is k-linked, it is

enough to check only the lists fs1; . . . ; sk; t1; . . . ; tkg, where all si and ti are

distinct. Thus, a graph G on at least 2k vertices is k-linked if and only if G is Mk-

linked, where Mk is the matching with k edges.

Let Bk denote the (multi)graph with 2 vertices and k parallel edges. By

Menger’s Theorem, a simple graph G on at least k þ 1 vertices is k-connected if

and only if G is Bk-linked.

A graph is k-ordered, if for every ordered sequence of k vertices, there is a

cycle that encounters the vertices of the sequence in the given order. Let Ck

denote the cycle of length k. Clearly, a simple graph G is k-ordered if and only if

G is Ck-linked.

After Chartrand introduced the notion of k-ordered graphs, several authors

(see, e.g., [4, 5, 7, 10, 13]) studied sufficient degree conditions for a graph to be k-

ordered. Recall that Dirac [2] found sufficient conditions for a simple graph G to

be Hamiltonian in terms of the minimum degree, �ðGÞ, and Ore [14] found

similar conditions in terms of �2ðGÞ, the minimum value of the sum degðuÞþ
degðvÞ over all pairs fu; vg of non-adjacent vertices in G. Let D0ðn; kÞ denote the

minimum positive integer d such that every n-vertex simple graph with minimum

degree at least d is k-ordered. Similarly, let R0ðn; kÞ denote the minimum

positive integer r such that every n-vertex simple graph G with �2ðGÞ � r is

k-ordered. Improving on results in [4, 13], it was shown in [5] that R0ðn; kÞ ¼
nþ dð3k � 9Þ=2e for every 3 � k � n=2. This implies that D0ðn; kÞ �

1After the paper was submitted, the authors learned that Ferrara, Gould, Tansey, and Whalen [6] also introduced

and studied this notion.
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dð2nþ 3k � 9Þ=4e for every 3 � k � n=2. Moreover, Kierstead, Sárközy, and

Selkow [10] showed that D0ðn; kÞ ¼ dn=2e þ bk=2c � 1 for 3 � k � ðnþ 3Þ=11.

Observe that these bounds demonstrate the interesting phenomenon:

R0ðn; kÞ > 2D0ðn; kÞ for k small with respect to n. It is also known that

D0ðn; kÞ > dn=2e þ bk=2c � 1 for k > n=3, but the value of D0ðn; kÞ was not

known for ðnþ 3Þ=11 < k < ð2nÞ=5. Kierstead et al. [10] asked about the value

of D0ðn; kÞ in this range for k.

The main result of our paper gives the minimum degree conditions for a graph

to be H-linked if �ðHÞ � 2.

Theorem 1. Let H be a loopless graph with k edges and �ðHÞ � 2. Every

simple graph G of order n � 5k þ 6 with �ðGÞ � dðnþ kÞ=2e � 1 is H-linked. If

H is the cycle Ck with k edges, then every graph G of order n � 5k þ 6 with

�ðGÞ � dn=2e þ bk=2c � 1 is H-linked. The minimum degree conditions are

sharp.

This theorem extends the result of Kierstead et al. [10] in two directions: for a

larger scope of k and for much more general H. In particular, Theorem 1 yields

D0ðn; kÞ ¼ dn=2e þ bk=2c � 1 for k � ðn� 6Þ=5.

Observe that the restriction �ðGÞ � dðnþ kÞ=2e � 1 is exactly the minimum

degree condition that provides the k-connectivity of G. Thus, an evident degree

condition for a graph to be k-connected provides that a graph is H-linked for

many H. If one drops the condition �ðHÞ � 2, then this degree restriction is not

sufficient in general. In this case, one needs a higher minimum degree for many

graphs H. Kawarabayashi and we [9] considered similar problem for k-linked

graphs. Let Dðn; kÞ be the minimum positive integer d such that every n-vertex

simple graph with minimum degree at least d is k-linked. Also, let Rðn; kÞ denote

the minimum positive integer r such that every n-vertex simple graph G with

�2ðGÞ � r is k-linked.

Theorem 2 ([9]). If k � 2, then

Rðn; kÞ ¼
2n� 3 n � 3k � 1;

b2ðnþ5kÞ
3

c � 3 3k � n � 4k � 2;

nþ 2k � 3 n � 4k � 1;

8><
>: ð1Þ

and

Dðn; kÞ ¼ Rðn; kÞ
2

� �
¼

n� 1 n � 3k � 1;

bnþ5k
3
c � 1 3k � n � 4k � 2;

dn�3
2
e þ k n � 4k � 1:

8><
>: ð2Þ

Note that Dðn; kÞ ¼ Rðn; kÞ=2d e for all possible n and k, unlike the situation

with D0ðn; kÞ and R0ðn; kÞ. Egawa, Faudree, Györi, Ishigami, Schelp, and

Wang [3] considered a closely related problem, but the answers differ, especially
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for �2ðGÞ. The bounds of Theorem 2 and of Egawa et al. [3] are helpful in

estimating f ðkÞ—the minimum positive integer f such that every f -connected

graph is k-linked. After a series of papers by Jung [8], Larman and Mani [11],

Mader [12], and Robertson and Seymour [15], the first linear upper bound for f ,

namely, f ðkÞ � 22k, was proved by Bollobás and Thomason [1]. Very recently,

Thomas and Wollan [16] improved this bound to f ðkÞ � 16k. Their proof is

elegant. In [9], we show how to apply Theorem 2 in the Thomas–Wollan proof to

improve their bound to f ðkÞ � 12k. Using the idea in [9] among other new ideas,

Thomas and Wollan improved the bound further to f ðkÞ � 10k.

It is worth to mention that while the restriction on H to have the minimum

degree at least 2 decreases the minimum degree in G providing that G is H-linked

from about 0:5nþ k to 0:5nþ 0:5k, further restrictions on the minimum degree

of H do not affect the bound anymore.

Note also that formally the papers [4, 5, 7, 10, 13] discussed a stronger than

being k-ordered notion of a k-ordered Hamiltonian graph, i.e., a graph in which

for every ordered sequence of k vertices, there is a Hamiltonian cycle that

encounters the vertices of the sequence in the given order. But in each of the

papers, the main difficulty was to prove that a graph is k-ordered. It is not difficult

to prove that every n-vertex k-ordered graph G with �ðGÞ � dn=2e þ bk=2c � 1

is k-ordered Hamiltonian (see, e.g., [10]). This fact, together with Theorem 1,

yields that for 3 � k � ðn� 6Þ=5, every n-vertex simple graph G with �ðGÞ �
dn=2e þ bk=2c � 1 is k-ordered Hamiltonian.

We will use the following analog of the Hamiltonian property: Given two

graphs H and G, we say that G is fully H-linked if every injective mapping

f : VðHÞ ! VðGÞ can be extended to an H-subdivision in G that contains all

vertices of G. Clearly, a graph G is fully Ck-linked exactly when it is k-ordered

Hamiltonian. The following lemma elaborates some ideas of a similar result

in [3].

Lemma 3. Let H be a loopless graph with k edges and �ðHÞ � 2. If an n-vertex

simple graph G is H-linked and �2ðGÞ � nþ k � 2, then G is fully H-linked.

This lemma and Theorem 1 together immediately imply the following.

Theorem 4. Let H be a loopless graph with k edges and �ðHÞ � 2. Every

simple graph G of order n � 5k þ 6 with �ðGÞ � dðnþ kÞ=2e � 1 is fully H-

linked. Every graph G of order n � 5k þ 6 with �ðGÞ � dn=2e þ bk=2c � 1 is

fully Ck-linked.

We will prove the upper bounds in Theorem 1 for general H and for H ¼ Ck in

parallel, because the argument works in both cases. In the next section, we

initialize the proof of the upper bounds for Theorem 1 by contradiction. We

assume that there is no good H-linkage for some choice of branching vertices in

G and consider an optimal in some sense linkage with the vertex set X. In

Section 3, we estimate jXj. In Section 4, we show that some vertices outside of X

have many common neighbors. Then in Section 5, we use these facts to finish the
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proof of the upper bounds in Theorem 1. In Section 6, we prove Lemma 3 and

thus Theorem 4. Finally, in Section 7, we show examples confirming that the

bounds of Theorem 1 are tight and discuss possible strengthenings.

2. THE SETUP FOR THE PROOF OF THEOREM 1

Let f : VðHÞ ! VðGÞ be an injective mapping and W ¼ f ðVðHÞÞ. Let EðHÞ ¼
fej ¼ u0

j v
0
j : 1 � j � kg. Let uj ¼ f ðu0

j Þ and vj ¼ f ðv0
j Þ. Since �ðHÞ � 2, we have

jW j ¼ jVðHÞj � k.

Define a partial H-linkage C ¼
Sk

j¼1 Pj, where each Pj is either fuj; vjg or a

uj; vj-path, such that

(1) jXj � jW j þ 2�þ 4, where X is the set of vertices of the partial H-linkage,

and � is the number of non-empty paths;

(2) the paths Pj’s are pairwise internally disjoint and internally disjoint from

W .

The family C0 of all empty paths (that is, each Pj ¼ fuj; vjg) satisfies the

properties (1) and (2) above with X ¼ W and � ¼ 0. Therefore, C0 is a partial

H-linkage.

If all the Pj are non-empty, then the partial H-linkage is an H-subdivsion in G.

A partial H-linkage is optimal, if as many as possible of the Pj-s are non-empty

and subject to this, C has as few vertices as possible.

Suppose for a contradiction that C is an optimal partial H-linkage, but C is not

an H-subdivision. Let, for definiteness, Pk be empty and set x ¼ uk and y ¼ vk.
Let X denote the set of vertices of C. Let A ¼ NðxÞ � X;B ¼ NðyÞ � X. Let

R ¼ VðGÞ � ðX [ A [ BÞ. Note that each of jAj and jBj is at least

�ðGÞ � ðjXj � 2Þ � nþ k � 3

2
� ðjW j þ 2ðk � 1Þ þ 4 � 2Þ

� ð5k þ 6Þ þ k � 3

2
� 3k ¼ 3

2
> 1:

It follows that we may choose distinct a1; a2 2 A and b1; b2 2 B.

For v 2 VðGÞ, let djðvÞ denote the number of neighbors of v ‘inside’ Pj plus

�j ¼ 1=degHðu0
j Þ if uj 2 NGðvÞ and plus �j ¼ 1=degHðv0

j Þ if vj 2 NGðvÞ. For

example, if Pj ¼ ujw1w2vj, degHðu0
j Þ ¼ 3 and v is adjacent to uj and w2 in Pj, then

djðvÞ ¼ 4=3. We will use the fact that

Xk
j¼1

djðvÞ ¼ jNGðvÞ \ Xj for all v 2 VðGÞ: ð3Þ

Let lp be the number of Pj’s of length p for p � 1, and l0 be the number of empty

paths. Then

jXj ¼ jWj þ
X
p�1

ðp� 1Þlp ¼
Xk
j¼1

ð�j þ �jÞ þ
X
p�1

ðp� 1Þlp ð4Þ
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and

k ¼
X
p�0

lp ¼ �þ l0: ð5Þ

In the next section, we will prove that jXj is rather small and use this in

Section 4 to prove that every two vertices in A (and every two vertices in B) have

several common neighbors outside W . This will help us in Section 5 to construct

more Pj-s than in C, a contradiction to the choice of C.

3. AN UPPER BOUND ON THE SIZE OF X

We will assume that every non-empty Pj is of the form Pj ¼ uj;w1;j; . . . ;
wpj�1;j; vj. Sometimes, for simplicity, we will write p instead of pj and wi instead

of wi;j if j is clear from the context. In the next three sections, for every

j ¼ 1; . . . ; k, we denote �j ¼ 1=degHðu0
j Þ, �j ¼ 1=degHðv0

j Þ, Mj ¼ djðxÞ þ djðyÞ,
and Lj ¼ djða1Þ þ djða2Þ þ djðb1Þ þ djðb2Þ.
Lemma 5. For a Pj ¼ uj;w1; . . . ;wp�1; vj, let sj ¼ Mj þ 0:5Lj, � ¼ �j, and

� ¼ �j. Define

D1ðp; �; �Þ ¼
pþ 1 þ 2� þ 2� for p � 1;

pþ 3 þ 2� þ 2� for p � 2:

�

Then (a) sj � D1ðp; �; �Þ;
(b) sk � 2ð�k þ �kÞ. Furthermore, if xy =2 EðGÞ, then sk ¼ �k þ �k.

Proof. Let � ¼ maxf�; �g. Since �ðHÞ � 2, we have � � 1=2.

By the definition, Lk ¼ 2�k þ 2�k. If xy 2 EðGÞ, then Mk ¼ �k þ �k; otherwise,

Mk ¼ 0. This proves (b).

Claim 3.1. Let Z ¼ fa1; a2; b1; b2g.

(i) For each z 2 Z, the distance in Pj between any two neighbors of z is at

most two. In particular, each z 2 Z has at most 3 neighbors in Pj.

(ii) If p � 3, then no z 2 Z is a common neighbor of uj and vj.
(iii) If p � 3, then x and y have no interior neighbors at distance at most p� 3

in Pj.

(iv) If p � 3, then x (respectively, y) has no interior neighbors at distance at

most p� 4 in Pj from interior neighbors of b1 and b2 (respectively, of a1

and a2).

Proof. If some z 2 Z is adjacent to wi and wiþm for some m � 3 (we treat uj as

w0 and vj as wp), then we can replace Pj by a shorter uj; vj-path, a contradiction to

the optimality of C. This proves (i), and (ii) is a partial case of (i).
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If x and y have interior neighbors at distance at most p� 3 in Pj, then we can

delete Pj from C and add a shorter x; y-path. This proves (iii). The same trick

proves (iv). &

In order to prove (a), we consider several cases (depending on p).

Case 1. p ¼ 0. Since C is optimal, each z 2 Z is adjacent to at most one of x

and y. Therefore, Lj � 4� � 2, and sj ¼ Mj þ 0:5Lj � 2ð� þ �Þ þ 1 ¼ D1ð0; �; �Þ.

Case 2. p ¼ 1. Trivially,

sj � 2ð� þ �Þ þ 0:5ð4ð� þ �ÞÞ � 2ð� þ �Þ þ 2 ¼ D1ð1; �; �Þ:

Case 3. p ¼ 2. If each of x and y is adjacent to w1 and some z 2 Z is adjacent

to both uj and vj, then C is not optimal: we can replace Pj by the path uj; z; vj and

add the path xw1y. Otherwise, either Mj � 2ð� þ �Þ þ 1 and hence

sj � 2ð� þ �Þ þ 1 þ 0:5ð4ð� þ � þ 1ÞÞ � 2ð� þ �Þ þ 5 ¼ D1ð2; �; �Þ;

or Lj � 4ð�þ 1Þ and hence

sj � 2ð� þ � þ 1Þ þ 0:5ð4ð�þ 1ÞÞ � 2ð� þ �Þ þ 2 þ 3 ¼ D1ð2; �; �Þ:

Case 4. p ¼ 3. By (iii), Mj � 2ð� þ �Þ þ 2. If Lj � 8, then sj � D1ð3; �; �Þ.
Otherwise, because of the symmetry between A and B, we may assume that

djða1Þ þ djða2Þ > 4 and that djða1Þ > 2. Then by (ii), we may assume that a1 is

adjacent to w1;w2 and vj and that a2 is adjacent to w1 and w2 (and may be to one

more vertex). If yw2 2 EðGÞ, then we can replace Pj with uj;w1; a1; vj and add the

path x; a2;w2; y, a contradiction to the optimality of C. If neither of x and y is

adjacent to w2, then by (iii), Mj � 2ð� þ �Þ þ 1, by (ii), Lj � 4ð2 þ �Þ � 10, and

therefore sj � 2ð� þ �Þ þ 6 ¼ D1ð3; �; �Þ. If xw2 2 EðGÞ and some b 2 fb1; b2g
is adjacent to w2, then we can replace Pj with uj;w1; a1; vj and add the path

x;w2; b; y. Finally, if neither of b1w2 and b2w2 is in EðGÞ, then by (i)

djðb1Þ þ djðb2Þ � 2ð1 þ �Þ � 3, and hence by (ii) Lj � 5 þ 3 ¼ 8.

Case 5. p � 4. If x has r interior neighbors and r � 2, then by (iii),

djðyÞ � � þ � and by (iv), djðbiÞ � maxf0; 3 � rg þ �. Thus in this case

sj � 2� þ 2� þ r þ 3 þmaxf0; 3 � rg þ �:

If r � 3, then sj � 2� þ 2� þ p� 1 þ 3 þ � � pþ 3 þ 2� þ 2� ¼ D1ðp; �; �Þ.
If r ¼ 2, then sj � 2� þ 2� þ r þ 4 þ � � 2� þ 2� þ pþ 2:5 � D1ðp; �; �Þ,
again.

Thus, we can assume that each of x and y has at most one interior neighbor in

Pj. By (iv), djðaiÞ þ djðyÞ � � þ � þ �þ 3 and djðbiÞ þ djðxÞ � � þ � þ �þ 3
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for i ¼ 1; 2. Therefore, sj � 2�þ 6 þ 2� þ 2� � 2� þ 2� þ pþ 2 þ 1 ¼ D1ðp;
�; �Þ. This finishes the proof of (a). &

Lemma 6. Let Z ¼ fa1; a2; b1; b2g and V0 ¼ ðA [ BÞ � Z � NGðZÞ. Then jXj �
jWj þ 2�þ 1 � jRj � jV0j.

Proof. Let�0 ¼ degGðxÞ þ degGðyÞ þ ð1=2ÞðdegGða1Þ þ degGða2Þ þ degG

ðb1Þ þ degGðb2ÞÞ. Observe that every vertex w =2X contributes to �0 at most 2: If

w 2 R, then it is not adjacent to x and y, and if w 2 A (respectively, w 2 B), then it

is not adjacent to y, b1, and b2 (respectively, to x, a1, and a2). By the definition,

every vertex in V0 is not adjacent to any vertex in Z, and therefore contributes to

�0 at most 1. Furthermore, every z 2 Z contributes to �0 at most 1:5, since it is not

adjacent to itself. Therefore,

�0 � 4 � 1:5 þ 2ðjA [ Bj � 4Þ þ 2jRj þ
Xk
j¼1

sj � jV0j: ð6Þ

By Lemma 5,

Xk
j¼1

sj � l0 þ 2l1 þ
X
p�2

ðpþ 3Þlp þ 2
Xk
j¼1

ð�j þ �jÞ � 1

¼ l0 þ 2l1 þ
X
p�2

ðpþ 3Þlp þ 2jWj � 1:

ð7Þ

Therefore,

�0 � 2ðjA [ Bj þ jRjÞ � jV0j þ 2ðjW j þ l0 þ
X
p�1

plpÞ � 3 � l0

þ
X
p�2

ð3 � pÞlp ¼ 2ðnþ kÞ � jV0j � 3 þ l2 � l0 �
X
p�3

ðp� 3Þlp:
ð8Þ

If H is a cycle, then every �j and �j is equal to 0:5, and the part (b) of Lemma 5

will deduct an additional 1 from (7). In this case, we will get
Pk

j¼1 sj � l0 þ
2l1 þ

P
p�2ðp� 1Þlp þ 2jW j � 2 and will have �4 instead of �3 in (8).

Recall that for general H, we have �0 � 4�ðGÞ � 2ðnþ k � 2Þ. Comparing

with (8), we get l2 � l0 þ
P

p�3ððp� 3ÞlpÞ � 1 þ jV0j:
If H is a cycle, then we have only �0 � 4�ðGÞ � 2ðnþ k � 3Þ, but because of

�4 instead of �3 in (8), we have

l2 � l0 þ
X
p�3

ððp� 3ÞlpÞ � 2 þ jV0j; ð9Þ

i.e., (9) holds in both cases.
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Thus, by (4), (5), and (9),

jXj ¼
X
p�1

ðp� 1Þlp þ jW j ¼ jW j þ 2
X
p�1

lp � 2l1 � l2 þ
X
p�3

ðp� 3Þlp

� jW j þ 2�� 2l1 � l2 þ l2 þ 2 � l0 � jV0j � jW j þ 2�þ 1 � jV0j: ð10Þ

Therefore if some u 2 R has a neighbor a0 2 A and a neighbor b0 2 B, then we

can add to C the path Pk ¼ x; a0; u; b0; y. The new set of paths will be a better

partial linkage, since we increase � by 1 and the new X would have size at most

jW j þ 2�þ 1 þ 3 � jW j þ 2ð�þ 1Þ þ 2. This is a contradiction to the optim-

ality of C. Thus, NðaÞ \ NðbÞ \ R ¼ ; for each a 2 A and b 2 B. This means that

every w 2 R contributes to �0 at most 1, and (6) becomes

�0 � 6 þ 2ðjA [ Bj � 4Þ þ jRj þ
Xk
j¼1

sj � jV0j:

Accordingly, (9) and (10) become l2 � l0 þ
P

p�3ððp� 3ÞlpÞ � 2 þ jRj þ jV0j
and

jXj � jW j þ 2�þ 1 � jRj � jV0j: ð11Þ

&

Lemma 7. jAj þ jBj > 2k.

Proof. By (11), jAj þ jBj ¼ n� ðjXj þ jRjÞ � n� ðjW j þ 2�þ 1Þ � 5kþ
6 � 3k þ 1 > 2k. &

4. COMMON NEIGHBORS OF VERTICES IN A OUTSIDE OF X

Lemma 8. Each v 2 VðGÞ is adjacent to at least 3 vertices in A [ B� V0. In

particular, either v has 2 neighbors in A that belong or are adjacent to the set

fa1; a2g, or 2 neighbors in B that belong or are adjacent to the set fb1; b2g.
Proof. By Lemma 6, jXj � jW j þ 2�þ 1 � jRj � jV0j and hence jXj þ jRj þ

jV0j � 3k � 1. On the other hand,

�ðGÞ � 5k þ 6

2

� �
þ k

2

� �
� 1 ¼ 3k þ 2:

Thus each vertex has at least ð3k þ 2Þ � ð3k � 1Þ ¼ 3 neighbors in VðGÞ � X

�R� V0. &
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Let A00 (respectively, B00) denote the set of vertices in X having at least 2

neighbors in A (respectively, in B) that belong or are adjacent to the set fa1; a2g
(respectively, fb1; b2g). The above lemma yields that

A00 [ B00 ¼ X: ð12Þ

We will need the following analog of Lemma 5.

Lemma 9. For a Pj ¼ uj;w1; . . . ;wp�1; vj, let Mj ¼ djðxÞ þ djðyÞ and Lj ¼
djða1Þ þ djða2Þ þ djðb1Þ þ djðb2Þ: Let Sj ¼ Mj þ Lj, � ¼ �j ¼ 1=degHðu0

j Þ, and

� ¼ �j ¼ 1=degHðv0
j Þ. Define

D2ðp; �; �Þ ¼
2pþ 1 þ 3� þ 3� for p � 1;

2pþ 3 þ 3� þ 3� for p � 2:

�

Then ðaÞ Sj � D2ðp; �; �Þ;
(b) Sk � 3ð�k þ �kÞ. Furthermore, if xy =2 EðGÞ, then Sk ¼ 2ð�k þ �kÞ.
Proof. The proof follows the lines of that for Lemma 5, in particular, the

argument for (b) is simply the same. Thus, we present here only the proof of (a).

As in the proof of Lemma 5, let � ¼ maxf�; �g and consider several cases

depending on p. We will use Claim 3.1 several times.

Case 1. p ¼ 0. As in the proof of Lemma 5, each z 2 Z has at most one

neighbor in fuj; vjg. If neither of uj and vj is adjacent to each z 2 Z, then

Lj � � þ � þ 2� � � þ � þ 1, and therefore Sj ¼ Mj þ Lj � 2ð� þ �Þ þ ð�þ
� þ 1Þ ¼ D2ð0; �; �Þ. Thus, we can assume that vj is adjacent to each z 2 Z.

By Lemma 8, uj has a neighbor w 2 A [ B adjacent to some z 2 Z. Then adding

to C the path Pj ¼ uj;w; z; vj creates a better partial linkage, a contradiction.

Case 2. p ¼ 1. Trivially, Sj � 6ð� þ �Þ � 3ð� þ �Þ þ 3 ¼ D2ð1; �; �Þ:
Case 3. p ¼ 2. If neither of x and y is adjacent to w1, then Sj � 2ð�þ

�Þ þ 4ð1 þ � þ �Þ � D2ð2; �; �Þ. Suppose that xw1 2 EðGÞ and yw1 =2 EðGÞ. If

neither of a1 and a2 is adjacent to both uj and vj or b1w1 =2 EðGÞ, then

Lj � maxf2ð1 þ � þ �Þ þ 2ð1 þ �Þ; 4ð1 þ � þ �Þ � 1g � 6 þ ð� þ �Þ

and Mj þ Lj � 7 þ 3ð� þ �Þ. Otherwise, if b1w1 2 EðGÞ and, say, a1 is adjacent

to both uj and vj, then we can replace Pj with the path uj; a1; vj and add to C the

path x;w1; b1; y, a contradiction to the choice of C.

Finally, suppose that each of x and y is adjacent to w1. If some z 2 Z is adjacent

to both uj and vj, then C is not optimal: we can replace Pj by the path uj; z; vj and

add the path xw1y. Thus, we assume that no z 2 Z is adjacent to both uj and vj. As

in Case 1, if neither of uj and vj is adjacent to each z 2 Z, then Lj � 4 þ �þ
� þ 2� � � þ � þ 5, and therefore Sj ¼ Mj þ Lj � 7 þ 3ð� þ �Þ ¼ D2ð2; �; �Þ.
Otherwise, if, say, vj is adjacent to each z 2 Z, then by Lemma 8, uj has a

neighbor w 2 A [ B adjacent to some z 2 Z. In this case, we can replace Pj with
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the path Pj ¼ uj;w; z; vj and add to C the path x;w1; y, a contradiction to the

optimality of C.

Case 4. p ¼ 3. By (iii), Mj � 2ð� þ �Þ þ 2. If Lj � 7 þ � þ �, then Sj �
D2ð3; �; �Þ. Suppose that

Lj > 7 þ � þ �: ð13Þ

Case 4.1. There exists some z 2 Z, say, a1 adjacent to two non-adjacent

vertices of Pj, say, to uj and w2 and such that a2w1 2 EðGÞ. If b1w1 2 EðGÞ, then

we can replace Pj with uj; a1;w1; vj and add to C the path x; a2;w1; b1; y. By

Lemma 6, the new family will be a partial linkage, a contradiction to the

optimality of C. Thus, neither of b1 and b2 is adjacent to w1. Then by (ii),

Lj � 2ð1 þ �Þ þ 2ð2 þ �Þ ¼ 6 þ 4�. Moreover, if at least one z 2 Z is not

adjacent to uj, then Lj � 6 þ ð� þ �Þ þ 2�, a contradiction to (13). Suppose now

that every z 2 Z is adjacent to uj and (13) holds. For this, we need

fw1a1;w2a2;w2b1;w2b2g � EðGÞ. Then by Lemma 8, vj has a neighbor

w 2 A [ B adjacent to some z 2 Z. By symmetry, we can assume that this z is

b1. In this case, we replace Pj by the path uj; b1;w; vj and add to C the path

x; a1;w2; b2; y. This contradicts the choice of C.

Case 4.2. Case 4.1 does not hold. By (ii), in this case, djða1Þ þ djða2Þ � 4

and djðb1Þ þ djðb2Þ � 4. Moreover, if Case 4.1 does not hold and, say,

djða1Þ þ djða2Þ > 3 þ � þ �, then either of a1 and a2 is adjacent to both w1

and w2. In view of (13), we derive that every z 2 Z is adjacent to both w1 and w2.

Then by Lemma 8, vj has a neighbor w 2 A [ B either in Z or adjacent to some

z 2 Z. By symmetry, we can assume that this z is b1. In this case, we replace Pj by

the path uj;w1; b1; ðw; Þvj and add to C the path x; a1;w2; b2; y. This again

contradicts the choice of C.

Case 5. p � 4. If x has r interior neighbors and r � 2, then by (iii)

djðyÞ � � þ � and by (iv) djðbiÞ � maxf0; 3 � rg þ �. Thus in this case

Sj � 2� þ 2� þ r þ 6 þ 2 maxf0; 3 � rg þ 2�:

If r � 3, then Sj � 2� þ 2� þ p� 1 þ 6 þ 2� � pþ 6 þ 2� þ 2� � D2ðp; �; �Þ.
If r ¼ 2, then Sj � 2� þ 2� þ 2 þ 6 þ 2 þ 2� � 2� þ 2� þ 11 � D2ðp; �; �Þ,
again.

Thus, we can assume that each of x and y has at most one interior neighbor in

Pj. By (iv), djða1Þ þ djðyÞ � � þ � þ �þ 3 and djðb1Þ þ djðxÞ � � þ � þ �þ 3.

Using this and (i), we have Sj � 2ð� þ � þ �þ 3Þ þ 6 � 2ð� þ �Þ þ 13. This is

at most D2ðp; �; �Þ for p � 5. Let p ¼ 4.

Case 5.1. Some z 2 Z, say, a1, is adjacent to w1 and w3. Then by (i) and (iv),

djðyÞ þ djða1Þ � 3 þ � þ �. Suppose that a2w2 2 EðGÞ. If neither of b1 and b2 is

adjacent to w2, then by (i), djðb1Þ þ djðb2Þ � 4 and therefore Sj � 3þ
ð3 þ � þ �Þ þ 4 þ ð1 þ � þ �Þ < D2ð4; �; �Þ. Thus, we may assume that

b1w2 2 EðGÞ. Then we can replace Pj by the path uj;w1; a1;w3; vj and add to C
the path x; a2;w2; b1; y, a contradiction to the optimality of C.
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Suppose now that a2w2 =2 EðGÞ. By (i), djða2Þ � 2, and therefore,

Sj � 3 þ ð� þ �Þ þ 2 þ ð3 þ � þ � þ �Þ þ 3 � 11 þ 2ð� þ �Þ þ � � D2ð4; �; �Þ:

Case 5.2. No z 2 Z is adjacent to both w1 and w3. This yields, in particular,

that djðzÞ � 2 þ � for every z 2 Z. Assume that � ¼ �. Recall that djða1Þþ
djðyÞ � � þ � þ �þ 3. Moreover, in our case, by (iv), if djða1Þ þ djðyÞ > �þ
� þ � þ 3, then uja1 2 EðGÞ and w3y 2 EðGÞ. Since both x and y cannot be

adjacent to w3 by (iii), we have

ðdjða1Þ þ djðyÞÞ þ ðdjðb1Þ þ djðxÞÞ � 2ð� þ � þ 3Þ þ � þ �

and therefore

Sj � 3ð� þ �Þ þ 6 þ 2ð2 þ �Þ � D2ð4; �; �Þ:

This finishes the proof of the lemma. &

Lemma 10. For every non-adjacent s; t 2 A (or B), jNðsÞ \ NðtÞ � Xj � 3.

Proof. Suppose to the contrary that a1; a2 2 A, a1a2 =2 EðGÞ and the

cardinality of the set T of common neighbors of a1 and a2 outside of X is at

most two. Consider arbitrary b1; b2 2 B and let Z ¼ fa1; a2; b1; b2g. Then the sum

of degrees of vertices in Z in the subgraph of G induced by Z [ fx; yg is at most 6.

Furthermore, for each u 2 A� Z � T , jNðuÞ \ fx; ygj � 1 and jNðuÞ \ Zj � 1,

and for each u 2 R, NðuÞ \ fx; yg ¼ ; and jNðuÞ \ Zj � 2. It follows that for

�00 ¼degGðxÞþdegGðyÞ þ degGða1Þ þ degGða2Þ þ degGðb1Þ þ degGðb2Þ we have

�00 � 6 þ 2ðjAj � 4Þ þ 6 þ 3ðjBj � 2Þ þ 2jRj þ
Xk
j¼1

Sj: ð14Þ

By Lemma 9,

Xk
j¼1

Sj � l0 þ 3l1 þ
X
p�2

ð2pþ 3Þlp þ 3
Xk
j¼1

ð�j þ �jÞ � 1

� l0 þ 3l1 þ
X
p�2

ð2pþ 3Þlp þ 3jWj � 1:

ð15Þ

Therefore,

�00 � 3ðjAj þ jBj þ jRj þ jW j þ l0 þ
X
p�1

plpÞ � 3 � 2l0 þ l2 �
X
p�3

ðp� 3Þlp

�jAj � jRj � 3ðnþ kÞ þ l2 � 3 � 2l0 � jAj � jRj �
X
p�3

ðp� 3Þlp:
ð16Þ
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Recall that �00 � 6�ðGÞ � 3ðnþ k � 3Þ. Thus by (4) and (5),

jXj ¼ jW j þ
X
p�1

ðp� 1Þlp ¼ jW j þ 2�þ
X
p�3

ðp� 3Þlp � 2l1 � l2

� jW j þ 2�þ l2 � ðjAj þ jRj þ 2l0Þ � 2l1 � l2 þ 6

� k þ 2ðk � 1Þ � jAj � jRj � 2l0 þ 6;

ð17Þ

that is,

jAj þ jRj þ jXj � 3k þ 2:

Then for a1 2 A, we have degGða1Þ � jAj þ jRj þ jXj � 2 � 3k, which contra-

dicts the minimum degree condition. &

5. PROOF OF THEOREM 1

Lemma 11. Let X be optimal, j 2 ½k�, and either fuj; vjg � A00 or fuj; vjg � B00.
Then for each a 2 A and b 2 B,

ðNðaÞ \ NðbÞ \ PjÞnfuj; vjg ¼ ;:

Proof. Assume to the contrary that r 2 NðaÞ \ NðbÞ \ Pjnfuj; vjg. Let

P0
k ¼ ðx; a; r; b; yÞ. Without loss of generality, assume that fuj; vjg � A00. Then

there exist s 2 NðujÞ \ Anfag and t 2 NðvjÞ \ Anfag. If s ¼ t or s is adjacent to t,

then let P0
j ¼ ðuj; s; t; vjÞ.

If s and t are non-adjacent, then by Lemma 10, we have jðNðsÞ \ NðtÞÞnXj � 3,

and therefore there exists q 2 NðsÞ \ NðtÞnðX [ fa; bgÞ. In this case, let

P0
j ¼ ðuj; s; q; t; vjÞ. In both cases, P0

j is a path disjoint from P0
k. Thus in both

cases, we increase � by one and, by (11), maintain jXj � jW j þ 2�þ 4. This is a

contradiction. &

Similarly to djðvÞ, let djðu; vÞ denote the number of common neighbors of u

and v ‘inside’ Pj plus �j � jNðvÞ \ fujgj plus �j � jNðvÞ \ fvjgj. Let X be optimal,

a 2 A, b 2 B. Since x; y =2NðaÞ \ NðbÞ, we have NðaÞ \ NðbÞ \ ðVðGÞ � Xþ
xþ yÞ ¼ ;. For general H and for even k when H is a cycle, jNðaÞ \ NðbÞj �
2ðnþ k � 2Þ=2 � ðn� 2Þ ¼ k. It follows that there exists some j ¼ jða; bÞ 2
½k � 1� such that djða; bÞ > 1. If H is a cycle and k is odd, then we have only

jNðaÞ \ NðbÞj � k � 1, but there is some h 2 ½k � 1� such that fuh; vhg � A00 or

fuh; vhg � B00. In this case, by Lemma 11, NðaÞ \ NðbÞ\ Phnfuh; vhg ¼ ; and

among the remaining k � 2 indices, there exists some j ¼ jða; bÞ 2 ½k� such that

djða; bÞ > 1. In the rest of this section, the choice of jða; bÞða 2 A; b 2 BÞ is

fixed.
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Lemma 12. Let X be optimal, j 2 ½k�. Then there is at most one a 2 A, such that

there is more than one b 2 B with j ¼ jða; bÞ.

Proof. Assume to the contrary that there are a1; a2 2 A and b1; b2; b3; b4 2 B

such that jða1; b1Þ ¼ jða1; b2Þ ¼ jða2; b3Þ ¼ jða2; b4Þ ¼ j, where a1 6¼ a2, b1 6¼ b2,

b3 6¼ b4. Note that by the definition of jða; bÞ, each of ai, i ¼ 1; 2 has a common

neighbor with each of b2i�1 and b2i among interior vertices of Pj. We may assume

that uj 2 A00nB00; vj 2 B00nA00.

Case 1. Some of a1, a2 has at least two common neighbors with some bi
among interior vertices of Pj. Then there exist distinct s1; s2 2 Pjnfuj; vjg such

that ða1; s1; b1Þ and ða2; s2; b3Þ are paths. Assume that the order in Pj is

uj; s1; s2; vj.
Assume that a0ð6¼ a1Þ is a neighbor of uj. If a0 ¼ a2 or is adjacent to a2, we

have two disjoint paths x; a1; s1; b1; y and uj; a
0; a2; s2;Pj; vj. Deleting Pj from C

and adding these two paths will increase � and by ð11Þ will maintain jXj �
jWj þ 2�þ 4. Otherwise, by Lemma 10, a0 and a2 have a common neighbor

a 2 A0 � fa1g. Then we have two disjoint paths x; a1; s1; b1; y and uj; a
0; a; a2;

s2;Pj; vj. As above, replacing Pj with these paths increases � and by ð11Þ
maintains jXj � jW j þ 2�þ 4. This is a contradiction.

Case 2. Each of NðaiÞ \ NðblÞ, i ¼ 1; 2, l ¼ 2i� 1; 2i, contains exactly one

internal vertex of Pj and some of uj; vj (may be both). Since vj 2 B00nA00, we may

assume that uj 2 Nða1Þ \ Nðb1Þ \ Nðb2Þ. But this contradicts the fact that

uj 2 A00nB00. &

By Lemma 7, jAj þ jBj > 2k. We may assume that jAj � jBj. Thus jBj � k. If

jAj � k, then since jBj � k, for each a 2 A there is some jðaÞ and distinct b1ðaÞ
and b2ðaÞ such that jðaÞ ¼ jða; b1ðaÞÞ ¼ jða; b2ðaÞÞ. Furthermore, since jAj � k,

for some distinct a1; a2 2 A, the indices jða1Þ and jða2Þ are the same. This

contradicts Lemma 12.

Thus we may assume that jAj < k. Since jBj � k, for each a 2 A there exists

some jðaÞ and distinct b1ðaÞ and b2ðaÞ such that jðaÞ ¼ jða; b1ðaÞÞ ¼ jða; b2ðaÞÞ.
Furthermore, by Lemma 12, the indices jðaÞ are distinct for distinct a 2 A. Let

J ¼ fjðaÞ j a 2 Ag. Note that jJj ¼ jAj.

Lemma 13. Suppose that j 2 J and Pj ¼ uj;w1; . . . ;wp�1; vj. Then x has at most
p� 2 interior neighbors in Pj.

Proof. For every j 2 J, by the definition of J, there exists a 2 A and distinct

b1; b2 2 B such that djða; b1Þ; djða; b2Þ > 1. Since �j þ �j � 1, this implies that

p � 2. Assume that uj 2 A00 and vj 2 B00. Let a0; a00 2 A be two neighbors of uj and

b0; b00 2 B be two neighbors of vj.
Suppose that the lemma does not hold and xwi 2 EðGÞ, 1 � i � p� 1. Assume

that vj is a common neighbor of a; b1 and b2. Let w be a common neighbor

of a and b1 ‘‘inside’’ Pj. By Lemma 10, there is a common neighbor, say
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a1 2 VðGÞ� X, of a and a0. Thus uj; a
0; a1; a; vj and x;w; b1; y are two disjoint

paths. Replacing Pj in C by these paths increases � and, by ð11Þ, maintains

jXj � jW j þ 2�þ 4.

Therefore, we may assume that vj is not a common neighbor of a; b1 and b2.

Then there are distinct w0;w00 inside Pj such that aw0; b1w
0; aw00; b2w

00 2 EðGÞ.
Now by Lemma 10, there is a common neighbor, say a1 2 VðGÞ � X, of a and a0.
Then uj; a

0; a1; a;w
00;Pj; vj and x;w0; b1; y are two disjoint paths. As above,

replacing Pj with these two paths increases � and by ð11Þ, maintains jXj �
jW j þ 2�þ 4. This contradicts the optimality of C. &

End of the proof. By Lemma 13, x is not adjacent to at least jJj vertices in

X �W . Because it also is not adjacent to itself, we have jNðxÞ \ Xj � jXj�
jJj � 1 � ð3k þ 2Þ � jJj � 1. Since jJj ¼ jAj ¼ jNðxÞ � Xj, we get

nþ k � 3

2
� degðxÞ � 3k þ 1:

This is impossible if n � 5k þ 6. &

6. FULLY H-LINKED GRAPHS

The proof of Lemma 3 uses ideas of proofs for similar statements in [3, 5, 7, 10],

but needs some specific details.

Let H be a loopless graph with edges e1; . . . ; ek and �ðHÞ � 2. Then k � 2. Let

f be any injection VðHÞ ! VðGÞ. Since G is H-linked, f can be extended to an

H-subdivision in G. Among such subdivisions, choose one of the maximum order.

Suppose that for every i 2 f1; . . . ; kg, the edge ei is mapped to a ui; vi-path Pi,

and all paths P1;P2; . . . ;Pk are internally vertex-disjoint.

Let W :¼ [i�kVðPiÞ. Suppose that W 6¼ VðGÞ, and let G1 be a component of

G�W . Let Z ¼ NWðVðG1ÞÞ.

Claim 6.1. There exists i such that jZ \ VðPiÞj � 2.

Proof. If jZj � k þ 1, we are done by the pigeonhole principle. Let U ¼
W � Z and assume that jZ \ VðPiÞj � 1 for every i. Then jZj � k and U 6¼ ;.

Let v 2 VðG1Þ and w 2 U. Then degðvÞ þ degðwÞ � nþ jZj � 2. Thus the

degree condition yields nþ k � 2 � n� 2 þ jZj: It follows that

(a) jZj ¼ k;

(b) every vertex of G1 is adjacent to every vertex in Z [ VðG1Þ;
(c) every vertex in U is adjacent to every vertex in W .

Since jZj ¼ k, every Pi contains exactly one vertex in Z and no end vertex of any

Pi is in Z, i.e., all end vertices of all Pi are in U. But then we construct a full

linkage as follows.

H-LINKED GRAPHS 335



Let Z ¼ fz1; . . . ; zkg. By (c), we can take P0
1 as the edge u1v1 and for

i ¼ 2; 3; . . . ; k � 1, denote P0
i ¼ uizi�1vi. Finally, the path P0

k starts at uk, then

passes through all vertices of U � fui; vi : i ¼ 1; . . . ; kg to zk�1 (it can be done

by (c)), then passes through all vertices of G1 to zk (it can be done by (b)), and

finishes at vk. This proves the claim. &

Among all Pi-s with at least two neighbors of G1, choose a path Pj where the

distance along the path between some two neighbors of G1 is the smallest. We

may assume that j ¼ 1, P1 ¼ s0; s1 . . . ; sr (where s0 ¼ u1 and sr ¼ v1) and the

closest on P1 neighbors of G1 are sp and sq with p < q.

Call a path in G an H-path if it is a subpath of some path F that is the union of

some Pi-s. Respectively, call a cycle an H-cycle if it is the union of some Pi-s.

Claim 6.2. If F is an H-path or an H-cycle, then no two consecutive vertices on

F are neighbors of G1.

Proof. If vertices u and w are consecutive on F, then they are consecutive on

some Pj. If both u and w have neighbors in G1, then we can enlarge this Pj

replacing the edge uw in it by a u;w-path with internal vertices in VðG1Þ. This

contradicts the choice of Pi-s. &

By Claim 6.2, q� p � 2. Let P ¼ ðs1; . . . ; spÞ, Q ¼ ðsq; . . . ; srÞ, and W 0 ¼
W � fsi : p < i < qg. Take v 2 NðspÞ \ VðG1Þ; v0 2 NðsqÞ \ VðG1Þ. By the

choice of p and q, vspþ1 62 EðGÞ. Therefore,

degðvÞ þ degðspþ1Þ � nþ k � 2: ð18Þ

Again, by the choice of p and q, NðvÞ �W 0 � VðG1Þ � fvg and Nðspþ1Þ�
W 0 � VðGÞ �W 0 � VðG1Þ � fspþ1g. Thus

degVðGÞ�W 0 ðvÞ þ degVðGÞ�W 0 ðspþ1Þ � jVðG1Þj � 1

þ n� jW 0j � jVðG1Þj � 1 ¼ n� jW 0j � 2:

By ð17Þ, degW 0 ðvÞ þ degW 0 ðspþ1Þ � ðnþ k � 2Þ � ðn� jW 0j � 2Þ ¼ jW 0j þ k.

Similarly, degW 0 ðv0Þ þ degW 0 ðsq�1Þ � jW 0j þ k. Thus,

degW 0 ðvÞ þ degW 0 ðv0Þ þ degW 0 ðspþ1Þ þ degW 0 ðsq�1Þ � 2jW 0j þ 2k: ð19Þ

In order to estimate degW 0 ðspþ1Þ þ degW 0 ðsq�1Þ from above, we need the

following analog of Claim 6.2.

Claim 6.3. If F is an H-path or an H-cycle, then there are no two consecutive

vertices u and w on F \W 0 such that uspþ1 2 EðGÞ and wsq�1 2 EðGÞ.
Proof. If vertices u and w are consecutive on F \W 0, then they are

consecutive on some Pi. If uspþ1 2 EðGÞ and wsq�1 2 EðGÞ, then we can modify
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Pi by replacing the edge uw in it with the path u; spþ1; spþ2; . . . ; sq�1w, and

modify P1 by deleting spþ1; spþ2; . . . ; sq�1 and adding any sp; sq-path with internal

vertices in VðG1Þ. The modified set of paths would have more vertices than the

original, a contradiction. &

In view of (18), the following observation is important.

Claim 6.4. If W 0 is the disjoint union of several H-cycles and at most k � 1 H-

paths, then degW 0 ðspþ1Þ þ degW 0 ðsq�1Þ < jW 0j þ k and degW 0 ðvÞ þ degW 0 ðv0Þ <
jW 0j þ k.

Proof. Suppose that R ¼ ðx1; . . . ; xrÞ is an H-path in W 0. By Claim 6.3, if

vertices xi1 ; . . . ; xih are adjacent to spþ1, then vertices xi1þ1; . . . ; xihþ1 are not

adjacent to sq�1. It follows that degRðspþ1Þ þ degRðsq�1Þ � r þ 1 (the þ1 arises

because it might happen that ih ¼ r).

Similarly, if R ¼ ðx1; . . . ; xrÞ is an H-cycle in W 0, then degRðspþ1Þþ
degRðsq�1Þ � r (no þ1 arises in this case). Thus, if W 0 is the disjoint union of

a H-cycles and b H-paths, then degW 0 ðspþ1Þ þ degW 0 ðsq�1Þ � jW 0j þ b. This

proves the first statement of the claim. The second statement follows exactly the

same way with Claim 6.2 in place of Claim 6.3. &

Suppose now that W is the disjoint union of a H-cycles and b H-paths. Recall

that W 0 ¼ W � fsi : p < i < qg. If fsi : p < i < qg is a part of an H-cycle, then

W 0 is the disjoint union of a� 1 H-cycles and at most bþ 1 H-paths. Similarly, if

fsi : p < i < qg is a part of an H-path, then W 0 is the disjoint union of a H-cycles

and at most bþ 1 H-paths. This, together with (18) and Claim 6.4, yields that the

lemma will be proved if we show that

W is the disjoint union of some H-cycles and at most k � 2H-paths: ð20Þ

Since �ðHÞ � 2, H has a cycle, say, C. Suppose that the edges of C are e1; . . . ; el,
where l � 2. Let Q0 ¼

Sl
i¼1 VðPiÞ and, for i ¼ lþ 1; . . . ; k, let Qi�l ¼

VðPiÞ �
Si�1

j¼0 Qj. By construction, Q0 spans an H-cycle. Since all Pi-s are

internally disjoint, each Qi, i ¼ 1; . . . ; k � l spans a subpath of Piþl, that is, an H-

path. This proves (19), and thus the lemma.

7. EXAMPLES AND CONCLUSION

Let G be the n-vertex graph with VðGÞ ¼ V0 [ V1 [ V2 such that G½V1� ¼
Kdðn�kþ1Þ=2e, G½V2� ¼ Kbðn�kþ1Þ=2c, and all the vertices in V0 (with jV0j ¼ k � 1)

are all-adjacent in G. Clearly, �ðGÞ ¼ bðnþ k � 1Þ=2c � 1.

Let H be any bipartite graph with k edges and let X and Y be the partite sets in

H. We claim that G does not contain a subdivision of H such that X is mapped

into V1 and Y is mapped into V2. This is because every edge of H should

be mapped into a V1;V2-path and thus should contain a vertex in V0, but
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jV0j ¼ k � 1. The same example shows the sharpness of the upper bound for

H ¼ Ckþ1 when k þ 1 is odd, because Ckþ1 has a bipartite subgraph with k edges.

The reader can find in [5, 10] examples showing that the minimum degree

ðnþ kÞ=ð2Þ � 1 of an n-vertex graph does not provide that this graph is k-ordered

if n < 3k � 6. The proof of Theorem 1 can be elaborated so that the restriction

n � 5k þ 6 relaxes to n � 5k � 1, but we do not know exact values of D0ðk; nÞ
for 5k=2 < n < 5k � 2.

While the minimum degree condition for a graph to be k-ordered is weaker

than that for a graph to be k-linked, we do not know whether the same holds for

connectivity conditions. It would be also interesting to find an analog of

Theorem 1 for �2ðGÞ in place of �ðGÞ. Recall that if �2ðGÞ � nþ ð3k � 9Þ=2 and

k � 4, then G is k-ordered. It would be interesting to derive an exact bound of this

type for H-linked graphs G on n vertices if H is an arbitrary graph with k edges

and minimum degree at least two.
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