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Abstract: A spanning subgraph G of a graph H is a k-detour subgraph of H
if for each pair of vertices x, y ∈ V(H), the distance, distG(x, y), between x
and y in G exceeds that in H by at most k. Such subgraphs sometimes also
are called additive spanners. In this article, we study k-detour subgraphs of
the n-dimensional cube, Qn , with few edges or with moderate maximum
degree. Let �(k, n) denote the minimum possible maximum degree of
a k-detour subgraph of Qn . The main result is that for every k ≥ 2 and
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n ≥ 21,

e−2k n
ln n

≤ �(k, n) ≤ 20
n ln ln n

ln n
.

On the other hand, for each fixed even k ≥ 4 and large n, there exists a
k-detour subgraph of Qn with average degree at most 2 + 24−k/2 + o(1).
© 2007 Wiley Periodicals, Inc. J Graph Theory 57: 55–64, 2008
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1. INTRODUCTION

By distG(u, v), we denote the distance between vertices u and v in a graph G.
A spanning subgraph G = (V, E′) of a connected graph H = (V, E) is an
f (x)-spanner, if for each pair {u, v} ⊂ V , we have distG(u, v) ≤ f (distH (u, v)).
Construction of spanners with few edges and/or low maximum degree has attracted
considerable attention in computer science lately. As mentioned in [6], spanners
have applications in communication networks [9], broadcasting, routing, and
robotics. The reader can look into [6–8,10,11] for more information.

A k-additive spanner is a (k + x)-spanner. Additive spanners were studied in [1–
4,6,7]. In [3,4], 2-additive spanners of the n-dimensional cube, Qn, were called
detour subgraphs. The following variations of the notion of a k-additive spanner
are closely related to studies in [3,4]. A spanning subgraph G of a graph H is a (k, t)-
detour subgraph of H if for each pair of vertices x, y ∈ V (H) with distH (x, y) ≤
t, we have distG(x, y) ≤ distH (x, y) + k. A k-detour subgraph is a (k, ∞)-detour
subgraph, that is, a k-additive spanner.

Erdős et al. [3] studied 2-detour subgraphs and (2,1)-detour subgraphs of Qn.
Recall that the vertices of Qn are 0-1 vectors of length n and two vectors are adjacent
in Qn if they differ in exactly one coordinate. The direction of an edge xy ∈ E(Qn)
is the coordinate in which x and y differ.

Let fk,t(n) denote the minimum number of edges, and �k,t(n) denote the
minimum possible maximum degree of a (k, t)-detour subgraph in Qn. It was shown
in [3] that

f2,∞(n) ≤ 3

4

√
2n 2n; (1)

2(1 − o(1)) 2n ≤ f2,1(n) ≤ 1

4

√
6n 2n; (2)

�2,1(n) ≥ √
n. (3)

Some of these results were improved in [4]. Namely, it was proved that f2,1(n) =
(3 + o(1)) 2n, that limn→∞

f2,∞(n)
f2,1(n) > 1 and that

√
2n + 0.25 − 0.5 ≤ �2,1(n) ≤ 1.5

√
2n − 1. (4)
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The best lower bound on f2,∞(n) we know is (3.000013 − o(1)) · 2n which is far
from the upper bound (1). Bass and Sudborough [1] and Liestman and Shermer [7]
proved independently that �2,∞(n) ≤ n/2. The main result of the present article is:

Theorem 1. For every integer k ≥ 2 and n ≥ 21,

n

ln n
e−2k ≤ �k,∞(n) ≤ 20

n

ln n
ln ln n. (5)

Theorem 1 significantly improves the upper bounds of [1] and [7], and its lower
bound is closely related to the results of [3] and [4] on �2,1(n) and �2,∞(n),
respectively. The gap between the lower and upper bounds in the theorem is
relatively tight.

We also find the order of magnitude of fk,∞(n) for k ≥ 4.

Theorem 2. For every integer k ≥ 4, fk,∞(n) ≤ (3 + o(1)) · 2n.

Here and throughout the article, o(1) denotes a quantity that tends to zero as n
tends to infinity. It is a bit surprising that while each 4-detour graph in Qn has a few
vertices of degree at least e−4 n

ln n
, it may have average degree as low as 6 + o(1)

(even strictly less than 6 for n of the form n = 2r − 2). Moreover, for every ε > 0,
there exists a positive integer k and a k-detour graph G in Qn such that the average
degree of G is at most 2 + ε + o(1):

Theorem 3. For every even integer k ≥ 4, fk,∞(n) ≤ (1 + 23−k/2 + o(1)) · 2n. For
every even integer k ≥ 2, fk,1(n) ≤ (1 + 22−k/2 + o(1)) · 2n.

Recall that each spanner is connected and thus each spanner in Qn has at least
2n − 1 edges. We do not know whether the bound in (1) can be improved to
something like the bound in Theorem 2.

In the next section, we obtain the left inequality in (5), then in Section 3 we prove
the main part of Theorem 1, the upper bound on �k,∞(n). Finally, in Section 4 we
show that the construction of a (2,1)-detour subgraph of [4] with (3 + o(1)) 2n edges
is also a 4-detour subgraph in Qn and prove Theorem 3.

2. MAXIMUM DEGREE OF DETOUR SUBGRAPHS IN Q
n
—LOWER

BOUND

In this section, we prove the lower bound in Theorem 1.

Proof. Since Qn is bipartite, it is enough to consider k-detours in Qn for
even k.

Let m = 	ln n
. Let G be a k-detour subgraph of Qn, and �(G) = � be the
maximum degree in G. Since G is connected, � ≥ 2. Let u be a vertex of G. For
each vertex v at distance m from u in Qn, we have m ≤ distG(u, v) ≤ m + k. Since

Journal of Graph Theory DOI 10.1002/jgt



58 JOURNAL OF GRAPH THEORY

the number of walks in G of length j starting at u is at most �j, we have

(
n

m

)
≤

k/2∑
i=0

�m+2i < 2�m+k. (6)

Recall that m(m − 1) ≤ n for n ≥ 3 and therefore(
n

m

)
= nm

m!

(
1 − 1

n

)
. . .

(
1 − m − 1

n

)
≥ nm

m!

(
1 − m(m − 1)

2n

)
≥ nm

2m!
.

Since n ≥ 21, we have m ≥ 3. Hence if (6) holds, then nm < 4m!�m+k ≤
mm�m+k, that is,

n < m�1+k/m ≤ m� nk/m. (7)

If � ≤ n
ln n

e−2k, then (7) yields (since m = 	ln n
)

n < m
n

ln n
e−2knk/m ≤ n e−2kn2k/ ln n = n,

a contradiction. �

3. MAXIMUM DEGREE OF DETOUR SUBGRAPHS IN Q
n
—UPPER

BOUND

Now we turn to proving the upper bound of Theorem 1.
Obviously, �k,∞(n) ≤ n for every positive k. Hence, for n ≤ e20 the upper bound

of (5) holds. Now, assume that n > e20 > 108. We will need the following simple
fact.

Claim 1. If m and n are positive integers such that n ≥ e20 and m ≤ 0.3 ln n
ln ln n

,

then
(2m2

2m

) ≤ n0.6.

Proof.
(

2m2

2m

)
≤

(
2m2e

2m

)2m

= exp{2m(ln em)} ≤ exp

{
0.6

ln n

ln ln n
ln

ln n

ln ln n

}
.

Since ln ln n ≥ 1 for n ≥ e20, the last expression is at most exp {0.6 ln n} = n0.6. �
Below, we use the standard notation [n] to denote the set {1, 2, . . . , n}, for every

positive integer n. For a 0-1 vector x and a subset B of the set of coordinates of x, the
projection, x(B), of x on B is the vector obtained from x be deleting all coordinates
not in B.

For a given n, let m = 	0.3 ln n
ln ln n


. Let r be the largest integer such that 2r − 1 ≤
n
m

and let q = 2r − 1. Denote s = �n−q

2m2 � and partition the set [n] into 2m2 + 1
pairwise disjoint subsets B0, B1, . . . , B2m2 , where B0 = [q] and |Bi| ∈ {s − 1, s}
Journal of Graph Theory DOI 10.1002/jgt
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for i = 1, . . . , 2m2. For every 2m-element subset M of [2m2], let BM = ∪i∈MBi.
Notice that we have defined exactly

(2m2

2m

)
sets BM . Now we build a k-detour graph

G in three steps: at Step i we define a graph Hi, and then let G = H1 ∪ H2 ∪ H3.

Step 1. Let H1 be the subgraph of Qn spanned by the edges along the coordinates
in B0. Clearly, H1 is the disjoint union of 2n−q copies of Qq.

Step 2. Since q = 2r − 1, we can partition the set V (Qq) into q + 1 Hamming
codes D′

1, . . . , D
′
q+1. Note that each Hamming code D′

i is a dominating set in Qq.
For i = 1, . . . , q + 1, let Di be the union of D′

i over all 2n−q components of H1.
Thus, D1, . . . , Dq+1 form q + 1 disjoint dominating sets in H1. Since n0.4 ≥ ln n

and ln ln n > 1 for n > e20, we have

q ≥ n

3m
≥ n

0.9 ln n
ln ln n

> n0.6. (8)

Let h = (2m2

2m

)
. By (8) and Claim 1, h ≤ q. Therefore, we can fix a one-to-one

correspondenceϕ from the family {D1, . . . , Dh} to the family of 2m-element subsets
of [2m2]. Now, for every x ∈ V (Qn), we define the neighbors of x in H2 as follows.
If x /∈ ⋃h

i=1 Di, then no edges incident with x belong to H2. If x ∈ Di (1 ≤ i ≤ h)
and ϕ(Di) = M, then every edge incident with x whose direction is in BM belongs
to E(H2). Note that if x ∈ Di and y differs from x only in a coordinate j /∈ B0,
then, by the definition of Di, the vertex y also belongs to Di. This shows that H2

is defined correctly. For every x ∈ V (Qn), let H2(x) denote the component of H2

containing x. By the definition, if x /∈ ⋃h
i=1 Di, then V (H2(x)) = {x} and if x ∈ Di

for some 1 ≤ i ≤ h and ϕ(Di) = M, then H2(x) is a subcube of Qn of dimension
|BM |.
An example of Step 2 is shown in Figure 1.

Step 3. For j = 1, . . . , m, let Aj = ⋃2mj

i=(j−1)2m+1 Bi. Consider F = H2(x), where
x ∈ Di for some 1 ≤ i ≤ h. Suppose that ϕ(Di) = M. As it was mentioned above,
F is a subcube of Qn. Let z = z(F ) be the vertex in F with the smallest sum of
coordinates and Lj = Lj(z) be the set of vertices in F at distance j from z. If x ∈ Lj

and j = mp + j′ where 0 ≤ j′ ≤ m − 1, then the set, C(x), of edges of H3 incident
with x consists of those with directions inAj′ − BM . In order to see that the definition
of H3 is correct, suppose that x1 differs from x only in coordinate l ∈ Aj′ − BM .
Since l /∈ BM , x1 /∈ V (F ). Since l /∈ B0, the projections x(B0) and x1(B0) of x and
x1 on B0 coincide, and therefore x1 ∈ Di. Hence, the graph F1 = H2(x1) is the
translation of H2(x) along the coordinate l. Furthermore, z(F1) is the translation
of z(F ) along the coordinate l, and hence the distance in H2 between x1 and z(F1)
is the same as between x and z(F ), namely j. Since BM and j′ are the same for x
and x1, we have C(x) = C(x1) and hence the edge in direction l incident with x1

belongs to E(H3).

This finishes the construction of the graph G = H1 ∪ H2 ∪ H3.
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60 JOURNAL OF GRAPH THEORY

FIGURE 1. An example of Step 2: Edges of H2 (a matching) added to the graph
H1 (squares).

Claim 2. �(G) ≤ 20 n
ln n

ln ln n.

Proof. By construction, �(H1) ≤ n
m

, and �(H2) + �(H3) ≤ 2ms + 2ms =
4ms. Recall that s = �n−q

2m2 � and q ≥ n
2m

− 1. We prove first that

n

2m
≥ 2m2 + 1. (9)

Since n ≥ e20 and ln ln n > 2, (9) follows from

n ≥ 4(0.15 ln n)3 + 2(0.15 ln n),

which holds for every n ≥ 20.
By (9), s ≤ n

2m2 and hence �(G) ≤ n
m

+ 4m n
2m2 = 3n

m
. Since n ≥ 500, we have

0.3 ln n
ln ln n

> 1 and therefore,

m =
⌊

0.3
ln n

ln ln n

⌋
≥ 1

2

(
0.3

ln n

ln ln n

)
.

Thus, �(G) ≤ 3n 20 ln ln n
3 ln n

= 20n ln ln n
ln n

. �
Let B ⊂ [n]. A subgraph H of Qn is a (k, B)-detour graph, if the inequality

distH (x, y) ≤ distQn(x, y) + k holds for each x and y such that x(B) = y(B).

Claim 3. If G is a (2, B0)-detour graph, then G is a 2-detour graph.

Proof. Suppose that G is a (2, B0)-detour graph and x and y are arbitrary vertices
of G. Let x′ be the vertex such that x′(B0) = y(B0) and x′([n] − B0) = x([n] − B0).
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Then distQn(x, y) = distQn(x, x′) + distQn(x′, y). On the other hand, x and x′ are
in the same component of H1 and hence distG(x, x′) = distQn(x, x′). Since G is a
(2, B0)-detour graph, distG(x′, y) ≤ distQn(x′, y) + 2. Therefore,

distG(x, y) ≤ distG(x, x′) + distG(x′, y) ≤ distQn(x, x′) + distQn(x′, y) + 2

= distQn(x, y) + 2.

This proves the claim. �
To finish the proof of the upper bound, we will show that G is a (2, B0)-detour

graph. Let x and y be arbitrary vertices in G such that x(B0) = y(B0). Suppose
that the set of coordinates in which x and y differ is J = {j1, . . . , jw}. Recall that
B0 ∩ J = ∅. We consider two cases.

Case 1. w ≤ 2m.

Let M be any 2m-element subset of [2m2] such that BM ⊃ J and let i be the
index such that ϕ(Di) = M. Let x′ be the vertex in Di at distance at most one from
x in H1 (it maybe a neighbor of x or x itself). Let y′ be the vertex in Di at distance at
most one from y. Since x′ differs from x and y′ differs from y in the same coordinate
(or x = x′ and y = y′, simultaneously), the set of coordinates in which y′ differs
from x′ is exactly J. In particular, distQn(x′, y′) = distQn(x, y). Furthermore, by the
definition, x′ and y′ are in the same component of H2 and hence

distG(x′, y′) = distQn(x′, y′). (10)

Thus,

distG(x, y) ≤ 2 + distG(x′, y′) = 2 + distQn(x′, y′) = 2 + distQn(x, y).

Case 2. w > 2m.

Let M be any 2m-element subset of [2m2] such that BM ⊃ {j1, . . . , j2m} and let
i be the index such that ϕ(Di) = M. Let x′ be the vertex in Di at distance at most
one from x in H1 and y′ be the corresponding vertex in Di for y. As in Case 1,
distQn(x′, y′) = distQn(x, y). Hence, if (10) holds, then we are done as in Case 1.
Thus, our goal is to prove (10).

Let F ′ = H2(x′) be the component of H2 containing x′ and z = z(F ′) be the
vector in F ′ with the smallest sum of its coordinates. Let Q = Qn−q be the set of
vectors v with v(B0) = x′(B0). Since all vectors in Q have the same projection on
B0, the subgraph of H2 induced by Q consists of 2n−q−|BM | disjoint copies of F ′.
We can partition V (Q) into levels as follows: level 0 consists of vertices of the
kind z(F ) for every component F of H2 in Q; for every i ≥ 1, level i consists of
vertices at distance i in H2 from z(F ) in the corresponding component F of H2.
Then every edge of H2 connects vertices of neighboring levels, and every edge in
E(Q) − E(H2) connects vertices of the same level.
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Let x′′ be the vector in F ′ such that x′′(BM) = y′(BM) and x′′([n] − BM) =
x′([n] − BM). By the choice of M, x′ and x′′ differ in at least 2m coordinates.
Let P be a shortest x′, x′′-path in H2(x′) such that first it goes farther and farther
from z and then comes closer to z with every step. We can split P into two paths:
the ascending part P1 = (x′ = x0, x1, . . . , xf ) and the descending part P2. Let ji be
the direction in which xi differs from xi−1. Since the length of P is at least 2m, we
may assume w.l.o.g. that |V (P1)| ≥ m + 1. Then P1 visits some m + 1 consecutive
levels of the cube F ′ with z as zero vector. Recall that the set C(v) of directions of
edges in H3 incident with a vertex v ∈ V (Q) depends only on the level of v in Q,
and that every direction j ∈ [n] − B0 − BM appears in ∪m−1

i=0 C(xi).
Below, we construct a path P0 in G from x0 = x′ to y′ of length distQn(x′, y′) as

follows. If C(x0) ∩ J �= ∅, then we move along every of the directions in C(x0) ∩ J

exactly once. Then we move in the direction j1. Similarly, we now move along every
of the directions in C(x1) ∩ J exactly once and then move in the direction j2. Repeat
this procedure m times, and we come at the vertex y′′ such that y′′(BM) = xm(BM)
and y′′([n] − BM) = y′([n] − BM). In other words, y′′ is in the component F ′′ of
H2 that contains y′, and the position of y′′ with respect to y′ in F ′′ is that of xm with
respect to x′′ in F ′. Now we simply take a shortest path from y′′ to y′ in F ′′. Since
with each step of the above constructed path, we shortened the distance to y′ in Q,
we made exactly distQ(x′, y′) steps. This proves (10).

4. ON k-DETOUR SUBGRAPHS IN Q
n

WITH FEW EDGES

We recall a construction from [4]. Let n1 = �n/2� and n2 = n − n1. We view Qn

as the Cartesian product Qn1 × Qn2 and write every vector v ∈ V (Qn) in the form
v = (v1, v2), where v1 ∈ V (Qn1 ) and v2 ∈ V (Qn2 ). By a well known result due to
Kabatyanskii and Panchenko [5], for i ∈ {1, 2}, the graph Qni has a dominating set
Di with

|Di| = 2ni

(
1

ni

+ o

(
1

ni

))
= 2ni

(
2

n
+ o

(
1

n

))
. (11)

Let S1 = {(v1, v2) ∈ V (Qn) : v1 ∈ D1, v2 ∈ V (Qn2 )}, S2 = {(v1, v2) ∈ V (Qn) :
v1 ∈ V (Qn1 ), v2 ∈ D2}, and S = S1 ∪ S2. Let G be the spanning subgraph of Qn

whose edges are all the edges of Qn incident to at least one vertex in S. By the
definition and (11),

|S| ≤ |S1| + |S2| = |D1|2n2 + |D2|2n1 = 2n

(
4

n
+ o

(
1

n

))
. (12)

Claim 4. ([4]) |E(G)| ≤ (3 + o(1))2n.
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Proof. For i = 1, 2, each vertex v ∈ Si is adjacent to at least n3−i other vertices
in Si. Therefore, taking (12) into account,

|E(G)| ≤ n|S| − n2

2
|S1| − n1

2
|S2| ≤

(
3n

4
+ 1

4

)
|S| = 2n (3 + o (1)) .

�

Claim 5. For every u ∈ S1 and v ∈ S2,

distG(u, v) = distQn(u, v).

Proof. Let u = (u1, u2) and v = (v1, v2). Let x = (u1, v2). Since u ∈ S1 and
v ∈ S2, we have u1 ∈ D1 and v2 ∈ D2. It follows that all vectors w = (w1, w2)
with w1 = u1 are in S1. Thus, distG(u, x) = distQn(u, x). Similarly, distG(x, v) =
distQn(x, v). This proves the claim. �

The next claim concludes the proof of Theorem 2.

Claim 6. G is a 4-detour graph in Qn.

Proof. Let x = (x1, x2) and y = (y1, y2) be arbitrary vertices in G. Recall that
Di is a dominating set in Qni for i = 1, 2. Hence, x has a neighbor u = (u1, x2) ∈ S1

and y has a neighbor v = (y1, v2) ∈ S2. Applying Claim 4 finishes the proof. �

To prove Theorem 3, we need the following simple fact.

Lemma 4. For each positive integers k, t and n, fk+2,t(n + 1) ≤ fk,t(n) + 2n. This
also holds if t = ∞.

Proof. Consider the graph Qn+1 as the union of two copies, Q and R, of Qn

joined by a perfect matching M. For each v ∈ V (R), let M(v) be the neighbor of
v in Q. Let G′ be a (k, t)-detour graph in Q with fk,t(n) edges. Define E(G) =
E(G′) ∪ M.

To check that G is a (k + 2, t)-detour graph in Qn+1, consider arbitrary vertices
x and y in Qn+1 at distance at most t. If both x and y are in Q, then, by the definition
of G′, distG(x, y) ≤ distQ(x, y) + k. If x ∈ V (Q) and y ∈ V (R), then

distG(x, y) = 1 + distG(x, M(y)) ≤ 1 + distQ(x, M(y)) + k = distQn+1 (x, y) + k.

Finally, if both x and y are in R, then

distG(x, y) = 2 + distG(M(x), M(y)) ≤ 2 + distQ(M(x), M(y)) + k

= distQn+1 (x, y) + k + 2.

This proves the lemma. �

Now we finish the proof of Theorem 3 by induction on k. The base case for the
first statement is the case k = 4 which holds by Theorem 2. Suppose that for some
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even k ≥ 4, we have fk,∞(n − 1) ≤ (1 + 23−k/2 + o(1)) · 2n−1. Then by the above
lemma, we get

fk+2,∞(n) ≤ (1 + 23−k/2 + o(1)) · 2n−1 + 2n−1 = (1 + 23−(k+2)/2 + o(1)) · 2n.

The proof for fk,1 is the same; only the base case is k = 2 which was proved in [4]
(see the construction at the beginning of this section).
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