Ore-Type Degree Conditions for a Graph to be H -Linked

Alexandr V. Kostochka ${ }^{1,2}$ and Gexin Yu ${ }^{3}$
${ }^{1}$ DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 61801
E-mail: kostochk@math.uiuc.edu
${ }^{2}$ SOBOLEV INSTITUTE OF MATHEMATICS NOVOSIBIRSK 630090, RUSSIA
${ }^{3}$ DEPARTMENT OF MATHEMATICS VANDERBILT UNIVERSITY NASHVILLE, TENNESSEE 37240
E-mail: gexin.yu@vanderbilt.edu

Received September 20, 2005; Revised November 6, 2007

Published online 7 January 2008 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.1002/jgt. 20295

Abstract

Given a fixed multigraph H with $V(H)=\left\{h_{1}, \ldots, h_{m}\right\}$, we say that a graph G is H-linked if for every choice of m vertices v_{1}, \ldots, v_{m} in G, there exists a subdivision of H in G such that for every i, v_{i} is the branch vertex representing h_{i}. This generalizes the notion of k-linked graphs (as well as some other notions). For a family \mathcal{H} of graphs, a graph G is \mathcal{H}-linked if G is H-linked for every $H \in$ \mathcal{H}. In this article, we estimate the minimum integer $r=r(n, k, d)$ such that each n-vertex graph with $\sigma_{2}(G) \geq r$ is \mathcal{H}-linked, where \mathcal{H} is the

Contract grant sponsor: NSF (to A. V. K.); Contract grant numbers: DMS-0400498, DMS-0650784; Contract grant sponsor: RFBR; Contract grant number: 05-0100816; Contract grant sponsor: NSF (to G. Y.); Contract grant number: DMS0652306.

Journal of Graph Theory
family of simple graphs with k edges and minimum degree at least $d \geq 2$. © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14-26, 2008

Keywords: H-linked; ore-type degree condition

1. INTRODUCTION

Let H be a graph. An H-subdivision in a graph G is a pair of mappings $f: V(H) \rightarrow$ $V(G)$ and $g: E(H)$ into the set of paths in G such that:
(a) $f(u) \neq f(v)$ for all distinct $u, v \in V(H)$;
(b) for every $u v \in E(H), g(u v)$ is an $f(u), f(v)$-path in G, and distinct edges map into internally disjoint paths in G.

A graph G is H-linked if every injective mapping $f: V(H) \rightarrow V(G)$ can be extended to an H-subdivision in G.

Let S_{k} be a star with $k+1$ vertices. Then a graph is k-connected if and only if it is S_{k}-linked, by Fan Lemma due to Dirac [2].

Recall that a graph is k-linked if for every list $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{k}$ of $2 k$ vertices, there are internally disjoint paths P_{1}, \ldots, P_{k} such that P_{i} connects v_{i} and w_{i} for each i. It is known that a graph with at least $2 k$ vertices is k-linked if and only if it is M_{k}-linked, where M_{k} is a matching of size k.

A graph is k-ordered, if for every ordered sequence of k vertices, there is a cycle that encounters the vertices of the sequence in the given order. Let C_{k} denote the cycle of length k. Clearly, a simple graph G is k-ordered if and only if G is C_{k}-linked.

Recall that Dirac [1] found sufficient conditions for a simple graph G to be Hamiltonian in terms of the minimum degree, $\delta(G)$, and Ore [15] found similar conditions in terms of $\sigma_{2}(G)$, the minimum value of the sum $\operatorname{deg}(u)+\operatorname{deg}(v)$ over all pairs $\{u, v\}$ of non-adjacent vertices in G. For a family \mathcal{H} of graphs, let $D_{\mathcal{H}}(n)$ be the minimum integer d such that for each n-vertex graph G with $\delta(G) \geq d, G$ is H linked for every graph $H \in \mathcal{H}$. Similarly, let $R_{\mathcal{H}}(n)$ be the minimum integer r such that each n-vertex graph G with $\sigma_{2}(G) \geq r$ is H-linked for every graph $H \in \mathcal{H}$. When $\mathcal{H}=\{H\}$, we use the notation $D_{H}(n)=D_{\mathcal{H}}(n)$ and $R_{H}(n)=R_{\mathcal{H}}(n)$.

Several authors studied $D_{C_{k}}(n)$ and $R_{C_{k}}(n)$, see [3-5,7,10,12,14], and it was shown in [12] that $D_{C_{k}}(n)=\lfloor n / 2\rfloor+\lceil k / 2\rceil-1$ for every $n \geq 5 k+6$ and in [5] that $R_{C_{k}}(n)=n+\lceil(3 k-9) / 2\rceil$ for every $3 \leq k \leq n / 2$. The values $D_{M_{k}}(n)$ and $R_{M_{k}}(n)$ were determined in [9] for all n and k. After the concept of H-linkage was introduced independently in [11] and [6], the value $D_{\mathcal{H}}(n)$ was also studied for more general \mathcal{H}.

Let $\mathcal{H}(k, d)$ be the collection of simple graphs with k edges and minimum degree at least d. It was shown in [13] that $D_{\mathcal{H}(k, 2)}(n)=\lceil(n+k) / 2\rceil-1$ for all $n \geq 5 k+6$. In particular, it occurs that $D_{\mathcal{H}(k, d)}(n)=D_{\mathcal{H}(k, 2)}(n)$ for every $d \geq 2$.

The value $D_{H}(n)$ for an arbitrary multigraph H was discussed in $[6,8,12]$.
In this article, we study the function $R_{\mathcal{H}(k, d)}(n)$. We determine $R_{\mathcal{H}(k, 2)}(n)$ for all $n \geq k$.

Theorem 1. Let $k \geq 3$ and $\mathcal{H}(k, 2)$ be the family of simple graphs with k edges and minimum degree at least 2 . Then

$$
R_{\mathcal{H}(k, 2)}(n)=\left\{\begin{array}{cl}
\lceil n+(3 k-9) / 2\rceil, & \text { if } n>2.5 k-5.5, \\
\lceil n+(3 k-8) / 2\rceil, & \text { if } 2 k \leq n \leq 2.5 k-5.5, \\
2 n-3, & \text { if } k \leq n \leq 2 k-1
\end{array}\right.
$$

Observe that the value of $R_{\mathcal{H}(k, 2)}(n)$ is not always the same as $R_{C_{k}}(n)$, and also that $R_{\mathcal{H}(k, 2)}(n)>2 D_{\mathcal{H}(k, 2)}(n)$ when k and n are large.

We also give upper bounds on $R_{\mathcal{H}(k, d)}(n)$ for $d \geq 3$ when $n>2 k$ and $k \geq d(d+$ 1). These bounds are exact if d divides k and differ by 1 from the lower bounds in other cases. Note that simple graphs with k edges and minimum degree at least d exist only if $k \geq d(d+1) / 2$.

Theorem 2. Let $d \geq 3$ and $k \geq d^{2}$. Let $\mathcal{H}(k, d)$ be the family of simple graphs with k edges and minimum degree at least d. Then for $n \geq k-1+d+3 k / d$,

$$
\begin{equation*}
R_{\mathcal{H}(k, d)}(n) \leq n+k-d-3+\left\lceil\frac{k+1}{d}\right\rceil . \tag{1}
\end{equation*}
$$

Furthermore, if $k \geq d(d+1)$, then $R_{\mathcal{H}(k, d)}(n) \geq n+k-d-4+\left\lceil\frac{k+1}{d}\right\rceil$. If, in addition, d divides k, then we have equality in (1).

In both, Theorems 1 and 2, we actually prove a stronger statement: in the subdivisions of H that we find, each edge of H is replaced by a path of length at most 3 .

Unlike in the situation with $D_{\mathcal{H}(k, d)}(n)$, we have $R_{\mathcal{H}(k, d)}(n)<R_{\mathcal{H}(k, 2)}(n)$ when $d>2$ and $k \geq d(d+1)$.

In the next section, we prove the upper bounds for Theorem 2. Then in Section 3, we show how to modify this proof in order to get the upper bounds for Theorem 1. In Section 4, we prove the lower bounds by giving examples.

2. UPPER BOUNDS FOR THEOREM 2

Let $d \geq 2$ and $k \geq d^{2}$. Let G be a graph with $n \geq k-1+d+3 k / d$ vertices and $\sigma_{2}(G)>n+k(1+1 / d)-3-d$. Let H be any simple graph with k edges and minimum degree at least d.

Let $f: V(H) \rightarrow V(G)$ be an injective mapping and $S=f(V(H))$. Let $E(H)=$ $\left\{e_{i}^{0}=u_{i}^{0} v_{i}^{0}: 1 \leq i \leq k\right\}$. For $1 \leq i \leq k$, let $u_{i}=f\left(u_{i}^{0}\right), v_{i}=f\left(v_{i}^{0}\right), e_{i}=\left(u_{i}, v_{i}\right)$, $\beta_{i}=\frac{1}{\operatorname{deg}_{H}\left(u_{i}^{0}\right)}$, and $\gamma_{i}=\frac{1}{\operatorname{deg}_{H}\left(v_{i}^{0}\right)}$. Since $\delta(H) \geq d$, we have $s=|S|=|V(H)| \leq$ $2 k / d$.

Assume that $u_{i} v_{i} \in E(G)$ for $k-w+1 \leq i \leq k$, where $w \geq 0$.
Construct the auxiliary bipartite graph B with partite sets W_{1} and W_{2} as follows. Let $W_{1}=\left\{e_{1}, \ldots, e_{k-w}\right\}, W_{2}=V(G)-S$, and let a pair $\left(e_{i}, v\right)$ be an edge in B if $v \in N_{G}\left(u_{i}\right) \cap N_{G}\left(v_{i}\right)$. If B has a matching saturating W_{1}, then this matching gives the required linkage. Otherwise, let m be the size of a maximum matching in B.

By Ore's theorem on maximum matchings in bipartite graphs, there is a $Q \subseteq W_{1}$ with $k-w-m=|Q|-\left|N_{B}(Q)\right|$. Denote $R=N_{B}(Q)$ and $L=V(G)-S-R$.

We may assume that $Q=\left\{e_{i}: i=1, \ldots, q\right\}$. Let $Q^{\prime}=\bigcup_{i=1}^{q}\left\{u_{i}, v_{i}\right\}$ (the elements of Q are ordered pairs, and the elements of Q^{\prime} are all the elements of these pairs). Note that $|Q|=q,\left|Q^{\prime}\right| \leq 2 q,|R|=q-k+w+m$, and $|L|=$ $n-s+k-q-m-w$.

Let P be a maximum matching in B. By the definition of Q and KönigOre Theorem on matchings in bipartite graphs, every maximum matching in B covers all vertices in $W_{1}-Q$. Hence, we may assume that only vertices in $D=\left\{e_{1}, \ldots, e_{k-w-m}\right\}$ are not covered by this matching. Let $D^{\prime}=\left\{u_{i}, v_{i}: 1 \leq\right.$ $i \leq k-w-m\}$. Consider the linkage \mathcal{P} corresponding to P. Let Z be the set of vertices of $V(G)-S$ not participating in the linkage. Clearly, $|Z|=n-s-m$.

Claim 1. Let $\phi_{1}(k, d, s, w)=k-1+d+\left\lceil\frac{k+1}{d}\right\rceil-s-w$ and $\phi_{2}(k, d, s)=k+$ $1-d+\left\lceil\frac{k+1}{d}\right\rceil-s$. Then for every $1 \leq i \leq k-w-m$,

$$
\begin{equation*}
\left|\left(N\left(u_{i}\right) \cap N\left(v_{i}\right)\right)-S\right| \geq \max \left\{\phi_{1}(k, d, s, w), \phi_{2}(k, d, s)\right\} . \tag{2}
\end{equation*}
$$

In particular, $m \geq \max \left\{\phi_{1}(k, d, s, w), \phi_{2}(k, d, s)\right\}$.
Proof. Since $u_{i} v_{i}$ is not an edge in G, vertices u_{i} and v_{i} together have at most $2 s-4$ neighbors in S (counted with multiplicities). On the other hand, since $\delta(H) \geq$ d, the number of such neighbors is at most $2 s-2(d+1)+w$. But $\operatorname{deg}_{G}\left(u_{1}\right)+$ $\operatorname{deg}_{G}\left(v_{1}\right) \geq n+k+\left\lceil\frac{k+1}{d}\right\rceil-3-d$. It follows that u_{i} and v_{i} have at least $(n+k+$ $\left.\left\lceil\frac{k+1}{d}\right\rceil-3-d\right)-\max \{2 s-4,2 s-2(d+1)+w\}-(n-s)$ common neighbors outside of S, which yields (2).

The second statement of the claim follows from (2) and Hall's Theorem.
Remark. Recall that Hall's Theorem yields that if the degree of each vertex $u \in$ W_{1} in a bipartite graph $B=\left(W_{1}, W_{2} ; E_{B}\right)$ is at least ϕ, then there is a maximum matching covering any given ϕ vertices in W_{1} (provided that $\phi \leq\left|W_{1}\right|$).

Claim 2. One can choose a maximum matching P (of size m, by definition) in B in such a way that for every $1 \leq i \leq k-w-m$, either of u_{i} and v_{i} has at least $d-0.5 w$ non-neighbors in S.

Proof. By the remark above, we can cover by edges in P any $\left\lceil\phi_{2}(k, d, s)\right\rceil$ vertices in Q. We will choose them as follows. For every $v \in S$, let $w(v)$ denote the number of edges in $W=\left\{e_{k-w+1}, \ldots, e_{k}\right\}$ incident to v. Order y_{1}, \ldots, y_{s}, the vertices of S in such a way that $\operatorname{deg}_{H}\left(f^{-1}\left(y_{i}\right)\right)-w\left(y_{i}\right) \leq \operatorname{deg}_{H}\left(f^{-1}\left(y_{i+1}\right)\right)-$ $w\left(y_{i+1}\right)$ for every $i \leq s-1$. Note that the value $\operatorname{deg}_{H}\left(f^{-1}\left(y_{i}\right)\right)-w\left(y_{i}\right)$ is a lower Journal of Graph Theory DOI 10.1002/jgt
bound on the number of non-neighbors (in the graph G) of y_{i} in S (not counting y_{i} itself).

We first include in P the edges covering all vertices in Q that correspond to the pairs $\left\{u_{i}, v_{i}\right\}$ containing y_{1}, then those containing y_{2}, and so on, until we include $\left\lceil\phi_{2}(k, d, s)\right\rceil$ vertices. After this, by the remark above, we can complete P to a maximum matching. Observe that for $d \geq 2, k \geq d^{2}$, and $s \leq 2 k / d$,

$$
\phi_{2}(k, d, s) \geq k+1-d+\frac{k+1}{d}-\frac{2 k}{d}=\frac{1}{d}+(d-1)\left(\frac{k}{d}-1\right)>(d-1)^{2}
$$

Also, for every $d, 1+(d-1)^{2} \geq 2(d-1)$. We will show that such choice of P provides that for every $i \leq k-w-m$ each of u_{i} and v_{i} has at least $d-0.5 w$ non-neighbors in S.

Let $F=\left(S, E_{F}\right)$ be the graph with the vertex set S and edge set $E_{F}=\left\{u_{i} v_{i}\right.$: $k-w+1 \leq i \leq k\}$. By definition, if a vertex $y \in S$ has exactly $d-l$ non-neighbors in S (in G), then $\operatorname{deg}_{F}(y) \geq l$. Also, we care only about $l \geq 1$.

If $\operatorname{deg}_{H}\left(f^{-1}\left(y_{1}\right)\right)-w\left(y_{1}\right) \geq d$, then, by the choice of y_{1}, there is nothing to prove. If $\operatorname{deg}_{H}\left(f^{-1}\left(y_{1}\right)\right)-w\left(y_{1}\right) \leq d-1$ and $\operatorname{deg}_{H}\left(f^{-1}\left(y_{2}\right)\right)-w\left(y_{2}\right) \geq d$, then our matching P covers all vertices corresponding to pairs $\left\{u_{i}, v_{i}\right\}$ containing y_{1}, and every other vertex in S has at least d non-neighbors in S. If $\operatorname{deg}_{H}\left(f^{-1}\left(y_{2}\right)\right)-$ $w\left(y_{2}\right) \leq d-1$, then P covers all vertices corresponding to pairs $\left\{u_{i}, v_{i}\right\}$ containing y_{1} and y_{2}. The only case of a simple graph F with w edges in which some three vertices have degree greater than $w / 2$ is the graph K_{3}, in which case the trouble occurs if $\operatorname{deg}_{H}\left(f^{-1}\left(y_{1}\right)\right)-w\left(y_{1}\right)=\operatorname{deg}_{H}\left(f^{-1}\left(y_{2}\right)\right)-w\left(y_{2}\right)=\operatorname{deg}_{H}\left(f^{-1}\left(y_{3}\right)\right)-$ $w\left(y_{3}\right)=d-2$. But for every $d \geq 2$, we have $1+(d-1)^{2} \geq 3(d-2)$ and all pairs $\left\{u_{i}, v_{i}\right\}$ containing y_{3} with $i \leq k-w$ will be covered by P. This proves the claim.

Lemma 1. $n-s-m \geq 2(k-m-w)$.
Proof. Assume that the lemma is false, that is, that $n-s-m<2(k-m-w)$. It follows that $m<2 k-2 w+s-n$. Taking into account (2), we get

$$
k-1+d+\left\lceil\frac{k+1}{d}\right\rceil-s-w<2 k-2 w+s-n
$$

and hence $n<k-w+2 s+1-d-\left\lceil\frac{k+1}{d}\right\rceil$. Since $s \leq\left\lfloor\frac{2 k}{d}\right\rfloor$, we have $n<k+$ $\left\lfloor\frac{3 k-1}{d}\right\rfloor+1-d$, a contradiction to the condition $n \geq k+1-d+3 k / d$.

By Lemma 1, for every $i=1, \ldots, k-m-w$, we can assign a vertex $z_{i} \in Z$ to u_{i} and a vertex $z_{i}^{\prime} \in Z$ to v_{i} so that the assigned vertices in Z are all distinct. Also, for every $k-w-m+1 \leq i \leq k-w$, let y_{i} be the common neighbor of u_{i} and v_{i} corresponding to the matching P above.

Lemma 2. There exists an assignment \mathcal{A} such that every z_{i} is adjacent to u_{i} and every z_{i}^{\prime} is adjacent to v_{i}.

Proof. For $i=1, \ldots, k-m-w$, let $X_{i}=\left\{u_{i}, v_{i}, z_{i}, z_{i}^{\prime}\right\}$, for $i=k-w-$ $m+1, \ldots, k-w$, let $X_{i}=\left\{u_{i}, v_{i}, y_{i}\right\}$, and for $i=k-w+1, \ldots, k$, let $X_{i}=$ $\left\{u_{i}, v_{i}\right\}$. Let $X=\bigcup_{i=1}^{k} X_{i}$ and $Y=\left\{y_{k-w-m+1}, \ldots, y_{k-w}\right\}$.

For $i \leq k-m-w, u_{i}$ (or v_{i}) is senior if it has at least $k-w-m$ neighbors outside of $S \cup Y$, otherwise it is junior.

Claim 3. The vertices $z_{1}, z_{1}^{\prime}, \ldots, z_{k-m-w}, z_{k-m-w}^{\prime}$ can be chosen so that for each senior vertex u_{i} (respectively, v_{i}), z_{i} is adjacent to u_{i} (respectively, z_{i}^{\prime} is adjacent to v_{i}).

Proof. Consider the auxiliary bipartite graph $F=\left(F_{1}, F_{2} ; E_{F}\right)$, where F_{1} is the set of senior vertices (taken with multiplicities) and $F_{2}=V(G)-S-Y$. We join a vertex in F_{1} with a vertex in F_{2} if the corresponding vertices are adjacent in G. Then our claim is equivalent to the existence of a matching saturating F_{1} in F.

Suppose that F has no matching saturating F_{1}. Then by Hall's Theorem there exists $T \subset F_{1}$ such that $\left|N_{F}(T)\right| \leq|T|-1$. By the definition of senior vertices, $|T|>\left|N_{F}(T)\right| \geq k-w-m$. Then since $\left|F_{1}\right| \leq 2(k-w-m)$, there is some i such that $u_{i}, v_{i} \in T$. Note that $\left(N\left(u_{i}\right) \cap N\left(v_{i}\right)\right)-S-Y=\emptyset$ by the maximality of m. Therefore, $\left|N_{F}(T)\right| \geq(k-w-m)+(k-w-m) \geq\left|F_{1}\right|$, a contradiction to the choice of T.

Among choices of z_{i} and z_{i}^{\prime} satisfying Claim 3, choose one with the maximum number of edges of the kind $z_{i} u_{i}$ and $z_{i}^{\prime} v_{i}$. Suppose that $u_{1} z_{1} \notin E(G)$. Then u_{1} is junior and hence has at most $k-w-m-1$ neighbors outside of $S \cup Y$. By the choice, u_{1} has no neighbors outside of X.

Claim 4.

$$
\left|N\left(u_{1}\right) \cap(X-S)\right|+\left|N\left(z_{1}\right) \cap S\right| \leq k(1+1 / d)-1-w \frac{d-1}{d}
$$

Proof. For $i=1, \ldots, k$, let p_{i} denote the sum of the number of neighbors of u_{1} in $\left\{z_{i}, z_{i}^{\prime}\right\}$ (if $k-w-m+1 \leq i \leq k-w$, then $z_{i}=z_{i}^{\prime}=y_{i}$; if $i \geq k-w+1$, then $\left\{z_{i}, z_{i}^{\prime}\right\}=\emptyset$) plus β_{i} if $u_{i} \in N_{G}\left(z_{1}\right)$ and plus γ_{i} if $v_{i} \in N_{G}\left(z_{1}\right)$. By the definition,

$$
\sum_{i=1}^{k} p_{i}=\left|N\left(u_{1}\right) \cap(X-S)\right|+\left|N\left(z_{1}\right) \cap S\right| .
$$

Thus, we need to estimate $\sum_{i=1}^{k} p_{i}$. For $j=0,1,2$, let

$$
I_{j}=\left\{i: u_{1} \text { has exactly } j \text { neighbors in }\left\{z_{i}, z_{i}^{\prime}\right\}\right\}
$$

If $i \in I_{0}$, then $p_{i} \leq \beta_{i}+\gamma_{i} \leq 2 / d$. Moreover, if $i \leq k-w-m$, then z_{1} cannot be adjacent to both u_{i} and v_{i} by the maximality of m. Hence $p_{i} \leq 1 / d$ if $i \leq k-m-w$.

If $i \in I_{1}$, then z_{1} cannot be adjacent to both u_{i} and v_{i}, since otherwise we switch z_{1} with the element of $\left\{z_{i}, z_{i}^{\prime}\right\}$ adjacent to u_{1}. Thus, in this case, $p_{i} \leq 1+\max \left\{\beta_{i}, \gamma_{i}\right\} \leq$ $1+1 / d$.

Let $i \in I_{2}$. If z_{1} is adjacent to, say, u_{i}, then we switch z_{1} with z_{i} and get a better assignment. Thus, in this case, $p_{i}=2$.

Since u_{1} is junior, $\left|I_{2}\right| \leq\left|I_{0}\right|-1-w$ and hence some $i^{\prime} \leq k-m-w$ belongs to I_{0}. It follows that

$$
\begin{aligned}
\sum_{i=1}^{k} p_{i} & \leq p_{i^{\prime}}+\frac{2}{d}\left(\left|I_{0}\right|-1\right)+\frac{d+1}{d}\left|I_{1}\right|+2\left|I_{2}\right| \\
& \leq p_{i^{\prime}}+w \frac{2}{d}+\frac{d+1}{d}(k-1-w) \leq \frac{d+1}{d} k-1-w \frac{d-1}{d}
\end{aligned}
$$

This proves the claim.
By Claim 2, $\left|N\left(u_{1}\right) \cap S\right| \leq s-1-d+w / 2$. Since $\left|N\left(u_{1}\right) \cap(V(G)-X)\right|=\emptyset$, Claims 2 and 4 yield

$$
\begin{aligned}
\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(z_{1}\right)= & \left|N\left(u_{1}\right) \cap S\right|+\left|N\left(u_{1}\right) \cap(X-S)\right| \\
& +\left|N\left(z_{1}\right) \cap(V(G)-S)\right|+\left|N\left(z_{1}\right) \cap S\right| \\
\leq & \left(s-1-d+\frac{w}{2}\right)+\left|N\left(u_{1}\right) \cap(X-S)\right| \\
& +(n-1-s)+\left|N\left(z_{1}\right) \cap S\right| \\
\leq & n-2-d+\frac{w}{2}+k(1+1 / d)-1-w \frac{d-1}{d}
\end{aligned}
$$

a contradiction to $\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(z_{1}\right)>n+k(1+1 / d)-3-d$.
Lemma 3. The assignment \mathcal{A} in Lemma 2 can be chosen in such a way that for every $1 \leq i \leq k-m-w, z_{i}$ is adjacent to z_{i}^{\prime}.

Proof. Choose an assignment \mathcal{A} satisfying Lemma 2 so that as many as possible z_{i} are adjacent to corresponding z_{i}^{\prime}. Define $X_{i}(i=1, \ldots, k), X$, and Y as in the proof of Lemma 2. We may renumber $\left(u_{i}, v_{i}\right)$ so that, for some $0 \leq l \leq k-w-m$, we have $z_{i} z_{i}^{\prime} \in E(G)$ if $l+1 \leq i \leq k-w-m$ and $z_{i} z_{i}^{\prime} \notin E(G)$ if $1 \leq i \leq l$. If $l=0$, then the lemma holds. Suppose that $l \geq 1$.

For $i=1, \ldots, k$, let q_{i} denote the number of neighbors of X_{1} (with multiplicities) in $\left\{z_{i}, z_{i}^{\prime}\right\}$ (if $k-w-m+1 \leq i \leq k-w$, then $z_{i}=z_{i}^{\prime}=y_{i}$) plus β_{i} times the number of neighbors of u_{i} in $\left\{z_{1}, z_{1}^{\prime}\right\}$ and plus γ_{i} times the number of neighbors of v_{i} in $\left\{z_{1}, z_{1}^{\prime}\right\}$. By the definition, $\sum_{i=1}^{k} q_{i}$ is equal to the total number of neighbors of X_{1} in X (counted with multiplicities) minus the total number of the neighbors of the set $\left\{u_{1}, v_{1}\right\}$ in S (also counted with multiplicities).

Since $l \geq 1$, each member of X_{1} has exactly one neighbor in X_{1}, and hence $q_{1}=2+\beta_{1}+\gamma_{1}$. Clearly, $q_{i} \leq 2\left(\beta_{i}+\gamma_{i}\right) \leq 4 / d$ for $k-w+1 \leq i \leq k$.

Claim 5.

$$
q_{i} \leq\left\{\begin{array}{l}
6+2 / d, \text { for } 2 \leq i \leq k-w-m \\
4+2 / d, \text { for } k-w-m+1 \leq i \leq k-w
\end{array}\right.
$$

Proof.

Case 1. $2 \leq i \leq k-w-m$. By the maximality of m, neither of z_{1} and z_{1}^{\prime} is a common neighbor of u_{i} and v_{i} and neither of z_{i} and z_{i}^{\prime} is a common neighbor of u_{1} and v_{1}. Thus, $q_{i} \leq 6+2 \max \left\{\beta_{i}, \gamma_{i}\right\} \leq 6+2 / d$.

Case 2. $k-w-m+1 \leq i \leq k-w$. If u_{1} or v_{1} is not adjacent to y_{i}, then $q_{i} \leq$ $3+2\left(\beta_{i}+\gamma_{i}\right) \leq 4+2 / d$ and we are done. Thus, we may assume that $u_{1} y_{i}, v_{1} y_{i} \in$ $E(G)$. If $q_{i}>4+2 / d$, then z_{1} and z_{1}^{\prime} together contribute more than $2+2 / d$ to q_{i}. In this case, either z_{1} or z_{1}^{\prime} is adjacent to both u_{i} and v_{i}. This contradicts the maximality of m. So, $q_{i} \leq 4+2 / d$.

Claim 6. For each $v \notin X,\left|N(v) \cap\left\{u_{1}, v_{1}, z_{1}, z_{1}^{\prime}\right\}\right| \leq 2$.
Proof. Otherwise, we can swap v with either z_{1} or z_{1}^{\prime} so that the new assignment is better than \mathcal{A}.

Let $F=\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(z_{1}\right)+\operatorname{deg}\left(z_{1}^{\prime}\right)$. Since $u_{1} v_{1} \notin E(G)$ and $z_{1} z_{1}^{\prime} \notin$ $E(G)$, we have $F>2 n+2 k(1+1 / d)-6-2 d$. On the other hand, in view of the claims above, and the fact that for every $k-w+1 \leq j \leq k,\left|\left\{u_{1}, v_{1}\right\} \cap\left\{u_{j}, v_{j}\right\}\right| \leq$ 1, we have

$$
\begin{aligned}
F \leq & 2(n-|X|)+\sum_{i=1}^{k} q_{i}+\left(2(s-1)-\left(\left|N_{H}\left(u_{1}^{0}\right)\right|+\left|N_{H}\left(v_{1}^{0}\right)\right|\right)+w\right) \\
\leq & 2(n-s-2(k-w-m)-m)+2+2 / d+(k-w-m-1)(6+2 / d) \\
& +m(4+2 / d)+4 w / d+(2(s-1)-2 d+w) \\
\leq & 2 n+2 k(1+1 / d)-6-2 d-w(1-2 / d) \\
\leq & 2 n+2 k(1+1 / d)-6-2 d .
\end{aligned}
$$

This contradiction proves Lemma 3 and hence Theorem 2.

3. UPPER BOUNDS FOR THEOREM 1

Let $d=2$. If $k=3$, then the statement follows from the original result of Ore [15].
Let $k \geq 4$. Analyzing the proof of Theorem 2, we find that in order to prove Theorem 1 we need to modify only the proof of Lemma 1. In this section, we prove this lemma under conditions of Theorem 1.

Proof of Lemma 1. Choose $\left(u_{1}, v_{1}\right) \in Q$ such that u_{1} and v_{1} together have the minimum number of neighbors in S (with multiplicities) among all pairs in Q. One of u_{1} and v_{1} is not adjacent to at least half of vertices of L. We may assume that v_{1} is this vertex and v_{1} is not adjacent to $L_{1} \subseteq L$ with $\left|L_{1}\right| \geq 0.5|L|$. Let x be the number of non-neighbors of v_{1} in S. We have $1 \leq x \leq\left|N_{H}\left(v_{1}^{0}\right)\right|$, since $u_{1} v_{1} \notin E(G)$. Thus

$$
\begin{equation*}
\operatorname{deg}\left(v_{1}\right) \leq n-1-\left(x+\frac{n-s+k-q-m-w}{2}\right) . \tag{3}
\end{equation*}
$$

Let $u \in L_{1}$ and $T=Q^{\prime}-N(u)$. Let $|T|=t$. Then at least one end of each pair of Q is not adjacent to u, that is, every pair in Q should have at least one end in T. This means that

$$
\begin{equation*}
\sum_{v \in f^{-1}(T)} \operatorname{deg}_{H\left[f^{-1}\left(Q^{\prime}\right)\right]}(v) \geq q . \tag{4}
\end{equation*}
$$

Since $\delta(H) \geq 2$, we have

$$
\begin{equation*}
\sum_{v \in f^{-1}(T)} \operatorname{deg}_{H\left[f f^{-1}\left(Q^{\prime}\right)\right]}(v)+2(s-t) \leq 2 k \tag{5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
t \geq q / 2+s-k \tag{6}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
\operatorname{deg}(u) \leq n-1-t . \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}(u) \leq & 2(n-1)-\left(x+\frac{n-s+k-q-m-w}{2}\right) \\
& -(q / 2+s-k) \tag{8}
\end{align*}
$$

Since $u v_{1} \notin E(G)$,

$$
\begin{equation*}
\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}(u) \geq n+(3 k-c) / 2 \tag{9}
\end{equation*}
$$

where $c=8$ if $n \leq 2.5 k-5.5$ and $c=9$ otherwise. Thus, we have

$$
\begin{equation*}
2(k-m-w) \leq n-s-m-w+(c-4)-2 x \tag{10}
\end{equation*}
$$

If $2(k-m-w) \leq n-s-m$, we are done. Otherwise, $c-4-w-2 x \geq 1$.
If $c=8$, then $w+2 x \leq 3$. Note that $w+x \geq 2$ and $x \geq 1, x=w=1$ and in the above argument, $\left|L_{1}\right|=0.5|L|$ and we also achieve equalities in (3)-(10). Since Journal of Graph Theory DOI 10.1002/jgt
$\left|L_{1}\right|=0.5|L|$, the roles of u_{1} and v_{1} are interchangeable. But when we consider u_{1}, since H is simple, $x \geq 2$. Therefore, $2(k-m-w) \leq n-s-m$.

Now let $c=9$ and $n>2.5 k-5.5$. Note that since $w+x \geq 2$, we have the following two cases.

Case 1. $(x, w)=(2,0)$, or $(x, w)=(1,2)$. In either situation, $2(k-w-m)=$ $n-s-m+1$. Moreover, $\left|L_{1}\right|=0.5|L|$ and we achieve equalities in (3)-(10). More specifically:
(I) Since $\left|L_{1}\right|=0.5|L|$, the roles of u_{1} and v_{1} are interchangeable.
(II) By (5), in H, every vertex in $f^{-1}(S-T)$ has degree 2.
(III) By (6), q is even and $t=q / 2+s-k$. By (9), k is odd. Thus $|Q| \leq k-3$.
(IV) By (7), (8), $\operatorname{deg}\left(v_{1}\right)=n-1-x-|L| / 2$ and $\operatorname{deg}(u)=n-1-t$.
(V) By (10), $2(k-m-w)=n-s-m-w+1$, that is, $n=2 k+s-m-$ $w-1$.

If $(x, w)=(1,2)$, then u_{1} has exactly one non-neighbor in S too, otherwise, instead of considering v_{1}, we consider u_{1} and thus $x=w=2$, we are done. Hence, either of u_{1}^{0} or v_{1}^{0} has degree 2 in H. If $q \geq 3$, then there is a pair $\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$ in Q with more non-neighbors in S than $\left(u_{1}, v_{1}\right)$, a contradiction. Thus $q=2$. But then $t \leq 1$. Thus, $\operatorname{deg}(u) \geq n-2$ and u is a common neighbor of another pair in Q, a contradiction to the choice of Q.

If $(x, w)=(2,0)$, then in H, u_{1}^{0}, v_{1}^{0} both have degree 2 . In fact, we may choose any pair of Q and the same argument works. Thus, every end of an edge in Q has degree 2 in H. Together with (II), this yields that H is 2-regular. Hence $s=k$. Therefore, $t=q / 2$ and $\operatorname{deg}(u)=n-1-q / 2$, that is, u is adjacent to every vertex of $S-Q$. Note that for every $v \in Q, \operatorname{deg}(v)=n-1-|L| / 2$, that is, v is adjacent to every vertex of R. Observe that $|R| \geq n+(3 k-9) / 2-(n-2)-(k-2)=$ $(k+3) / 2$. Thus by V), $n=3 k-1-m=3 k-1-(k-|Q|+|R|)=2 k-1+$ $|Q|-|R| \leq 2 k-1+(k-3)-(k+3) / 2=2.5 k-5.5$, a contradiction.

Case 2. $w=x=1$. Then $v_{1} u_{j} \in E(G)$ for some j. We observe that since $w=$ $1, u_{1}$ and v_{1} have at most $s-3+s-2=2 s-5$ neighbors in S (counting with multiplicities). Then u_{1} and v_{1} together have at least $n+(3 k-9) / 2-2 s+5$ edges to $V(G)-S$, and hence at least $(3 k+1) / 2-s \geq(k+1) / 2$ common neighbors in $V(G)-S$. It follows that $q \geq 1+(k+1) / 2 \geq 3$. Thus, we are able to choose a pair in Q such that either each end of the pair has at least 2 non-neighbors in S, or one end of the pair is u_{j}, and the other end has fewer neighbors in S, a contradiction to the choice of u_{1}, v_{1}.

4. EXAMPLES

In this section, we give three examples to prove the lower bounds of Theorems 2 and 1 .

Example 1. Let $d \geq 2$. Let $V(G)=Q_{1} \cup Q_{2} \cup L \cup T$, where $\left|Q_{1}\right|=\left|Q_{2}\right|=$ $\lfloor k / d\rfloor,|L|=k-1$, and $|T|=n-2\lfloor k / d\rfloor-k+1$. Since $k \geq d^{2}$, there exists a bipartite simple graph $G_{1}=\left(Q_{1}, Q_{2} ; E_{1}\right)$ such that the degrees of all vertices are at least d and at most $d+1$. Moreover, if k / d is an integer, then there exists a d-regular bipartite graph $G_{1}=\left(Q_{1}, Q_{2} ; E_{1}\right)$. Let the complement of our graph G be the union of the complete bipartite graph $G\left(Q_{1}, T\right)$ with the partite sets Q_{1} and T and the graph G_{1}. If d divides k, then each vertex in Q_{1} has degree $2 k / d-1-d+k-1$, each vertex in T has degree $n-1-k / d$, and the degree of each vertex in Q_{2} is $n-1-d$. Since $k \geq d^{2}$, when d divides k, we have

$$
\begin{aligned}
\sigma_{2}(G) & =(2 k / d-1-d+k-1)+\min \{n-1-k / d, n-1-d\} \\
& =n+k(1+1 / d)-3-d
\end{aligned}
$$

If d does not divide k, then each vertex in Q_{1} has degree at least $2\lfloor k / d\rfloor-1-$ $d-1+k-1$, each vertex in T has degree $n-1-\lfloor k / d\rfloor$, and each vertex in Q_{2} has degree at least $n-1-d-1$. Since $k \geq d(d+1)$, we have $n-1-\lfloor k / d\rfloor \leq$ $n-d-2$ and therefore

$$
\sigma_{2}(G)=n+k+\left\lfloor\frac{k}{d}\right\rfloor-4-d=n+k+\left\lceil\frac{k+1}{d}\right\rceil-5-d .
$$

Take H to be the bipartite graph $G_{1}=\left(Q_{1}, Q_{2} ; E_{1}\right)$. We claim that G has no H subdivision in which the branch vertices are the original vertices of H. If G had such a subdivision, then every path of this subdivision corresponding to an edge in H would contain a vertex in L, but $|L|<k$.

This example shows that $(n+k(1+1 / d)-3-d)+1$ is a lower bound for $R_{\mathcal{H}(k, d)}(n)$ for each $n \geq 2 k$ if $k \geq d^{2}$ and $d \geq 2$ divides k. When $d \geq 3$ does not divide k and $k \geq d(d+1)$, then the example yields the bound $R_{\mathcal{H}(k, d)}(n) \geq n+$ $k-d-4+\left\lceil\frac{k+1}{d}\right\rceil$.
Example 2. Let $d=2, k \geq 3$ be odd, $0 \leq r \leq k-3$, and $2 k \leq n \leq 2.5 k-5.5$. Let $V(G)=T \cup Q_{1} \cup Q_{2} \cup L_{1} \cup L_{2} \cup R$, where $|T|=3,\left|Q_{1}\right|=\left|Q_{2}\right|=(k-$ 3) $/ 2,\left|L_{1}\right|=\left|L_{2}\right|=k-2-r$, and $|R|=r$. Define the complement, \bar{G}, of G as follows:

$$
\begin{aligned}
E(\bar{G})= & \{u v: u, v \in T\} \cup\left\{u v: u \in Q_{1}, v \in L_{1}\right\} \\
& \cup\left\{u v: u \in Q_{2}, v \in L_{2}\right\} \cup E\left(C_{k-3}\right),
\end{aligned}
$$

where C_{k-3} is a spanning cycle in $Q_{1} \cup Q_{2}$ and vertices of Q_{1} and Q_{2} alternate on C_{k-3}.

For $u \in Q_{1} \cup Q_{2}, \operatorname{deg}(u)=(k-3)+r+(k-2-r)=2 k-5$; for $v \in L_{1} \cup$ $L_{2}, \operatorname{deg}(v)=n-1-(k-3) / 2$; for each other vertex $u, \operatorname{deg}(u) \geq n-3$. Thus, $\sigma_{2}(G)=\min \{2 k-5+n-1-(k-3) / 2,2(2 k-5)\}$. For $n \leq 2.5 k-5.5$, we have $\sigma_{2}(G)=n+(3 k-9) / 2$.

Let $H=C_{3} \cup C_{k-3}$ and take T and $Q_{1} \cup Q_{2}$ as the sets of branching vertices for C_{3} and C_{k-3}, respectively. We claim that G has no H-subdivision with these branch vertices. Indeed, each path corresponding to an edge in C_{k-3} contains either a vertex in R or a vertex in L_{1} plus a vertex in L_{2}. Each path corresponding to an edge in C_{3} contains a vertex in $R \cup L_{1} \cup L_{2}$. If we spend all r vertices in R for paths corresponding to edges in C_{k-3}, we still need $3+$ $2(k-3-r)=2 k-3-2 r$ vertices from $L_{1} \cup L_{2}$, but have there only $2 k-4-2 r$ of them.

Note that $n(G)=k+r+2(k-2-r)=3 k-4-r$. Thus, this example shows that $R_{\mathcal{H}(k, d 2)}(n)>n+(3 k-9) / 2$ for each $n \in[2 k-1,2.5 k-5.5]$ and odd $k \geq 3$.

Example 3. Let $d=2, k \geq 3$ be odd, and $n>2.5 k-5.5$. An example for $k=3$ and $H=C_{3}$ is an n-vertex graph G that is the union of two complete graphs sharing exactly one vertex. This graph G has no cycle through two vertices separated by the cut vertex and $\sigma_{2}(G)=n(G)-1$.

Let $k \geq 5$ and $H=C_{k}$. Let $V(G)=T \cup Q_{1} \cup Q_{2} \cup L \cup T$, where $\left|Q_{1}\right|=$ $(k-1) / 2,\left|Q_{2}\right|=(k+1) / 2,|L|=k-2$, and $|T|=n-2 k+2$. Define the complement, \bar{G}, of G as follows:

$$
E(\bar{G})=\left\{u v: u \in Q_{1}, v \in T\right\} \cup E\left(C_{k}\right),
$$

where C_{k} is a spanning cycle in $Q_{1} \cup Q_{2}$ and vertices of Q_{1} and Q_{2} alternate on C_{k} apart from one edge of C_{k} connecting two vertices in Q_{2}.

Each vertex in Q_{1} has degree $(k-3)+(k-2)$, each vertex in T has degree $n-1-(k-1) / 2$, each vertex in Q_{2} has degree $n-3$, and vertices in L are alladjacent. Since $k \geq 5$, we have

$$
\sigma_{2}(G)=(2 k-5)+\min \{n-1-(k-1) / 2, n-3\}=n+(3 k-11) / 2 .
$$

We claim that G has no H-subdivision with $Q_{1} \cup Q_{2}$ as the set branch vertices arranged so that no edge of G connects the images of adjacent vertices of H. Indeed, each path in G corresponding to an edge in H, apart from one, should contain a vertex in L, but $|L|=k-2$, a contradiction.

This shows that $R_{\mathcal{H}(k, 2)}(n) \geq n+(3 k-9) / 2$ for each $n>2.5 k-5.5$ and odd $k \geq 3$.

ACKNOWLEDGMENTS

The authors thank the referees for their helpful comments.

REFERENCES

[1] G. Dirac, Some theorems on abstract graphs, Proc London Math Soc 2 (1952), 69-81.
[2] G. Dirac, Généralisations du théoréme de Menger. (French) C R Acad Sci Paris 250 (1960), 4252-4253.
[3] Y. Egawa, R. J. Faudree, E. Györi, Y. Ishigami, R. H. Schelp, and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin 16 (2000), 81-92.
[4] J. Faudree, R. Faudree, R. Gould, M. Jacobson, L. Lesniak, On k-ordered graphs, J Graph Theory 35 (2000), 69-82.
[5] R. Faudree, R. J. Gould, A. V. Kostochka, L. Lesniak, I. Schiermeyer, and A. Saito, Degree conditions for k-ordered hamiltonian graphs, J Graph Theory 42 (2003), 199-210.
[6] M. Ferrara, R. J. Gould, G. Tansey, and T. Whalen, On H-linked graphs, Graphs Combin 22(2) (2006), 217-224.
[7] R. J. Gould, Advances on the Hamiltonian problem-A survey, Graphs Combin 19 (2003), 7-52.
[8] R. J. Gould, A. Kostochka, and G. Yu, A lower bound for minimum degree in H-linked graphs, SIAM J Discrete Math 20(4) (2006), 829-840.
[9] K. Kawarabayashi, A. Kostochka, and G. Yu, On sufficient degree conditions for a graph to be k-linked, Combin Probab Comput 15(5) (2006), 685-694.
[10] H. A. Kierstead, G. Sárközy, S. Selkow, On k-ordered hamiltonian graphs, J Graph Theory 32 (1999), 17-25.
[11] A. Kostochka and G. Yu, On H-linked graphs, Oberwolfach Report, No. 1 (2004), 42-45.
[12] A. Kostochka and G. Yu, Minimum degree conditions for H-linked graphs, Discrete Appl Math (in press).
[13] A. Kostochka and G. Yu, An extremal problem for H-linked graphs, J Graph Theory 50(4) (2005), 321-339.
[14] L. Ng and M. Schultz, k-Ordered hamiltonian graphs, J Graph Theory 2 (1997), 45-57.
[15] O. Ore, Note on Hamilton circuits, Amer Math Monthly 67 (1960), 55.
[16] D. B. West, Introduction to Graph Theory, Second Editon, Prentice Hall, Upper Saddle River, 2001.

