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ON EQUITABLE COLORING OF d-DEGENERATE GRAPHS∗

A. V. KOSTOCHKA† , K. NAKPRASIT‡ , AND S. V. PEMMARAJU§

Abstract. An equitable coloring of a graph is a proper vertex coloring such that the sizes of any
two color classes differ by at most 1. A d-degenerate graph is a graph G in which every subgraph has
a vertex with degree at most d. A star Sm with m rays is an example of a 1-degenerate graph with
maximum degree m that needs at least 1 + m/2 colors for an equitable coloring. Our main result
is that every n-vertex d-degenerate graph G with maximum degree at most n/15 can be equitably
k-colored for each k ≥ 16d. The proof of this bound is constructive. We extend the algorithm
implied in the proof to an O(d)-factor approximation algorithm for equitable coloring of an arbitrary
d-degenerate graph. Among the implications of this result is an O(1)-factor approximation algorithm
for equitable coloring of planar graphs with fewest colors. A variation of equitable coloring (equitable
partitions) is also discussed.
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1. Introduction. An equitable coloring of a graph is a proper vertex coloring
such that the sizes of every two color classes differ by at most 1. Equitable colorings
naturally arise in some scheduling, partitioning, and load balancing problems [1, 2, 18,
23, 8, 24]. Pemmaraju [21] and Janson and Ruciński [11] used equitable colorings to
derive deviation bounds for sums of dependent random variables that exhibit limited
dependence. Subsequently, Janson [9] explored equitable colorings with applications
to U -statistics, random strings, and random graphs. In these applications, the fewer
colors we use, the better.

In contrast with ordinary coloring, a graph may have an equitable k-coloring (i.e.,
an equitable coloring with k colors) but no equitable (k + 1)-coloring. It is easy to
check that the complete bipartite graph K7,7 has an equitable k-coloring for k = 2, 4, 6
and k ≥ 8 but has no equitable k-coloring for k = 3, 5, 7. For a graph G, let eq(G)
denote the smallest k0 such that G is equitably k-colorable for every k ≥ k0.

Finding eq(G) even for planar graphs G is an NP-complete problem. In particular,
determining if a given planar graph with maximum vertex degree 4 has an equitable
coloring using at most 3 colors is NP-complete. This can be seen as follows. It is known
[6] that determining if a planar graph with maximum vertex degree 4 is 3-colorable
is NP-complete. For a given n-vertex planar graph G with maximum vertex degree
4, let G′ be obtained from G by adding 2n isolated vertices. Then G is 3-colorable if
and only if G′ is equitably 3-colorable.

This NP-completeness result motivates a series of extremal problems on equitable
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colorings. A typical problem would ask us to show that if a graph G is “sparse,” then
eq(G) is “small.” Here “sparse” might mean that G has a small maximum degree,
or small average degree, or is d-degenerate for a small d. Recall that a graph G is
d-degenerate if every subgraph G′ of G has a vertex with degree (in G′) at most d.
It is well known that forests are exactly 1-degenerate graphs, outerplanar graphs are
2-degenerate, and planar graphs are 5-degenerate. By definition, the vertices of every
d-degenerate graph can be ordered v1, . . . , vn in such a way that for every i ≥ 2, vertex
vi has at most d neighbors vj with j < i.

Hajnal and Szemerédi [7] considered the first version of “sparseness” of a graph.
They settled a conjecture of Erdős by proving that every graph G with maximum
degree at most Δ has an equitable k-coloring for every k ≥ 1 + Δ. In other words,
they proved that eq(G) ≤ Δ(G)+ 1 for every graph G. In its “complementary” form,
this result concerns the decomposition of a sufficiently dense graph into cliques of
equal size, which has been used in a number of applications of Szemerédi’s regular-
ity lemma [13]. The bound of the Hajnal–Szemerédi theorem is sharp, but it can
be improved for some important classes of graphs. In fact, Chen, Lih, and Wu [5]
conjectured that every connected graph G with maximum degree Δ ≥ 2 has an eq-
uitable coloring with Δ colors, except when G is a complete graph or an odd cycle
or Δ is odd and G = KΔ,Δ. They proved the conjecture for graphs with maximum
degree at most 3. Lih and Wu [19] proved the conjecture for bipartite graphs and
Yap and Zhang [25, 26] proved that the conjecture holds for outerplanar graphs and
planar graphs with maximum degree at least 13. In an unpublished paper, Nakprasit
extended the result of Yap and Zhang [26] to planar graphs with maximum degree at
least 9.

If a graph G has moderate maximum degree Δ and, in addition, is d-degenerate
for a small d, then one can get a somewhat better than Δ bound on eq(G). Meyer
[20] proved that every forest (i.e., 1-degenerate graph) with maximum degree Δ has
an equitable coloring with 1 + �Δ/2� colors. This bound is attained at the star
Sm with m rays: in every proper coloring of Sm, the center vertex forms a color
class, and hence the remaining vertices need at least m/2 colors. Kostochka and
Nakprasit [15] obtained the upper bound eq(G) ≤ (d + Δ + 1)/2 for d-degenerate
graphs with maximum degree Δ in the case Δ ≥ 27d. This bound is also sharp.

Bollobás and Guy [4] initiated a new and important direction of research for
equitable colorings. They showed that while 1 + �Δ/2� is a tight upper bound on the
equitable chromatic number of trees, “most” trees can be equitably 3-colored. Their
result implies that each n-vertex forest F with Δ(F ) ≤ n/3 can be equitably 3-colored.
This result seems to uncover a fundamental phenomenon in equitable colorings: apart
from some “star-like” graphs, most graphs admit equitable colorings with few colors.
Another example of this phenomenon was given by Pemmaraju [22]. He showed that
every n-vertex outerplanar graph G with Δ(G) ≤ n/6 can be equitably 6-colored. In
this paper we show that this phenomenon is widely pervasive.

Our main result is the following.
Theorem 1. For d, n ≥ 1, every d-degenerate, n-vertex graph G with Δ ≤ n/15

is equitably k-colorable for each k ≥ 16d.
The proof of Theorem 1 is constructive and provides an O(d)-factor approxima-

tion algorithm for equitable coloring with fewest colors of each d-degenerate n-vertex
graph G with Δ ≤ n/15. Furthermore, many d-degenerate graphs need at least Ω(d)
colors for ordinary coloring, and for such graphs our algorithm gives a constant factor
(independent of d) approximation. Then we extend the algorithmic side of Theorem 1
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to all d-degenerate graphs and show the following.
Theorem 2. There exists a polynomial time algorithm that for every equitably

s-colorable d-degenerate graph G produces an equitable k-coloring of G for any k ≥
31ds.

The result of Theorem 2 was already used by Bodlaender and Fomin [3] for
constructing a polynomial time algorithm for equitable coloring of graphs with a
bounded tree width. Theorem 2 gives an O(d)-factor approximation algorithm for
the problem of the equitable coloring of a d-degenerate graph with fewest colors.
For some classes of graphs such as planar graphs, this translates into an O(1)-factor
approximation algorithm.

The technique used for the proof of Theorem 1 allows us to treat the follow-
ing variation of equitable coloring. An equitable k-partition of a graph G is a col-
lection of subgraphs {G[V1], G[V2], . . . , G[Vk]} of G induced by the vertex partition
{V1, V2, . . . , Vk} of V (G) where, for every pair Vi and Vj , the sizes of Vi and Vj differ
by at most 1. Certainly, every equitable coloring is an equitable partition. Pem-
maraju [22] proved that every outerplanar graph has an equitable partition into two
forests.

Theorem 3. Let k ≥ 3 and d ≥ 2. Then every d-degenerate graph has an
equitable k-partition into (d− 1)-degenerate graphs.

This is an extension of the Bollobás–Guy result [4], which essentially asserts the
same for d = 1 and k = 3. Note that there is no restriction on the maximum degree
of a graph in Theorem 3, while such a restriction is important in the Bollobás–Guy
theorem.

2. Coloring d-degenerate graphs with O(d) colors. An enumeration v1,
v2, . . . , vn of the vertices of a graph G is a greedy enumeration (or a greedy order) if
for every i, 1 ≤ i ≤ n, the vertex vi is a vertex of maximum degree in G−v1−· · ·−vi−1.
Similarly, the enumeration or order is degenerate if for every i, 1 ≤ i ≤ n, the vertex
vi has minimal degree in G({v1, . . . , vi}). Note that if v1, v2, . . . , vn is a greedy order
on G, then vi, vi+1, . . . , vn is a greedy order on G − v1 − · · · − vi−1, and that if
v1, v2, . . . , vn is a degenerate order on G, then v1, v2, . . . , vi is a degenerate order on
G− vi+1 − · · · − vn.

If G is d-degenerate, then, by the very definition, in every degenerate order
v1, v2, . . . , vn of G, every vi has at most d neighbors vj with j < i.

The main result of section 2 is Theorem 1 whose statement we repeat below for
the reader’s convenience.

Theorem 4 (restatement of Theorem 1). Every d-degenerate graph with maxi-
mum degree at most Δ is equitably k-colorable when k ≥ 16d and n ≥ 15Δ.

Proof. Let G be a d-degenerate graph with vertex set V of size n and edge set
E(G). Let t be an integer such that k(t− 1) < n ≤ kt and k ≥ 16d.

Case 1. t ≤ 15. We will color the vertices one by one in a degenerate order
v1, . . . , vn (with some recolorings). Suppose we cannot color vertex vi. Let Z be the
set of color classes containing neighbors of vi. Since G is d-degenerate, |Z| ≤ d. If
a color class M /∈ Z has fewer than t vertices, then we can color vi with M . Since
n ≤ kt, there is a color class M0 ∈ Z with at most t − 1 vertices. If a vertex w in a
color class M /∈ Z has no neighbors in M0, then we can recolor w with M0 and color
vi with M . Thus, each of the (k − |Z|)t colored vertices outside of Z has a neighbor
in M0. Therefore,

(t− 1)Δ ≥ (k − d)t
15

16
kt ≥ 15

16
n.
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Since n ≥ 15Δ, we have

(t− 1)
n

15
≥ 15

16
n,

and hence t− 1 ≥ 152/16 > 14, which contradicts the choice of t.
Case 2. t ≥ 16. Let t = β14

m + β24
m−1 + · · · + βm+1, where βj is an integer,

0 ≤ βj ≤ 3. For i = 1, 2, . . . ,m+1, define li = β14
i−1+β24

i−2+· · ·+βi. For notational
convenience, let l0 = 0. We have that li = 4li−1 + βi for each i = 1, 2, . . . ,m + 1 and
also that t = lm+1.

We now partition V into sets C1, C2, . . . , Cm+1 and color the vertices in Ci at the
ith phase of the algorithm. We use the values of l1, l2, . . . , lm to control the sizes of
these sets. For convenience, set A0 = B0 = C0 = ∅. For each i = 1, 2, . . . ,m, we
construct sets Ai and Bi and let Ci = Ai∪Bi. We use C ′

i to denote the vertices in the
sets constructed thus far. In other words, for each i = 0, 1, . . . ,m+1, we let C ′

i denote
∪i
j=0Cj . For each i = 1, 2, . . . ,m, Ai is constructed by selecting vertices in G− C ′

i−1

as follows. Arrange the vertices of G − C ′
i−1 in a greedy ordering and let Ai be the

first (li− li−1)k vertices in this ordering. Bi is selected from vertices in G−C ′
i−1−Ai

as follows. Initially set Bi = ∅ and, while there is a vertex w ∈ G−C ′
i−1−Ai−Bi that

has at least 13d neighbors in Ai ∪Bi ∪ C ′
i−1, add w to Bi. Repeat this process until

every vertex w ∈ G−C ′
i−1 −Ai −Bi has fewer than 13d neighbors in C ′

i−1 ∪Ai ∪Bi.
This completes the construction of Ai and Bi and we simply set Ci = Ai ∪Bi. After
constructing C1, C2, . . . , Cm, we set Cm+1 = V (G) − C ′

m.
Now let bi = |Bi| for each i = 0, 1, 2, . . . ,m and let e(H) denote the number of

edges in a graph H. It follows from our construction that for each i = 0, 1, . . . ,m,

e(G[C ′
i]) ≥ 13d

i∑
j=0

bj .

On the other hand, G[C ′
i] is a d-degenerate graph and has lik+

∑i
j=0 bj vertices, and

so e(G[C ′
i]) < (lik+

∑i
j=0 bj)d. It follows that

∑i
j=0 bj < (lik/12), or in other words,

for each i = 1, . . . ,m,

|C ′
i| <

13

12
lik.(1)

Since C ′
m+1 = V (G), we also know that |C ′

m+1| ≤ tk = lm+1k.
We will color C1 with k colors in such a way that each color class has at most

� 7
6 l1� vertices. We color vertices in C1 one by one in a degenerate order. Hence when

we color vertex u ∈ C1, there are at least k − d color classes that do not contain
neighbors of u. Since

|C1| <
13l1k

12
≤ 13l1k

12

16(k − d)

15k
<

7

6
l1(k − d),

there exists a color class M of size less than 7
6 l1 that does not contain neighbors of u.

We color u with color M .
We now show how to color the rest of the sets C2, C3, . . . , Cm+1. For 2 ≤ i ≤ m+1,

at the ith phase we start with G such that all vertices in C ′
i−1 have been colored. At

this phase we will color the vertices in Ci in a degenerate order in such a way that (i)
every color class is of size at most Li, where Li = � 7

6 li� for 2 ≤ i ≤ m, and Lm+1 = t;
(ii) the vertices in C ′

i−1 will not be recolored.
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Claim 2.1. For every i ≥ 2, Li−1/Li ≤ 2/5.
Proof. Recall that li ≥ 4li−1 for every i ≥ 2. If i = m + 1, then Li = li = t ≥ 16.

Therefore,

Lm

Lm+1
=

�7lm/6�
t

≤ 7lm/6 + 5/6

t
≤ 7

6 · 4 +
5/6

16
=

11

32
<

2

5
.

If 2 ≤ i ≤ m, then Li = � 7li
6 �. If li−1 ≥ 2, then li ≥ 8 and

Li−1

Li
≤ 7li−1/6 + 5/6

7li/6
≤ 1

4
+

5/6

7 · 8/6 =
19

56
<

2

5
.

Finally, if li−1 = 1, then Li−1 = 2 and Li ≥ 5. This proves the claim.
Suppose we want to color a vertex v. Let M1, . . . ,Mk be the current color classes.

Let Y0 denote the set of color classes of cardinality less than Li. If some Mj ∈ Y0

contains no neighbors of v, then we color v with Mj and work with the next vertex.
Otherwise, let Y0-candidate be a vertex w ∈ V − C ′

i−1 such that there exists a color
class M(w) ∈ Y0, with w /∈ M(w) and NG(w)∩M(w) = ∅. Let Y1 be the set of color
classes containing a Y0-candidate. If a member Mj of Y1 does not contain a neighbor
of v, then we color v with Mj and recolor some Y0-candidate w ∈ Mj with M(w). For
h ≥ 1, let a Yh-candidate be a vertex w ∈ Ci −∪M∈Y0∪···∪Yh

M such that there exists
M(w) ∈ Yh with NG(w) ∩M(w) = ∅. Let Yh+1 be the set of color classes containing
a Yh-candidate. If a member Mj of Yh+1 does not contain a neighbor of v, then we
color v with Mj and similarly to the above recolor a sequence of candidates. Finally,
let Y = ∪∞

j=0Yj and y = |Y |. Then by the above, Y possesses the following properties:
(a) Every color class in Y contains a neighbor of v.
(b) Every vertex u ∈ Ci − ∪M∈Y M has a neighbor in every M ∈ Y (otherwise

the color class of u would be in Y ).
We will prove that there is at least one color class M in Y that does not contain

neighbors of v. Suppose this is not the case.
Observe that each vertex u ∈ Ci has less than 13d neighbors in C ′

i−1 (by the
construction of Bi−1) and at the moment of coloring has at most d neighbors among
vertices of Ci colored earlier (since vertices are considered in a degenerate order). So
when we color a vertex u ∈ Ci, there are less than (13 + 1)d color classes that have
neighbors of u. By property (a) of Y, y < 14d.

Claim 2.2. y < 8d/7.
Proof. Let S = ∪M∈Y M and T = Ci−S. By property (b) of Y, at least y|T | edges

connect T with S. Since G is d-degenerate, we conclude that y|T | < d(|S|+ |T |), i.e.,
that (y − d)|T | < d|S|. Clearly, |S| ≤ yLi. By the definition of Y0, every color class
outside of Y0 has size exactly Li, and each k − y color class outside of Y contains at
most Li−1 vertices in C ′

i−1. Hence

|T | ≥ (k − y)(Li − Li−1).

By Claim 2.1, Li−Li−1

Li
≥ 1 − 2

5 = 3
5 for every i ≥ 2. Therefore,

(y − d)(k − y)
3

5
< dy.

Since k ≥ 16d, the last inequality yields that (y−d)(16d− y) 3
5 < dy. This implies the

following inequality for γ = y/d:

γ2 − 46

3
γ + 16 > 0.
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Therefore, either γ > (23+
√

385)/3 ∼ 14.207 . . . or γ < (23−
√

385)/3 ∼ 1.1261 . . . <
8/7. The former is impossible since y ≤ 14d, and thus the latter holds. This proves
the claim.

Subcase 2.1. 2 ≤ i ≤ m. The total number of colored vertices is at least Li(k−y),
which by Claim 2.2 is greater than⌈

7li
6

⌉(
k − 8d

7

)
≥ 7li

6

13k

14
=

13lik

12
.

This contradicts (1) for j = i− 1.
Subcase 2.2. i = m + 1. Let Di be the highest degree in G[V − C ′

i].
Claim 2.3. l1Δ+(l2− l1)D1 +(l3− l2)D2 + · · ·+(lm+1− lm)Dm ≤ 3Δ+4.25dt.
Proof. Observe that

|E(G)| ≥
∑

1≤i≤m
1≤j≤lik

degV−C′
i−1−{vi

1,...,v
i
j−1}(v

i
j) . . . .

By the definition of Ai, for vij ∈ Ai,

degG[V−C′
i−1−{vi

1,...,v
i
j−1}](v

i
j) ≥ Di and |Ai| = (li − li−1)k.

Thus,

|E(G)| ≥ k(l1D1 + (l2 − l1)D2 + (l3 − l2)D3 + · · · + (lm − lm−1)Dm).

Since |E(G)| < dn ≤ dtk, we have

l1D1 + (l2 − l1)D2 + (l3 − l2)D3 + · · · + (lm − lm−1)Dm < dt.(2)

Note that

li+1 − li
li − li−1

=
4li + βi+1 − li

4li−1 + βi − li−1
≤ 3(4li−1 + βi) + 3

3li−1 + βi
= 4 +

3 − βi

3li−1 + βi
≤ 4 +

1

li−1
.

For i ≥ 3, we obtain li+1 − li ≤ (4 + 1
4 )(li − li−1). Also (l2 − l1) − 4.25l1 =

β2 − 1.25l1. Therefore,

4.25 (l1D1 + (l2 − l1)D2 + (l3 − l2)D3 + . . . + (lm − lm−1)Dm)

≥ (l2 − l1)D1 + (l3 − l2)D2 + · · · + (lm+1 − lm)Dm + (1.25l1 − β2)D1.

Comparing with (2), we get

(l2 − l1)D1 + (l3 − l2)D2 + · · · + (lm+1 − lm)Dm < 4.25dt + β2D1 − 1.25l1D1.

Hence

l1Δ+(l2 − l1)D1 +(l3 − l2)D2 + · · ·+(lm+1 − lm)Dm ≤ l1Δ+4.25dt+β2D1 −
5

4
l1D1.

In order to prove the claim it is now enough to show that

l1Δ + β2D1 −
5

4
l1D1 ≤ 3Δ.(3)
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Recall that l1 ≤ 3 and β2 ≤ 3. If β2 ≤ 5
4 l1, then (3) is evident. If β2 > 5

4 l1, then

l1Δ + β2D1 −
5

4
l1D1 ≤ l1Δ +

(
β2 −

5

4
l1

)
Δ ≤ β2Δ ≤ 3Δ.

This proves (3) and thus the claim.
Let M1 ∈ Y0. By construction, every Mj contains at most Li vertices in C ′

i. So
the number of neighbors of M1 is at most

L1Δ + (L2 − L1)D1 + · · · + (Lm+1 − Lm)Dm

=

⌈
7l1
6

⌉
Δ +

(⌈
7l2
6

⌉
−
⌈

7l1
6

⌉)
D1 + · · · +

(
t−

⌈
7lm
6

⌉)
Dm

=

⌈
7l1
6

⌉
(Δ −D1) +

⌈
7l2
6

⌉
(D1 −D2) + · · · +

⌈
7lm
6

⌉
(Dm−1 −Dm) + tDm

≤ 7l1
6

(Δ −D1) +
5

6
(Δ −D1) +

7l2
6

(D1 −D2) +
5

6
(D1 −D2)

+ · · · + 7lm
6

(Dm−1 −Dm) +
5

6
(Dm−1 −Dm) + tDm

≤
(

7l1
6

+
5

6

)
Δ +

7

6
((l2 − l1)D1 + (l3 − l2)D2 + · · · + (lm+1 − lm)Dm) .

On the other hand, as in the proof of Claim 2.2, every color class outside of Y0 has
size exactly Lm+1 = t, and each of the k−y color classes outside of Y contains at most
Lm vertices in C ′

m. Hence, the number of neighbors of M1 is at least (k− y)(t−Lm).
Note that

t− Lm = t−
⌈

7lm
6

⌉
≥ t

(
1 −

7lm
6 + 5

6

t

)
= t

(
1 − 7

4 · 6 − 5

6 · 16

)
=

21

32
t.

Hence by Claim 2.3 we have

(k − y)(t− Lm) ≥
(
k − 8d

7

)
21

32
t.

Comparing this with the upper bound above and applying Claim 2.3 we get(
k − 8d

7

)
21

32
t ≤ 5

6
Δ +

7

6
(3Δ + 4.25dt) .

Since Δ ≤ n/15 ≤ kt/15, this reduces to(
k − 8d

7

)
21

32
≤ 5

6 · 15
k +

7

6

(
3

15
k + 4.25d

)
,

which gives (
21

32
− 1

18
− 7

6

1

5

)
k ≤

(
21

32

8

7
+

7 · 4.25

6

)
d.

It follows that

k

d
≤ 68.5

12

1440

529
=

8220

529
< 15.6,

which contradicts k ≥ 16d. This proves the theorem.
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Algorithm. The above proof implies a simple algorithm for equitable k-coloring
of any n-vertex d-degenerate graph with Δ(G) ≤ n/15. We first partition V (G) into
sets Ci, 1 ≤ i ≤ m + 1, as described in the first part of the proof. Then for each
i = 1, 2, . . . ,m+1, we attempt to color vertices of Ci in degenerate order. It is possible
that in the process some vertices may have to be recolored, but these recolorings are
restricted to the set currently being colored, namely, Ci. The algorithm clearly runs
in polynomial time and it can be implemented in O(n3) time; we do not give details
here.

3. Constant-factor approximation algorithm. The algorithm above can be
thought of as providing an O(d)-factor approximation algorithm for equitable coloring
with fewest colors of an n-vertex d-degenerate graph with maximum degree at most
n/15. In this section, we extend this to an O(d)-factor algorithm for equitable coloring
of an arbitrary d-degenerate graph. This implies an O(1)-factor algorithm for planar
graphs. The main result in this section is the following.

Theorem 5. Every n-vertex d-degenerate graph G with maximum degree at most
Δ is equitably k-colorable for any k, k ≥ max{62d, 31d n

n−Δ+1}.
Proof. Let G be an n-vertex d-degenerate graph. Let G0 = G, h = 30d−1 and, for

j = 1, . . . , h, let wj be a vertex of the maximum degree in Gj−1 and Gj = Gj−1 −wj .
Claim 3.1. For every v ∈ V (Gh), degGh

(v) < n/30.
Proof. If degGh

(v) ≥ n/30 for some v ∈ V (Gh), then also degGj−1
(wj) ≥ n/30 for

every j = 1, . . . , 30d−1, and hence |E(G)| ≥ 30d(n/30) = dn. This is a contradiction,
since any n-vertex d-degenerate graph has fewer than dn edges.

Claim 3.2. There are pairwise disjoint independent sets M1,M2, . . . ,Mh such
that for every j, 1 ≤ j ≤ h,

(i) wj ∈
⋃j

s=1 Ms,
(ii) �n/k ≤ |Mj | ≤ �n/k�, and

(iii) nj/k ≤
∑j

s=1 |Ms| < 1 + nj/k.
Proof. Let X1 = V (G) − w1 − NG(w1). Clearly, |X1| ≥ n − Δ − 1. Since G is

d-degenerate, X1 contains an independent set M ′
1 of size at least |X1|

d+1 ≥ n−Δ−1
d+1 . Since

n

k
≤ n− Δ + 1

31d
<

n− Δ

d + 1
,

|M ′
1| > n

k − 1
d+1 . Hence, we can choose a subset M ′′

1 of M ′
1 of size

⌈
n
k

⌉
− 1 and let

M1 = M ′′
1 + w1. By construction, M1 satisfies properties (i)–(iii) for j = 1.

Suppose we have constructed M1,M2, . . . ,Mj−1 satisfying (i)–(iii) for some j ≤ h.

Let xj = wj if wj /∈
⋃j−1

s=1 Ms, and let xj be any vertex outside
⋃j−1

s=1 Ms otherwise.

Let Xj = V (G) −
⋃j−1

s=1 Ms − xj −NG(xj). Since G is d-degenerate, Xj contains an

independent set M ′
j of size at least

|Xj |
d+1 . Suppose that |M ′

j | < −1 + n/k. In view of
(iii), this means that

n− 1 − (j − 1)nk − 1 − Δ

d + 1
<

n

k
− 1.

For n > k and d ≥ 1, the last inequality yields n − Δ + 1 < (j+d)n
k + 1 < 31dn

k . But
this contradicts the choice of k. Thus, we can choose a subset of M ′

j that together
with xj forms an independent set M ′′

j of size �n/k�. If

|M ′′
j | +

j−1∑
s=1

|Ms| <
jn

k
+ 1,



EQUITABLE COLORING OF d-DEGENERATE GRAPHS 91

then we let Mj = M ′′
j ; otherwise we get Mj by deleting a vertex v �= xj from M ′′

j .
Note that in the latter case, �n/k �= �n/k�, and thus (i)–(iii) hold in both cases.
This proves the claim.

Let G′ be the graph obtained by deleting vertices in M1 ∪M2 ∪ · · · ∪Mh from G
and let V ′ = V (G′).

Claim 3.3. |V ′| ≥ 16n/31.
Proof. By (iii) of Claim 3.2, |V ′| ≥ n − (30d − 1)n/k − 1 ≥ n − 30dn/k. Since

k ≥ 62d, we get |V ′| ≥ 32n/62.
By Claims 3.1 and 3.3,

|V ′|
Δ(G′)

≥ 32n

62
· 30

n
> 15.

Since k−h ≥ 62d−30d = 32d, by Theorem 1, G′ is equitably (k−h)-colorable. Hence
G is equitably k-colorable. This proves the theorem.

Corollary 1. Every d-degenerate graph with n vertices and maximum degree at
most 1 + n/2 is equitably k-colorable when k ≥ 62d.

Now we are ready to prove Theorem 2, which we state again for convenience.
Theorem 6 (restatement of Theorem 2). There exists a polynomial time algo-

rithm that, given a d-degenerate graph G with χeq(G) ≤ s, can equitably color G with
k colors for any k, k ≥ 31ds.

Proof. Assume that a graph G on n vertices with maximum degree Δ admits an
equitable coloring φ with s colors. Let v ∈ V (G) have degree Δ. The color class of
v contains at most n − Δ vertices. Thus no other color class can contain more than
n− Δ + 1 vertices. Hence,

s >
n

n− Δ + 1
.(4)

Also, if G has at least one edge, s ≥ 2. If Δ ≤ 1 + n/2, then by Corollary 1 G can be
equitably k-colored for any k ≥ 62d. Since 62d ≤ 31ds, G can be equitably k-colored
for any k ≥ 31ds. If Δ > 1 + n/2, then 31d n

n−Δ+1 > 62d and therefore by Theorem
5, G can be equitably k-colored for any k ≥ 31d n

n−Δ+1 . It follows from inequality (4)
that G can be equitably k-colored for any k ≥ 31ds.

The fact that such an equitable k-coloring can be constructed in polynomial
time is implied by the proof of Theorem 5. The algorithm is sketched here. First
identify the high degree vertices w1, w2, . . . , wh in G and construct the color classes
M1,M2, . . . ,Mh containing these vertices as in Claim 3.1. Construction of these color
classes uses as a subroutine an algorithm that finds an independent set of size at
least m/(d + 1) in a given m-vertex, d-degenerate graph. The following greedy al-
gorithm suffices for this task: pick a minimum degree vertex, delete the vertex and
its neighbors, and repeat until no vertices are left. Since at every step we deleted
at most d + 1 vertices, the number of steps will be at least m/(d + 1). Once the
color classes M1,M2, . . . ,Mh are constructed and the colored vertices are deleted,
we are left with a graph whose maximum vertex degree is less than n/30. We
color the vertices in this graph using the algorithm from the previous section. This
phase dominates the running time of the algorithm, and hence we have an O(n3)
algorithm.

4. Equitable partitions of d-degenerate graphs. It is easy to see that any
d-degenerate graph G can be partitioned into two (d−1)-degenerate graphs: construct
a degenerate ordering and color the vertices in this order red or blue using the rule
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that a vertex v is colored red if it has less than d red neighbors; otherwise, color v
blue. While this procedure leads to a partition into (d − 1)-degenerate graphs, this
partition need not be equitable. In fact, the only partition of the star Sm with m rays
(which is 1-degenerate) into two independent sets (which are 0-degenerate) is that
in which one set contains one vertex and the other contains the rest. Similarly, any
partition of Sm into k 0-degenerate sets has one 1-element set and some set with at
least m/k elements. In this section we show that if we have d ≥ 2 and we allow for a
third set, then we can provide equitability. This extends the Bollobás–Guy result [4]
to arbitrary d ≥ 2 and also provides a tool for obtaining equitable colorings that use
few colors. Specifically, we will prove Theorem 3.

Theorem 7 (restatement of Theorem 3). Let k ≥ 3 and d ≥ 2. Then every
d-degenerate graph can be equitably partitioned into k (d− 1)-degenerate graphs.

Proof. We prove the result by contradiction, assuming that the above claim is
false. Let G be a smallest (with respect to the number of vertices) counterexample to
the theorem. Let n = |V (G)|. Then n > dk, because otherwise, any equitable vertex
partition is good enough. A simple observation that forms the basis of the proof is
the following.

Claim 4.1. Let v1, v2, . . . , vm be a d-degenerate vertex ordering of a d-degenerate
graph H. If H−vm has a k-partition (W1, . . . ,Wk), where every Wi induces a (d−1)-
degenerate subgraph, then among W1 + vm, . . . ,Wk + vm at most one is not (d − 1)-
degenerate. Furthermore, if Wi+vm is not (d−1)-degenerate, then vm has d neighbors
and Wi contains all d neighbors of vm.

Proof. By the definition of a d-degenerate vertex ordering, the degree of vm is
at most d. If Wi has fewer than d neighbors of vm, then we can append vm to a
(d− 1)-degenerate ordering of Wi.

Claim 4.2. The minimum degree of G is d and n is divisible by k.
Proof. Suppose that n = k · s + r, where 1 ≤ r ≤ k. We can choose a degenerate

ordering of G such that the last vertex in the ordering, vn, is a vertex of minimum
degree. By the minimality of G, there exists an equitable k-partition (W1, . . . ,Wk)
of V (G) − vn into sets inducing (d − 1)-degenerate graphs. Note that exactly r − 1
of these sets have size s + 1 and the remaining k − r + 1 sets are of size s. Since
k−r+1 ≥ 1, there is at least one Wi of size s. If degG(vn) ≤ d−1, then adding vn to
any set Wi of size s creates the desired equitable k-partition of G. This contradicts
the choice of G and so we have that degG(vn) ≥ d.

If k does not divide n, then we have r < k. This implies that there are k−r+1 ≥ 2
sets of size s and, by Claim 4.1, we can add vn to at least one of these sets of size s.
Again, this contradicts the choice of G as a minimal counterexample and implies that
k divides n.

Given a vertex ordering R = {v1, . . . , vn} of a graph H and an edge e = vivj ∈
E(H), we denote lR(e) = i and rR(e) = j if i < j. From all d-degenerate orderings of
V (G) choose a special ordering U = (u1, . . . , un), where the maximum index lU (e) of
an edge e ∈ E(G) is maximized. Let i0 be the maximum of lU (e) over all the edges in
the special ordering U . For convenience, we use Ui to denote the set {ui, ui+1, . . . , un}
for each i, 1 ≤ i ≤ n.

Claim 4.3. The vertex ui0 is adjacent to ui for every i0 < i ≤ n, and the set
Ui0+1 is independent.

Proof. The second part of the claim is directly implied by the definition of i0.
Suppose that for some j > i0, the vertex uj is not adjacent to ui0 . Then all the
neighbors of uj are in V (G)−Ui0 . So moving uj from its current position to just before
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ui0 creates another d-degenerate ordering of V (G). In this ordering the maximum
index of the left end of an edge is i0 + 1, which contradicts the choice of the special
ordering U .

Now we are ready to prove the theorem.
Case 1. i0 ≥ n−k+1. Let G′ = G−Un−k+1. By the minimality of G, V (G′) has

an equitable partition (W1, . . . ,Wk) into sets inducing (d−1)-degenerate graphs. Now
we attempt to consecutively add un−k+1, un−k+2, . . . , un (in this order) so that (a) we
add one vertex to every set, and (b) every new set still induces a (d − 1)-degenerate
graph. For vertices un−k+1, un−k+2, . . . , un−1 we can do this by Claim 4.1. Suppose
that after adding vertices un−k+1, un−k+2, . . . , un−1, Wi is the only set to which no
vertex has been added. The trick with un is that one of its neighbors is ui0 , which has
already been added to a set different from Wi. Thus un has at most (d−1) neighbors
in Wi and therefore the set Wi ∪ {un} still induces a (d− 1)-degenerate graph.

Case 2. i0 ≤ n − k. Let G′′ = G − Ui0 . By the minimality of G, V (G′′) has
an equitable partition (W1, . . . ,Wk) into sets inducing (d − 1)-degenerate graphs.
For i > i0, call a set W� 1 ≤ � ≤ k i-incompatible if all d − 1 neighbors of ui

different from ui0 are in W�. By Claim 4.1, for every i > i0, there could be at most
one i-incompatible set. However, a set W� may be i-incompatible for several i. By
Claim 4.1, ui0 can be added to any one of at least k − 1 sets among the Wi’s. Let
S = {Wi | 1 ≤ i ≤ k and ui0 can be added to Wi}. There exists some set W�′ ∈ S
such that W�′ is i-incompatible with at most (n− i0)/|S| values of i > i0. Since k ≥ 3,
|S| ≥ 2 and so (n − i0)/|S| ≤ (n − i0)/2. Now add ui0 to W�′ . Any ui, i > i0, for
which W�′ is i-incompatible, can be added to any set other than W�′ . Distribute such
ui’s among sets other than W�′ so that the sizes of new sets do not exceed s = n/k.
The remaining ui’s can be added to any set. Thus, we add these in an arbitrary way
so that the size of every Wl becomes s = n/k.

Algorithm. The algorithm implied by the above proof is sketched here; the
correctness of the algorithm follows from the proof. An equitable k-partition of a
given n-vertex graph G is constructed recursively. If G contains a vertex of degree
less than d or if n is not divisible by k, we construct a d-degenerate ordering of G
and, assuming that v is the last vertex in this ordering, construct an equitable k-
partition of G − v and then add v to one of the k sets. Otherwise, we construct a
special d-degenerate ordering U of G, referred to in the proof, as follows. Let L0

be the set of vertices in G with degree at most d. If L0 contains a pair of adjacent
vertices, say u and v, then U is obtained by constructing an arbitrary d-degenerate
ordering of G − u − v and appending u and v to this. Otherwise, let L1 be the set
of vertices in G − L0 with degree at most d. By definition, every vertex in L1 has a
neighbor in L0. Find a vertex v ∈ L1 with fewest neighbors in L0. Let S denote the
set of neighbors of v in L0. U is obtained by constructing an arbitrary d-degenerate
ordering of G − v − S and appending v followed by vertices in S to this. Once U is
constructed, we determine whether Case 1 (respectively, Case 2) of the proof applies
and accordingly construct an equitable k-partition of G′ = G−Un−k+1 (respectively,
G′′ = G − Ui0) and add vertices in Un−k+1 (respectively, Ui0) to the sets in the
partition. It is easy to see that O(n2) time suffices for the algorithm, though it seems
likely that with more care this can be implemented in subquadratic time.

Remark. In [17], a list analogue of equitable coloring was considered. A list
assignment L for a graph G assigns to each vertex v ∈ V (G) a set L(v) of allowable
colors. An L-coloring of G is a proper vertex coloring such that for every v ∈ V (G)
the color on v belongs to L(v). For example, when colors represent time periods and
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vertices are jobs, the list model incorporates the restriction that not all time periods
are suitable for all jobs. A list assignment L for G is k-uniform if |L(v)| = k for all
v ∈ V (G).

Given a k-uniform list assignment L for an n-vertex graph G, we say that G is
equitably L-colorable if G has an L-coloring of G such that every color has at most
�n/k� vertices. A graph G is equitably list k-colorable if G is equitably L-colorable
whenever L is a k-uniform list assignment for G.

Because some colors in the lists may occur rarely, one cannot ensure using each
color, and most of the techniques previously used for ordinary equitable colorings do
not work well for equitable list colorings. In particular, it is not absolutely clear how
to adapt the proofs of Theorems 1 and 2 for equitable colorings. However, the idea
of the proof of Theorem 3 could be adapted to prove its list version as follows.

Theorem 8. Let k ≥ 3 and d ≥ 2. Suppose that every vertex v of a d-degenerate
graph G on n vertices is given a list L(v) of k colors. Then the vertices of G can be
colored from their lists in such a way that every color class induces a (d−1)-degenerate
subgraph of G and contains at most �n/k� vertices.
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Applications, Vol. II, P. Erdős, A. Rényi, and V. T. Sós, eds., North–Holland, Amsterdam,
1970, pp. 601–603.

[8] S. Irani and V. Leung, Scheduling with conflicts, and applications to traffic signal control,
in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, ACM, New York, 1996, pp. 85–94.

[9] S. Janson, Large Deviations for Sums of Partly Dependent Random Variables, preprint
NI02024-CMP, Isaac Newton Institute, Cambridge, UK, 2002; Available online at
http://www.newton.cam.ac.uk/preprints/NI02024.pdf.
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