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Let k be a positive integer and n = ⌊log2 k⌋. We prove that there is an ε = ε(k) >
0 such that for sufficiently large r, every r-uniform hypergraph with maximum
edge degree at most

ε(k) kr
(

r

ln r

) n

n+1

is k-colorable.

1. Introduction

The degree of an edge e in a hypergraph G is the number of other edges of G
intersecting e, and the maximum edge degree of G is the maximum over the
degrees of its edges. A natural question is: Which bound on the maximum
edge degree of an r-uniform hypergraph G provides that G is k-colorable?
The classical result in this direction belongs to Erdős and Lovász. In their
seminal paper [2] (where the Lovász Local Lemma appeared), they proved
the following bound.
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Theorem 1 [2]. If k, r ≥ 2, then every r-uniform hypergraph with maxi-
mum edge degree at most 1

4k
r is k-colorable.

The proof works also for list coloring. A remarkable feature of this result
is that it works for all k, r ≥ 2, and in many cases the bound is rather close to
the best possible. In particular, Erdős and Lovász [2] showed that the bound
cannot be significantly improved even if we consider only hypergraphs with
high girth. If we denote by D(k, r) (respectively, D(k, r, g)) the minimum
D such that there exists an r-uniform non-k-colorable hypergraph G with
(girth at least g and) maximum edge degree D, then the results mentioned
above can be summarized as follows. For every g ≥ 2,

(1)
1

4
kr < D(k, r) ≤ 20r3kr−1.

The upper bound in (1) was recently improved for k < r by Kostochka and
Rödl [5] to r⌈r kr−1 ln k⌉.

Let m(r, k) denote the minimum number of edges in an r-uniform hy-
pergraph that is not k-colorable. Elaborating the proof of a lower bound
on m(r, 2), and using the Local Lemma, Radhakrishnan and Srinivasan [6]
improved the lower bound on D(2, r) for large r to

(2) D(2, r) ≥ 0.17 · 2r
√
r/ ln r.

The main result of this paper is the following extension of (2) to fixed k
and large r.

Theorem 2. For every integer k ≥ 2, let ε = ε(k) = exp {−4k2} and
n = n(k) = ⌊log2 k⌋. Then for every sufficiently large r, every r-uniform

hypergraph with maximum edge degree at most D = εkr( r
ln r)

n
n+1 is k-

colorable. In other words, D(k, r) > εkr( r
ln r)

n
n+1 .

Recall that for the class of simple hypergraphs, Kostochka and Kumb-
hat [4] proved recently a slightly stronger bound than Theorem 2 gives.
Recall that a hypergraph G is b-simple if |e ∩ e′| ≤ b for every distinct
e, e′ ∈ E(G).

Theorem 3 [4]. If b ≥ 1, k ≥ 2, and ε > 0 are fixed and r is sufficiently
large, then every r-uniform b-simple hypergraph G with maximum edge
degree at most krr1−ε is k-colorable.
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We think that the statement of Theorem 3 holds for all r-uniform hy-
pergraphs.

The proof of Theorem 2 uses the Local Lemma, ideas of Radhakrish-
nan and Srinivasan [6], and the proof of the lower bound on m(r, k) by
Kostochka [3].

The structure of the paper is as follows. In the next section, a semi-
random procedure Evolution is described and some of its simple properties
are derived. In Section 3 we study the structure of so called cause trees
arising in the analysis of Evolution. In the next two sections we define
some auxiliary “bad” events and estimate their probabilities. Using the
independence structure of these auxiliary events and the Local Lemma, in
the final section we show that for hypergraphs satisfying the conditions of
Theorem 2, with positive probability Evolution gives a proper k-coloring.
This means that such a coloring exists.

2. Coloring Procedure Evolution and its Properties

Let k, n and ε be as in the statement of the theorem. Let

(3) r ≥ exp{2ε−2(n+1)}.

Throughout the paper we will use the notation

(4) z = ⌊4k2r/ ln r⌋.

Fix some 0 < p < 2−k
rr. Then there is the unique positive integer s such

that sp ≤ ln r
(n+1)r < (s + 1)p. Let G = (V,E) be an r-uniform hypergraph

with maximum edge degree at most D = εkr( r
ln r)

n
n+1 .

The coloring procedure Evolution described below consists of n + 1
stages, and every stage apart from Stage 0 consists of s steps. For 1 ≤ l ≤ n
and 1 ≤ i ≤ s, Step (l − 1)s+ i is the ith step in Stage l.

We also fix a linear order L on V (G). Now, the procedure works as
follows.

Stage 0. (O1) Color every vertex v ∈ V (G) randomly and independently,
with a color φ(v) ∈ {0, 1, 2, . . . , k − 1} chosen uniformly in this set.
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(O2) For every v ∈ V (G), define the random variable I(v) with the values
in {1, 2, . . . , sn} ∪ {∞} as follows:

(5) Pr
{
I(v) = x

}
=

{
p, if x ∈ {1, 2, . . . , sn};

1− psn, if x = ∞.

Each random variable I(v) is defined to be mutually independent of all other
I(w).

Stage l, l = 1, . . . , n.
STEP i + s(l − 1), 1 ≤ i ≤ s. Following order L, for one by one vertex
v ∈ V (G), check whether

(C1) I(v) = (l − 1)s+ i and

(C2) v belongs to an edge that was monochromatic, say, of color α, before
Stage l, and still is monochromatic at the current moment.

If both conditions (C1) and (C2) hold, then recolor v with color α+2l−1

(modulo k). Otherwise, do nothing with v.

Remark 1. By Condition (C1), each vertex can be recolored at most once.

Remark 2. As it follows from the description of the procedure, every step
consists of

∣∣V (G)
∣∣ smaller steps (one per vertex).

Lemma 1. For every w, q ≥ 1, every set W ⊆ V with |W | = w, and every
set Q ⊆ {1, 2, . . . , sn} with |Q| = q, the probability that for each vertex
v ∈W , I(v) ∈ Q is at most (qp)w.

Proof. For every vertex v ∈ V (G) and every 1 ≤ l ≤ n and 1 ≤ i ≤ s,
Pr
{
I(v) = s(l − 1) + i

}
= p. Therefore, the probability that I(v) ∈ Q is

at most qp. The mutual independence of all I(v) yields the lemma.

For an edge e ∈ E and 1 ≤ l ≤ n, let

(6) M(e, l) =
{
v ∈ e : I(v) ≤ sl

}
.

Lemma 2. For every e ∈ E and 1 ≤ l ≤ n,

Pr{
∣∣M(e, l)

∣∣ ≥ z} ≤ ε0.5r.
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Proof. It is enough to prove the lemma for l = n. Observe that
∣∣M(e, n)

∣∣ ≥
z means that there exists a set Z ⊂ e with |Z| = z such that I(v) ≤ sn for
every v ∈ Z. Hence by Lemma 1 applied with Q = [sn] and W = Z, this
probability is at most

(
r

z

)
(nsp)z ≤

(er
z

)z ( n ln r

(n+ 1)r

)z
≤

(
ne ln r

z(n+ 1)

)z
.

Since r is large and z = ⌊4k2r/ ln r⌋ > n,

ne ln r

z(n+ 1)
≤
e ln r

z + 1
≤
e ln2 r

4k2r
≤ r−0.6.

Thus
(
ne ln r

z(n+ 1)

)z
≤
(
r−0.6

) (4k2r/ ln r)−1
< e−2k2r = ε0.5r.

Lemma 3. If a vertex is of color α at the end of Stage l, l ≥ 1, then at
the end of Stage 0 it can be colored only with colors α, α− 20, α− 21, . . . ,
α− 2l−1 (modulo k).

Proof. By Remark 1, every vertex can be recolored at most once and by
definition, a vertex of color β can be recolored during Stage j only with
color β + 2j−1 (modulo k).

Definition [Blaming edges]. If an edge e0 becomes monochromatic of color
α during Stage l, then it must contain at the end of Stage 0 a vertex of color
α− 2l−1. Suppose that at the end of Stage 0 it contained vertices of colors
α− 2l1−1, . . . , α− 2lh−1, where lh = l and l1 < l2 < · · · < lh. Then for every
1 ≤ j ≤ h, there exists an edge ej and a vertex vj ∈ e0 ∩ ej such that

(a) ej was monochromatic of color α− 2lj−1 at the end of Stage lj − 1;

(b) vj was recolored with α during Stage lj and it was the last vertex of this
color in e0 recolored with α.

In this case we say that e0 and vj lj-blame ej .

Remark 3. If an edge e0 becomes monochromatic of color α during Stage l,
then all vertices of color α− 2l−1 in e0 change their colors to α during this
stage. But since in every step, the vertices of G are considered consecutively,
there is the last vertex v∗ of color α− 2l−1 in e0 that changes its color. At
that moment, any monochromatic edge e of color α − 2l−1 containing v∗

shares only v∗ with e0.
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Remark 4. It may happen that an edge e0 can blame more than one edge
containing the same vertex vj . On the other hand, by definition, e0 cannot
blame an edge containing another vertex v ∈ e0 with φ(v) = φ(vj).

Definition [Cause trees]. If an edge e0 is monochromatic of color α at the
end of Stage l, then a cause tree T = T (e0, α, l) is a subset of edges of G
defined by induction on l as follows:

(a) The set T always contains e0.

(b) If e0 was monochromatic of color α already after Stage 0, then T = {e0}
for every l.

(c) Suppose that at the end of Stage 0 edge e0 contained vertices of colors
α−2l1−1, . . . , α−2lh−1, where lh ≤ l and l1 < l2 < · · · < lh. Suppose further
that for j = 1, . . . , h, edge e0 lj-blames edge ej . Then

T = T (e0, α, l) = {e0} ∪
h⋃

j=1

T (ej , α− 2lj−1, lj − 1).

Remark 5. By Remark 4 and the definition of cause trees, it could be
that in the same outcome of Evolution for the same triple (e0, α, l), we can
construct several distinct cause trees T = T (e0, α, l).

Definition [Levels of edges]. If T = T (e0, α, l) is defined as above, then we
also say that e1, e2, . . . , eh are the edges of level 1 of T , the edges blamed
by the edges of level 1 are the edges of level 2 of T , and so on. Thus, if an
edge e of a cause tree has vertices of exactly t distinct colors at the end of
Stage 0, then e blames either t− 1 or t other edges.

3. Structure of Cause Trees

Since each vertex can be recolored at most once, each edge at different
stages of Evolution can become monochromatic with at most two colors.
Furthermore, if an edge e was monochromatic of a color α1 after Stage l1
and becomes monochromatic of a color α2 6= α1 after Stage l2, then e has
to be monochromatic of color α1 already after Stage 0 and all vertices of e
change their color to α2 = α1 + 2l2−1 at Stage l2. In this case, each cause
tree for e considered after Stage l2 has exactly one edge of level 1.
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In view of this, if an edge e becomes monochromatic exactly once during
Evolution, then the corresponding color α is called the main color of e and
denoted by µ(e), and if e becomes monochromatic twice, then the main
color of e, µ(e), is the first of these two colors.

If e is monochromatic of some color α after some Stage l, then we say
that e is an l-unlucky edge.

Lemma 4. If e0 is an l-unlucky edge with a cause tree T , then the main
colors of all the edges of T are distinct.

Proof. If e and e′ are edges of T , then there exist two sequences e0, e1, . . . ,
eq = e and e′0 = e0, e

′
1, . . . , e

′
q′ = e′ such that ej lj-blames ej+1 for j =

0, 1, . . . , q − 1 and e′j l
′
j-blames e′j+1 for j = 0, 1, . . . , q′ − 1. Furthermore,

l0 > l1 > · · · > lq−1, l
′
0 > l′1 > · · · > l′q−1, and the sequences l0, l1, . . . , lq and

l′0, l
′
1, . . . , l

′
q are not identical. Thus, the numbers 2l0−1+2l1−1+ · · ·+2lq−1−1

and 2l
′
0−1+2l

′
1−1+· · ·+2

l′
q′−1

−1
are distinct and differ by less than k. On the

other hand, by definition, the main color of e is α−2l0−1−2l1−1−· · ·−2lq−1−1

and the main color of e′ is α− 2l
′
0−1− 2l

′
1−1− · · ·− 2

l′
q′−1

−1
. This proves the

lemma.

Lemma 5. Suppose that e0 is an l-unlucky edge with a cause tree T . If e
and e′ are edges of T and neither of them blames the other, then e and e′

are disjoint.

Proof. Assume that e and e′ have a common vertex v and both belong to T .
Then there exist two sequences e0, e1, . . . , eq = e and e′0 = e0, e

′
1, . . . , e

′
q′ = e′

such that ej lj-blames ej+1 for j = 0, 1, . . . , q − 1 and e′j l
′
j-blames e′j+1 for

j = 0, 1, . . . , q′ − 1. Furthermore, l0 > l1 > · · · > lq−1, l
′
0 > l′1 > · · · > l′q−1.

Claim 1. lq−1 6= l′q′−1.

Proof of Claim. If lq−1 = l′q′−1, then e and e′ both were monochromatic
at the end of Stage lq−1−1. But by Lemma 4, their main colors differ. This
proves the claim.

Thus below we can assume that lq−1 < l′q′−1. It follows that e ceased
to be monochromatic before e′ did. In particular, the vertex v ∈ e ∩ e′ was
recolored from µ(e) to µ(e′). This yields that

(7) µ(e′)− µ(e) (modulo k) is a power of 2.

Claim 2. µ(e′)− µ(e) = 2lq−1−1 modulo k.
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Proof of Claim. Recall that

µ(e′)− µ(e) =
(
α− 2l

′
0−1 − 2l

′
1−1 − · · · − 2

l′
q′−1

−1)

−
(
α− 2l0−1 − 2l1−1 − · · · − 2lq−1−1

)
.

In this expression, α cancels out and every other summand apart from
2lq−1−1 is divisible by 2lq−1 . Together with (7), this yields the claim.

Claim 2 implies that v was recolored during Stage lq−1 and thus µ(e′) =
µ(eq−1). This contradicts Lemma 4.

Lemma 6. Let e0 be an edge of G that is unlucky after Stage l. Let T be
a cause tree for this event such that for every pair of edges (e1, e2) of T
such that e1 blames e2, we have µ(e1)−µ(e2) ∈ {1, 2, . . . , 2l−1} (modulo k).
Then

∣∣E(T )
∣∣ ≤ 2l. In particular, each cause tree has at most 2n ≤ k edges.

Proof. If e1 l1-blames e2 and e2 l2-blames e3, then l2 < l1. Thus, under
conditions of the lemma, for the root e0 and an arbitrary edge e of the tree,
we have

µ(e0)− µ(e) ∈
{
1, 2, . . . , 2l−1 + 2l−2 + · · ·+ 1

}
= {1, 2, . . . , 2l − 1}.

Now, Lemma 4 implies that T has at most 1 + (2l − 1) edges.

Below we will analyze which subsets of edges of G can form cause trees
T (e, α, l) for some values of e, α and l. Lemma 5 implies that every cause
tree T = T (e, α, l) is an r-uniform hypergraph tree in the ordinary sense
rooted at e. Moreover, every vertex of such a tree belongs to at most two
edges of this tree. By Lemma 6, such a tree has at most k edges. In
connection with this, let us fix some notation.

Definition [r-Trees and sub-r-trees]. When we say “r-tree”, we mean an r-
uniform hypergraph tree with at most k edges in which every vertex belongs
to at most two edges of this tree. By a sub-r-tree of G we mean an r-tree
that is a subhypergraph of G.

Often, we will consider rooted r-trees. The root of an r-tree will be an
edge of this r-tree, and not a vertex. Given an r-tree T with a root e0, the
children of e0 are the edges adjacent to e0, and for e ∈ E(T ) at distance
d from e0 (in T ), the children of e are the edges adjacent to e that are at
distance d + 1 from e0. Naturally, the descendants of an e ∈ E(T ) are its
children, children of children and so on. If e1 is a descendant of e2, then e2
is an ancestor of e1. For an r-tree T with a root e0 and another edge e1 of T ,
by T (e1) we denote the subtree of T formed by e1 and all its descendants.
We will use the following fact on sub-r-trees of r-uniform hypergraphs.
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Lemma 7. Let H be an r-uniform hypergraph with maximum edge degree
at most D. Let e0 ∈ E(H). Then e0 belongs to at most (4D)y−1 sub-r-trees
of H with y edges.

Proof. Let T be a sub-r-tree of H containing e0 with
∣∣E(T )

∣∣ = y. Con-
sider T as a rooted r-tree with root e0. Order the edges of T e0, e1, . . . , ey−1

starting from e0 using Breadth-First search. We say that T has type
(h0, . . . , hy−2) if for i = 0, . . . , y − 2, edge ei has exactly hi children. Since
h0 + · · · + hy−2 = y − 1, the number of distinct types does not exceed the
number of representation of y−1 as the sum of y−1 of ordered nonnegative
summands, which equals

(
(y−1)+(y−1)−1

y−2

)
< 4y−1. When we know the type

of T , then for every edge ei, i ≥ 1, we know the immediate ancestor (father
edge). So, we can embed a tree T of a given type, edge by edge into G.
Furthermore, at each step i, i ≥ 1, we have at most D choices for our edge
among the edges of G adjacent to its father edge. Thus, e0 belongs to at
most Dy−1 r-trees of given type with y edges. Since the number of distinct
types is at most 4y−1, this proves the lemma.

4. Auxiliary Events

The goal of this section is to introduce the auxiliary events W̃ (e0, α, T, l)
that imply the “bad” events in Evolution and can be controlled. In the next
section we estimate probabilities of these auxiliary events.

Definition [Events W (e, α, T, l)]. Let e ∈ E(G), α ∈ [k], l ∈ {1, . . . , n}
and T be a sub-r-tree of G rooted at e. Then let W (e, α, T, l) be the event
that edge e is monochromatic of color α after Stage l of Evolution, and a
cause tree for this is T .

Lemma 8. Let e ∈ E(G), α ∈ [k], l ∈ {1, . . . , n} and T be a sub-r-tree of
G rooted at e. Also, let e1, . . . , eq be the edges of T of the first level, i.e.,
the edges of T sharing a vertex with e. For j ∈ [q], let e ∩ ej = {vj}. Let
Q

.
= {v1, . . . , vq}. If W (e, α, T, l) occurs, then the following properties hold:

(W1) For every v ∈ e, φ(v) ∈ {α}∪φ(Q) ⊆ {α, α− 20, α− 21, . . . , α− 2l−1}
(modulo k).

(W2) For j ∈ [q], φ(vj) 6= α, and for distinct j and j′, φ(vj′) 6= φ(vj). In
particular, if Aj = Aj(e, φ) =

{
v ∈ e : φ(v) = φ(vj)

}
, then all sets Aj are

disjoint subsets of e.
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(W3) I(v) ≤ ls for each v ∈
⋃q
j=1Aj .

Moreover, for each j ∈ [q], if vj becomes of color α at Stage lj , then

(W4) α− φ(vj) = 2lj−1;

(W5) the event W (ej , φ(vj), T (ej), lj − 1) occurs;

(W6) for every u ∈ ej with I(u) > (lj − 1)s, we have also I(u) ≥ I(vj); and

(W7) for each u ∈ Aj − vj , (lj − 1)s+ 1 ≤ I(u) ≤ I(vj).

(W8) If e was already monochromatic after Stage l−1, then for each v ∈ e,
I(v) /∈

[
s(l − 1) + 1, sl

]
.

Proof. We will prove (W1)–(W8) one by one.

(W1) holds by the definition of cause trees and Lemma 3.

By the definition of cause trees, for each j ∈ [q], vj is the last vertex
of color φ(vj) that changed its color to α. This implies both statements
of (W2).

Since each v ∈
⋃q
j=1Aj has changed its color by Stage l, by condition

(C1) in the definition of Evolution, (W3) follows.

(W4) also follows from the definition of Evolution.

If ej were not monochromatic of color φ(vj) after Stage lj − 1, then vj
would not obtain color α blaming ej . This yields (W5).

If some u ∈ ej would have (lj−1)s < I(u) < I(vj), then by the definition
of Evolution, it would mean that u did not change its color before Stage lj .
Recall that by (W5) edge ej is monochromatic after Stage lj − 1. Thus if
Condition (C2) holds at the moment I(u), then vertex u should change its
color at this moment, i.e. earlier than vj did. If not, this means that some
other vertex of ej has already changed its color. In both cases, vj would not
blame ej . This contradiction proves (W6).

Now (W7) follows from the facts that all vertices in Aj must change
their colors in Stage lj (in order to change it from φ(vj) to α) and that vj
is the last vertex in Aj that changes its color.

If e were monochromatic after Stage l − 1, and I(v) ∈
[
s(l − 1) + 1, sl

]

for some v ∈ e, then v would change its color, and so W (e, α, T, l) would
not happen. This proves (W8).

Unfortunately, eventsW (e, α, T, l) andW (e′, α′, T ′, l′) can be dependent
even if V (T ′) is disjoint from V (T ). For example, some edge e0 ∈ E(G)
may intersect both V (T ) and V (T ′). In this case, event W (e, α, T, l) may
prompt a vertex v ∈ e0 ∩ V (T ) to change its color. This in turn, can make
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e0 monochromatic and so prompt a vertex v′ ∈ e0 ∩ V (T ′) to change its
color, which may affect W (e′, α′, T ′, l′).

Therefore, for each e0 ∈ E(G), each sub-r-tree T of G with root e0
and

∣∣E(T )
∣∣ ≤ k, and each color α, we will introduce the auxiliary event

W̃ (e0, α, T, l) that contains the event W (e0, α, T, l), and in addition es-
sentially possesses properties (W1)–(W8) above, but does not depend on
the values of φ(u) and I(u) for all u /∈ V (T ). This will imply that each

W (e, α, T, l) is independent of all W̃ (e′0, α
′, T ′, l′) with V (T ′) ∩ V (T ) = ∅.

We define these events by induction on the number of edges in T .

If E(T ) = {e0}, then the event W̃ (e0, α, T, l) means that all of the
following holds

(i) φ(e0) is monochromatic of color α,

(ii)
∣∣M(e0, n)

∣∣ < z, and

(iii) I(v) > ls for every v ∈ e0.

Suppose that the event W̃ (e0, α, T, l) is defined for all parameters e0, α,
T , l such that

∣∣E(T )
∣∣ < y. Let e0 ∈ E(G), α ∈ [k], and T be any sub-r-tree

T of G with root e0 and y edges. Let e1, . . . , eq be the edges of T sharing a
vertex with e. For j ∈ [q], let e ∩ ej = {vj}. Let Q

.
= {v1, . . . , vq}. We say

that W̃ (e0, α, T, l) occurs, if either
∣∣M(e, n)

∣∣ ≥ z for at least one e ∈ E(T )
or all of the following holds:

(W̃1) For every v ∈ e, φ(v) ∈ {α}∪φ(Q) ⊆
{
α, α−20, α−21, . . . , α−2l−1

}

(modulo k).

(W̃2) For j ∈ [q], φ(vj) 6= α, and for distinct j and j′, φ(vj′) 6= φ(vj). In
particular, if Aj = Aj(e, φ) =

{
v ∈ e : φ(v) = φ(vj)

}
, then all sets Aj are

disjoint.

(W̃3) I(v) ≤ ls for each v ∈
⋃q
j=1Aj.

Moreover, for each j ∈ [q], if (lj − 1)s+ 1 ≤ I(vj) ≤ slj, then

(W̃4) α− φ(vj) = 2lj−1;

(W̃5) event W̃ (ej , φ(vj), T (ej), lj − 1) occurs;

(W̃6) for every u ∈ ej with I(u) > (lj − 1)s, we have also I(u) ≥ I(vj), and

(W̃7) for each u ∈ Aj − vj, (lj − 1)s+ 1 ≤ I(u) ≤ I(vj).

(W̃8) If event W̃ (e0, α, T, l − 1) occurs, then for each v ∈ e0, I(v) /∈[
s(l − 1) + 1, sl

]
.

The following two lemmas justify the introduction of the events
W̃ (e, α, T, l).
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Lemma 9. Let e0 ∈ E(G), α ∈ [k], l ∈ {0, . . . , n} and T be a sub-r-tree of G

with root e0. If the event W (e0, α, T, l) occurs, then the event W̃ (e0, α, T, l)
also occurs.

Proof. Suppose that for some values of the parameters e0, T , l, and α,
W (e0, α, T, l) occurs but W̃ (e0, α, T, l) does not occur. We may assume that
l is minimal with this property, i.e., that for all quadruples (e′0, α

′, T ′, l′) with
l′ < l the lemma holds.

Let us check which of the properties in the definition of W̃ (e0, α, T, l)

may fail. Since (W̃1) and (W̃2) coincide with (W1) and (W2), respectively,

they hold. For the same reason, properties (W̃4), (W̃6), and (W̃7) hold.

Property (W̃5) follows from (W5) and the minimality of our counterexam-

ple. Property (W̃3) follows from the fact that otherwise, by the definition
of Evolution (Condition (C1)), some vertex in

⋃q
j=1Aj would not change

its color to α.

Assume finally that (W̃8) does not hold, in other words, that W̃ (e0, α, T,
l − 1) occurs, and for some v ∈ e0, I(v) ∈

[
s(l − 1) + 1, sl

]
. By (W8), this

implies that W (e0, α, T, l − 1) does not occur, i.e., after Stage l − 1, e0
is not monochromatic of color α. It follows that in order e0 to become
monochromatic of color α after Stage l, we need I(u) ∈

[
s(l− 1)+1, sl

]
for

some u ∈
⋃q
j=1Aj . On the other hand, by (W̃3) for the event W̃ (e0, α, T,

l − 1), I(u) ≤ (l− 1)s for each u ∈
⋃q
j=1Aj . This contradiction finishes the

proof of the lemma.

Lemma 10. Let e0 ∈ E(G), α0 ∈ [k], l0 ∈ {0, . . . , n}, and T0 be a sub-r-

tree of G with root e0. Then W̃ (e0, α0, T0, l0) is independent of all events

W̃ (e, α, T, l) such that V (T ) ∩ V (T0) = ∅.

Proof. By definition, the events W̃
(
e0, α0, T0, l0, ψ(e0)

)
are completely

defined when we know the values of φ(v) and I(v) for all v ∈ V (T0). This
yields the lemma.

5. Probabilities of the Auxiliary Events

The whole proof is based on the following lemma.
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Lemma 11. Let D := εkr( r
ln r)

n
n+1 and G be an r-uniform hypergraph with

maximum edge degree at most D. Let e ∈ E(G), α ∈ [k], and 0 ≤ l ≤ n.
Let T be a rooted sub-r-tree of G with root e. If T has y edges, then

Pr
(
W̃ (e, α, T, l)

)
≤ εD−y

( r

ln r

) n−l
n+1

.

Proof. We start from proving the (simple) auxiliary inequality

(8) Dkε0.5r ≤
ε

100k
.

By definition and (3),

D = εkr
( r

ln r

) n
n+1

≤
ε

ln r
krr ≤

ε

2ε−2(n+1)
k2r ≤

ε

2
ε4k2r.

Since ε4 = e−16k2 < 1
100k , (8) would follow from the fact that (k2r)

k
ε0.5r ≤ 1,

which is equivalent to (
k2r
)k

≤
(
e4k

2)0.5r
.

The last inequality is obvious.

To prove the lemma, we use induction on l. Consider first l = 0. If
W̃ (e, α, T, 0) occurs, then by (W̃1), φ(v) = α for each v ∈ e. Thus, in this
case

Pr
(
W̃ (e, α, T, 0)

)
= k−r =

ε

D

( r

ln r

) n
n+1

.

This proves the case l = 0.

Now, suppose that the lemma holds for every l′ < l. Consider the event
W̃ (e, α, T, l) for some e ∈ E(G), an r-tree T with y edges rooted at e, and
α ∈ [k].

Let X(T ) denote the event that for at least one e′ ∈ E(T ), the set
M(e′, n) =

{
v ∈ e′ : I(v) ≤ sn

}
(cf. (6)) has at least z = ⌊4k2r/ ln r⌋

elements. More shortly,

(9) X(T ) =
⋃

e′∈E(T )

{
∣∣M(e′, n)

∣∣ ≥ z}.

Let X(T ) denote the complement of X(T ). Suppose that the event

W̃ (e, α, T, l) ∩X(T ) occurs.
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When a sub-r-tree T with root e is given, it automatically defines the
edges e1, . . . , eq of T that share a vertex with e. It also defines for every
j ∈ [q], the vertex {vj} = e ∩ ej and the number yj of edges in T (ej).
Below, when T is given, we will denote Q = Q(T, e)

.
= {v1, . . . , vq}. Every

outcome of Evolution such that W̃ (e, α, T, l)∩X(T ) occurs defines the vector

(l1, . . . , lq) such that s(lj − 1) < I(vj) ≤ slj for each j ∈ [q]. By (W̃3), for

each j ∈ [q], lj ∈ [l]. By (W̃4) and (W̃2), all lj are distinct.

Let Θ0 = Θ0(q, l) be the set of vectors (l1, . . . , lq) such that

(10) all l1, . . . , lq are distinct and belong to [l].

By the previous paragraph,

(11) W̃ (e, α, T, l) ∩X(T ) = W̃ (e, α, T, l) ∩X(T ) ∩
{
(l1, . . . , lq) ∈ Θ0

}
.

Let Θ1(q, l) = Θ0(q, l−1), i.e. the set of (l1, . . . , lq) ∈ Θ0 such that lj ≤ l−1
for all j ∈ [q]. Let Θ2 = Θ2(q, l) = Θ0(q, l)−Θ1(q, l). For i = 1, 2, let

Fi(e, α, T, l) = W̃ (e, α, T, l) ∩X(T ) ∩
{
(l1, . . . , lq) ∈ Θi

}
.

By (11),

(12) W̃ (e, α, T, l) ⊆ X(T ) ∪ F1(e, α, T, l) ∪ F2(e, α, T, l).

Our goal is to prove that for i = 1, 2,

(13) Pr
(
Fi(e, α, T, l)

)
≤ 0.4εD−y

( r

ln r

) n−l
n+1

.

Since by Lemma 2 and (8), Pr
(
X(T )

)
≤ kε0.5r < 0.1εD−y, (12) and (13)

will imply the lemma.

Observe that the condition “lj ≤ l− 1 for all j ∈ [q]” in the definition of

Θ1(α, l) implies that if W̃ (e, α, T, l) occurs, then all conditions (W̃1)–(W̃8)

are satisfied for the event W̃ (e, α, T, l − 1). Thus,

(14) F1(e, α, T, l) ⊆ W̃ (e, α, T, l − 1).

By the induction assumption,

(15) Pr
(
W̃ (e, α, T, l − 1)

)
≤ εD−y

( r

ln r

)(n−l+1)/(n+1)
.
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Let Z(e, l) be the event that I(v) > sl for each v ∈ e − M(e, l − 1). If

W̃ (e, α, T, l) ∩X(T ) holds, then by (W̃8), Z(e, l) occurs. Thus

(16) F1(e, α, T, l) ⊆ Z(e, l).

Since we already know whether the event W̃ (e, α, T, l − 1) occurs or not
after Step s(l − 1), for each v ∈ e−M(e, l − 1),

Pr (
{
I(v) > sl | W̃ (e, α, T, l − 1)

}
) ≤

Pr
(
I(v) > sl

)

Pr
(
I(v) > s(l − 1)

)

=
1− lps

1− (l − 1)ps
.

Since all random variables I(v) are mutually independent,

Pr (
{
Z(e, l) | W̃ (e, α, T, l − 1)

}
) ≤

(
1− lps

1− (l − 1)ps

)r−|M(e,l−1)|
(17)

≤ (1− ps)r−|M(e,l−1)|.

Therefore,

Pr (
{
Z(e, l) | W̃ (e, α, T, l − 1)

}
)

≤
∑

M⊂e

Pr
{
M =M(e, l − 1)

}
(1− ps)r−|M |.

By Lemma 2, Pr (
∣∣M(e, l − 1)

∣∣ ≥ z) ≤ ε0.5r. Hence
∑

M⊆e

Pr
{
M =M(e, l − 1)

}
(1− ps)r−|M |

≤ ε0.5r +
∑

M⊆e : |M |<z

Pr
{
M =M(e, l − 1)

}
(1− ps)r−|M |

≤ ε0.5r + (1− ps)r−z ≤ ε0.5r + exp

{
−psr

(
1−

4k2

ln r

)}
.

Since ps ≥ ln r
(n+1)r − p, by the definition of p and s,

exp

{
−psr

(
1−

4k2

ln r

)}
≤ exp

{
−

(
ln r

n+ 1
− pr

)(
1−

4k2

ln r

)}

≤ exp

{
−

ln r

n+ 1
+

4k2

n+ 1
+ pr

}
.
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Recall that 4k2 = − ln ε. Since p < 2−k
rr, pr < 4k2

n+1 and hence

exp

{
−

ln r

n+ 1
+

4k2

n+ 1
+ pr

}
≤ r

−1
n+1 e8k

2/(n+1) ≤
1

ε
r

−1
n+1 .

By (3), ln r ≥ 2ε−2(n+1) and by (4), ε = exp {−4k2}. So,

(18)
1

ε
r

−1
n+1 ≤

1

ε

( r

ln r

) −1
n+1

ε2 =
( r

ln r

) −1
n+1

exp {−4k2} < 0.1
( r

ln r

) −1
n+1

.

By (14) and (16),

Pr
(
F1(e, α, T, l)

)
≤ Pr

(
Z(e, l) ∩ W̃ (e, α, T, l − 1)

)
.

Thus by (15) and (18),

Pr
(
F1(e, α, T, l)

)

≤ Pr (
{
Z(e, l) | W̃ (e, α, T, l − 1)

}
)Pr

(
W̃ (e, α, T, l − 1)

)

≤

(
ε0.5r + 0.1

( r

ln r

) −1
n+1

)
Pr
(
W̃ (e, α, T, l − 1)

)

≤ ε0.5r + 0.1εD−y
( r

ln r

) n−l
n+1

.

Since by (8), ε0.5r−1 < 0.03D−k ≤ 0.03D−y, this implies (13) for i = 1.

Now we will prove (13) for i = 2. Suppose that F2(e, α, T, l) occurs.

• Then, by definition, ~ℓ = (l1, . . . , lq) ∈ Θ2 = Θ2(q, l). In particular,
there exists j∗ ∈ [q] such that lj∗ = l.

• By (W̃5), for every j ∈ [q], the event W̃ (ej , α − 2lj−1, T (ej), lj − 1)
occurs.

• Also, for every j ∈ [q], there exists hj ∈ [s] such that I(vj) =
s(lj − 1) + hj .

• By (W̃6), for every j ∈ [q], for every u ∈ ej with I(u) > (lj − 1)s, we
have also I(u) ≥ (lj − 1)s+ hj .

• By (W̃1) and (W̃2), coloring φ(e) belongs to the set Ψ(l1, . . . , lq) of
colorings ψ of e such that the following two properties hold:

(P1) ψ(vj) = α− 2lj−1 for all j ∈ [q].
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(P2) ψ(v) ∈
{
ψ(v1), . . . , ψ(vq), α

}
for all v ∈ e.

For j ∈ [q], let Aj =
{
v ∈ e : φ(v) = φ(vj)

}
and aj = |Aj | − 1.

• By (W̃7), for every j ∈ [q], for each u ∈ Aj− vj , (lj−1)s+1 ≤ I(u) ≤
(lj − 1)s+ hj .

Thus, in order for F2(e, α, T, l) to occur, all of the following events should
occur:

(R1) There exists a vector ~ℓ = (l1, . . . , lq) ∈ Θ2 = Θ2(q, l) such that for

every j ∈ [q], the event R1(j, lj) := W̃ (ej , α − 2lj−1, T (ej), lj − 1) occurs.

Let R1(~ℓ) :=
⋂q
j=1R1(j, lj).

(R2) For this vector ~ℓ = (l1, . . . , lq), there exists a vector ~h = (h1, . . . , hq)
∈ [s]q such that for every j ∈ [q], the event R2(j, lj , hj) :=

{
I(vj) =

s(lj − 1) + hj
}

occurs. Let R2(~ℓ,~h) :=
⋂q
j=1R2(j, lj , hj).

(R3) For these vectors ~ℓ = (l1, . . . , lq) and ~h = (h1, . . . , hq), for every
j ∈ [q] and every u ∈ ej , the event

R3(u, j, lj , hj) := {I(u) /∈
[
s(lj − 1) + 1, s(lj − 1) + hj − 1

]
}

occurs. Let R3(j, lj , hj) =
⋂
u∈ej−vj

R3(u, j, lj , hj) and R3(~ℓ,~h) :=⋂q
j=1R3(j, lj , hj).

(R4) For this vector ~ℓ = (l1, . . . , lq), there exists a coloring ψ ∈ Ψ(~ℓ)

such that the event R4(φ, ~ℓ) :=
{
φ(e) = ψ

}
occurs.

(R5) For these ~ℓ, ~h, and ψ, if for j ∈ [q], we define Aj = Aj(ψ) :=
{
v ∈

e : ψ(v) = ψ(vj)
}
, then for every j ∈ [q] and u ∈ Aj , the event

R5(ψ, u, j, lj , hj) :=
{
(lj − 1)s+ 1 ≤ I(u) ≤ (lj − 1)s+ hj

}

occurs. Let R5(ψ, ~ℓ,~h) :=
⋂q
j=1

⋂
u∈Aj−vj

R5(ψ, u, j, lj , hj).

We conclude that

F2(e, α, T, l) ⊆
⋃

~ℓ∈Θ2

R1(~ℓ) ∩

[
⋃

~h∈[s]q

(
R2(~ℓ,~h) ∩R3(~ℓ,~h)

∩
⋃

ψ∈Ψ(~ℓ)

(
R4(ψ, ~ℓ) ∩R5(ψ, ~ℓ,~h)

))
]
.
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So, we estimate

Pr
(
F2(e, α, T, l)

)
(19)

≤
∑

~ℓ∈Θ2

Pr
(
R1(~ℓ)

) ∑

~h∈[s]q

Pr (
{
R2(~ℓ,~h) ∩R3(~ℓ,~h) | R1(~ℓ)

}
)

×
∑

ψ∈Ψ(~ℓ)

Pr (
{
R4(ψ, ~ℓ) | R1(~ℓ) ∩R2(~ℓ,~h) ∩R3(~ℓ,~h)

}
)

×Pr (
{
R5(ψ, ~ℓ,~h) | R1(~ℓ) ∩R2(~ℓ,~h) ∩R3(~ℓ,~h) ∩R4(ψ, ~ℓ)

}
).

We now will gradually evaluate and simplify the expression in (19). We
start from R1(~ℓ). Since the vertex sets of T (ej) for distinct j are disjoint and

by Lemma 10, for every j the event R1(j, lj) = W̃
(
ej , α−2lj−1, T (ej), lj−1

)

depends only on the values of I(v) and φ(v) for v ∈ V
(
T (ej)

)
,

Pr
(
R1(~ℓ)

)
=

q∏

j=1

Pr
(
R1(j, lj)

)
.

If T (ej) has yj edges, then by the induction assumption,

Pr
(
R1(j, lj)

)
≤ εD−yj

( r

ln r

)(n−lj+1)/(n+1)
.

Thus,

(20) Pr
(
R1(~ℓ)

)
≤

q∏

j=1

εD−yj
( r

ln r

)(n−lj+1)/(n+1)
.

Now, consider the events R3(u, j, lj , hj). Since all I(v) are indepen-
dent and all trees Tj are vertex-disjoint, R3(u, j, lj , hj) does not depend
on R1(j

′, lj′) for all j′ 6= j. Furthermore, if I(u) > s(lj − 1), then

W̃
(
ej , α − 2lj−1, T (ej), lj − 1

)
does not depend on the particular value of

I(u) in this range. So,

Pr (
{
R3(u, j, lj , hj) | R1(~ℓ)

}
) ≤

1− p(lj − 1)s− p(hj − 1)

1− p(lj − 1)s
≤ 1− p(hj − 1).
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By the independence of I(u) for distinct u, similarly to (17) and the argu-
ment following (17), we have

Pr (
{
R3(j, lj , hj) | R1(~ℓ)

}
)

≤
∑

M⊆ej

Pr
{
M =M(ej , lj − 1)

}(
1− p(hj − 1)

) r−|M |−1
≤ ε0.5r

+
∑

M⊆e : |M |<z

Pr
{
M =M(hj − 1)

}(
1− p(hj − 1)

) r−|M |−1

≤ ε0.5r +
(
1− p(hj − 1)

) r−z
.

Since ε0.5r ≤ 0.1(1− ps)r ≤ 0.1
(
1−p(hj−1)

) r−z
, again by the independence

of I(u) for distinct u, we conclude that

(21) Pr (
{
R3(~ℓ,~h) | R1(~ℓ)

}
) ≤

q∏

j=1

1.1
(
1− p(hj − 1)

) r−z
.

Now, we consider events R2(j, lj , hj) =
{
I(vj) = s(lj − 1) + hj

}
.

Let j ∈ [q]. Similarly to R3(u, j, lj , hj), R2(j, lj , hj) does not depend on
R1(j

′, lj′) for all j
′ 6= j, and

Pr (
{
R2(j, lj , hj) | R1(~ℓ)

}
) ≤

p

1− ps(lj − 1)
≤ p(1 +

ln r

r
).

Moreover, again by the independence of I(u) for distinct u, R2(j, lj , hj) is

independent of all other R2(j
′, lj′ , hj′) and of R3(~ℓ,~h). Thus, since q ≤ k ≪

ln r,

(22) Pr (
{
R2(~ℓ,~h) | R1(~ℓ) ∩R3(~ℓ,~h)

}
) ≤ pq

(
1 +

ln r

r

)q
≤ 2pq,

and together with (21), we obtain

(23) Pr (
{
R2(~ℓ,~h) ∩R3(~ℓ,~h) | R1(~ℓ)

}
) ≤ 2pq

q∏

j=1

1.1
(
1− p(hj − 1)

) r−z
.

Now for given ~ℓ,~h, and ψ ∈ Ψ(~ℓ), we evaluate

P̃4(ψ, ~ℓ,~h) := Pr (
{
R4(ψ, ~ℓ) | R1(~ℓ) ∩R2(~ℓ,~h) ∩R3(~ℓ,~h)

}
)
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Observe that each event R1(~ℓ) ∩R2(~ℓ,~h) ∩R3(~ℓ,~h) already fixes the colors
of v1, . . . , vq in φ, but all other vertices of e are “free”. Since for each v ∈ e,

the value of φ(v) is chosen independently of all other vertices, for each ~ℓ, ~h,
and ψ ∈ Ψ(~ℓ), we have

(24) P̃4(ψ, ~ℓ,~h) ≤ kq−r.

Finally, for given ~ℓ,~h, and ψ ∈ Ψ(~ℓ), consider the event

R̃5(ψ, ~ℓ,~h) :=
{
R5(ψ, ~ℓ,~h) | R1(~ℓ) ∩R2(~ℓ,~h) ∩R3(~ℓ,~h) ∩R4(ψ, ~ℓ)

}
.

For j ∈ [q], let let Aj = Aj(ψ) :=
{
v ∈ e : ψ(v) = ψ(vj)

}
and aj = |Aj |−1.

By definition, for every j ∈ [q] and every u ∈ Aj − vj , the probability of the
event

R5(ψ, u, j, lj , hj) :=
{
(lj − 1)s+ 1 ≤ I(u) ≤ (lj − 1)s+ hj

}

is at most phj . Since the values of I(v) for v ∈ e−{v1, . . . , vq} do not depend

on R1(~ℓ)∩R2(~ℓ,~h)∩R3(~ℓ,~h)∩R4(ψ, ~ℓ), and are independent of each other
for distinct v,

Pr
(
R̃5(ψ, ~ℓ,~h)

)
≤

q∏

j=1

(phj)
aj .

Since each ψ ∈ Ψ(l1, . . . , lq) is completely defined when we choose dis-
joint sets A1 − v1, . . . , Aq − vq in e− {v1, . . . , vq},

∑

ψ∈Ψ(~ℓ)

P̃4(ψ, ~ℓ,~h)Pr
(
R̃5(ψ, ~ℓ,~h)

)
(25)

≤
r∑

a1=0

r∑

a2=0

· · ·
r∑

aq=0

(
r

a1

)(
r

a2

)
. . .

(
r

aq

)
kq−r

q∏

j=1

(phj)
aj .

Thus plugging (20), (23), and (25) into (19), we have

Pr
(
F2(e, α, T, l)

)
≤
∑

~ℓ∈Θ2

( q∏

j=1

εD−yj
( r

ln r

)(n−lj+1)/(n+1)
)

(26)

×
∑

~h∈[s]q

2pq
( q∏

j=1

1.1
(
1− p(hj − 1)

) r−z
)

(27)

×
r∑

a1=0

r∑

a2=0

· · ·
r∑

aq=0

(
r

a1

)(
r

a2

)
. . .

(
r

aq

)
kq−r(phj)

aj .
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We now will simplify and estimate the expression in (27). First observe
that (

1− p(hj − 1)
) r−z

≤ (1− p)(r−z)(hj−1).

Thus since 0 < p < 2−k
rr and hj ≤ s ≤ ln r

p(n+1)r , we have

1.1
(
1− p(hj − 1)

) r−z
≤ 1.1(1− p)(r−z)(hj−1) ≤ 1.2(1− p)(r−z)hj .

So, the expression in (27) is at most

2
∑

~h∈[s]q

pq
( q∏

j=1

1.2(1− p)(r−z)hj
)

×
r∑

a1=0

r∑

a2=0

· · ·
r∑

aq=0

(
r

a1

)(
r

a2

)
. . .

(
r

aq

)
kq−r(phj)

aj

= 2k−r
s∑

h1=1

r∑

a1=0

1.2p(1− p)(r−z)h1
(
r

a1

)
k(ph1)

a1(28)

×

[
s∑

h2=1

r∑

a2=0

1.2p(1− p)(r−z)h2
(
r

a2

)
k(ph2)

a2

×

[
· · ·

s∑

hq=1

r∑

aq=0

1.2p(1− p)(r−z)hq
(
r

aq

)
k(phq)

aq

]
. . .

]
.(29)

For j = q, q − 1, . . . , 1 (in this order), we can estimate

s∑

hj=1

r∑

aj=0

1.2p(1− p)(r−z)hj
(
r

aj

)
k(phj)

aj

≤ 1.2pk
s∑

hj=1

(1− p)rhj−zs
r∑

aj=0

(
r

aj

)
(phj)

aj

≤ 1.2pk(1− p)−zs
s∑

hj=1

(1− p)rhj (1 + phj)
r

≤ 1.2pke
pzs

1−p

s∑

hj=1

(1− p)rhj (1 + phj)
r
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≤ 1.2pke
z ln r

(1−p)(n+1)r

s∑

hj=1

(1− p)rhj (1 + p)rhj

< 1.2(ps)ke
z ln r

(1−p)(n+1)r ≤ 1.2(ps)ke
4k2

(1−p)(n+1) .

Since ps ≤ ln r
r(n+1) , n+ 1 ≥ 2, and 4k2 = − ln ε, we have

1.2(ps)ke
4k2

(1−p)(n+1) ≤ 1.2
ln r

r(n+ 1)
kε−1/(1−p)(n+1) < e−3k2/2 k ln r

2r(n+ 1)ε
.

Plugging these bounds into (28)–(29), we obtain that the expression in
(27) does not exceed

2k−r
q∏

j=1

(
e−3k2/2 k ln r

2r(n+ 1)ε

)
≤ k−r

q∏

j=1

(
e−3k2/2 k ln r

r(n+ 1)ε

)
.

Thus, by (26)–(27)

Pr
(
F2(e, α, T, l)

)
(30)

≤
∑

~ℓ∈Θ2

k−r
q∏

j=1

(
εD−yj

( r

ln r

)n−lj+1

n+1

)(
e−3k2/2 k ln r

r(n+ 1)ε

)
.

Note that

(31) k−rD−y1−···−yq = k−rD−y+1 ≤ D−yε
( r

ln r

) n
n+1

.

Hence (recalling that D = εkr( r
ln r)

n
n+1 ), we may rewrite (30) as

Pr
(
F2(e, α, T, l)

)
(32)

≤ D−yε
( r

ln r

) n
n+1

∑

~ℓ∈Θ2

q∏

j=1

(
ε
( r

ln r

)n−lj+1

n+1

)(
e−3k2/2 k ln r

r(n+ 1)ε

)
.

By the definition of Θ2, for every ~ℓ ∈ Θ2 there is j∗ such that lj∗ = l.
For every j 6= j∗, we estimate

(33) ε
( r

ln r

)n−lj+1

n+1
e−3k2/2 k ln r

r(n+ 1)ε
≤

k

n+ 1
e−3k2/2 <

1

n+ 1
.
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For j = j∗ we will gain more, since lj∗ = l. Namely,

(34) ε
( r

ln r

)n−l+1
n+1

e−3k2/2 k ln r

r(n+ 1)ε
≤ e−3k2/2 k

n+ 1

(
ln r

r

) l
n+1

.

Plugging (33) and (34) into (32), we have

Pr
(
F2(e, α, T, l)

)

≤ D−yε
( r

ln r

) n
n+1

∑

~ℓ∈Θ2

(n+ 1)−q+1

(
e−3k2/2 k

n+ 1

(
ln r

r

) l
n+1

)
.

Since the summands in the last expression do not depend on the choice of
~ℓ ∈ Θ2 and |Θ2| ≤ (l + 1)q ≤ (n+ 1)q, we have

Pr
(
F2(e, α, T, l)

)

≤ D−yε
( r

ln r

) n
n+1 |Θ2|

(n+ 1)q−1

(
e−3k2/2 k

n+ 1

(
ln r

r

) l
n+1

)
≤

≤ D−yε
( r

ln r

) n−l
n+1

e−3k2/2k ≤ 0.4εD−y
( r

ln r

) n−l
n+1

.

This proves (13) for i = 2 and thus the lemma.

Applying Lemma 11 for l = n, we get the following immediate conse-
quence.

Corollary 1. Let e ∈ E(G) and α ∈ [k]. Let D := εkr( r
ln r)

n
n+1 . Let T be

a rooted sub-r-tree of G with root e. If T has y edges, then

Pr
(
W̃ (e, α, T, n)

)
≤ εD−y.
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6. Proof of Theorem 2

Recall the following version of the Local Lemma.

Theorem 4 [1]. Let A1, A2, . . . , AN be any events. Let S1, S2, . . . , SN be
subsets of [n] such that for each i, Ai is independent of the events {Aj :

j ∈
(
[N ]−Si

)
}. If there exist numbers x1, x2, . . . , xN ∈ [0, 1) such that for

all i ∈ [N ], Pr[Ai] ≤ xi
∏
j∈Si

(1− xj), Then,

Pr

[ ∧

i∈[N ]

Ai

]
≥
∏

i∈[N ]

(1− xi) > 0.

Radhakrishnan and Srinivasan used it in the following form.

Lemma 12 [6]. Let A1, A2, . . . , AN be any events. Let S1, S2, . . . , SN be
subsets of [N ] such that for each i, Ai is independent of the events {Aj :

j ∈
(
[N ]− Si

)
}. If for all i ∈ [N ], Pr (Ai) <

1
2 and

∑
j∈Si

Pr (Aj) ≤
1
4 , then

Pr
[ ∧
i∈[N ]

Ai

]
> 0.

Proof. We show that if the conditions of this lemma hold, then the condi-
tions of Theorem 4 hold for xi = 2Pr(Ai), i ∈ [N ]. Indeed, with so defined
xi, inequality

Pr [Ai] ≤ xi
∏

j∈Si

(1− xj)

follows if
∏
j∈Si

(1− xj) ≥
1
2 holds. Furthermore,

∏

j∈Si

(1−xj) ≥ 1−
∑

j∈Si

xj = 1−2
∑

j∈Si

Pr (Aj) ≥
1

2

(
since

∑
j∈Si

Pr (Aj) ≤
1
4

)
.

Hence by Theorem 4, we have the result.

Lemma 13. Let 0 < ε ≤ 4−kk−4. If Pr
(
W̃ (e, α, T, n)

)
≤ εD−y for every

α ∈ [k], every sub-r-tree T of G with y ≤ k edges and for every e ∈ E(T ),
then with positive probability, none of these events occurs.
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Proof. Consider the probability space of the outcomes of Evolution. Let the
events A1, . . . , AN be the events W̃ (e, α, T, n) for all e ∈ E(G), all α ∈ [k]
and all sub-r-trees T of G containing e with at most k edges. It is enough
to verify that the conditions of Lemma 12 hold for our events A1, . . . , AN .
Each of the conditions Pr

(
W̃ (e, α, T, n)

)
< 1/2 immediately follows from

Corollary 1. By Lemma 10, for the event Ai = W̃ (e, α, T, n), we can take

Si equal to the set of all events W̃ (e′, α′, T ′, n) such that V (T ′)∩V (T ) 6= ∅.

Now, fix an event Ai = W̃ (e, α, T, n), where T has y edges, and estimate∑
j∈Si

Pr(Aj). Let W̃ (e′, α′, T ′, n) ∈ Si and suppose that the size of T ′

is y′. Then some edge e′′ of T ′ intersects V (T ) (in particular, e′′ can be
an edge of T , too). The number of ways to choose an edge that intersects
V (T ) is at most D + 1 if y = 1, and is at most yD, if y > 1. In any case,
this number is not greater than kD. By Lemma 7, G contains at most
(4D)y

′−1 r-trees of size y′ containing edge e′′. In each of such trees, there
are y′ ways to choose a root, e′, and k ways to choose the color α′. Since
Pr
(
W̃ (e′, α′, T ′, n)

)
≤ εD−y′ , it follows that

∑

j∈Si

Pr(Aj) ≤
k∑

y′=1

(kD) (4D)y
′−1y′k(εD−y′) =

k∑

y′=1

k2y′4y
′−1ε ≤ k44k−1ε.

(35)

Since 0 < ε ≤ 4−kk−4, the last expression in (35) is at most 1/4. Thus we
are done by Lemma 12.

Now we are ready to complete the proof of the main theorem. Indeed,
let G be a hypergraph satisfying the conditions of the theorem. Consider
procedure Evolution. By Corollary 1, for each y-edge r-tree T , each edge
e ∈ E(T ) and each α ∈ [k], Pr

(
W̃ (e, α, T, n)

)
≤ εD−y. For k ≥ 2, we have

ε = exp {−4k2} < 4−kk−4. So, by Lemma 13, with positive probability

none of the events W̃ (e, α, T, n) occurs. It follows that in some outcome

of Evolution none of the events W̃ (e, α, T, n) occurs. By Lemma 9, in this
outcome none of the events W (e, α, T, n) occurs. But then the resulting
k-coloring will be proper.
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[5] A. Kostochka and V. Rödl, Constructions of sparse uniform hypergraphs with high
chromatic number, submitted.

[6] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hyper-
graph two-coloring, Random Structures and Algorithms, 16 (2000), 4–32.

Alexandr V. Kostochka

University of Illinois,
Urbana, IL, 61801
and
Institute of Mathematics,
Novosibirsk,
630090, Russia

e-mail: kostochk@math.uiuc.edu

Mohit Kumbhat

Department of Mathematics,
University of Illinois,
Urbana, IL, 61801,
U.S.A.

e-mail: kumbhat2@uiuc.edu
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