Minors in Graphs with High Chromatic Number

THOMAS BÖHME ${ }^{1}$, ALEXANDR KOSTOCHKA ${ }^{2 \dagger}$ and ANDREW THOMASON ${ }^{3}$
${ }^{1}$ Institut für Mathematik, Technische Universität Ilmenau, Ilmenau, Germany
(e-mail: tboehme@theoinf.tu-ilmenau.de)
${ }^{2}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA and
Sobolev Institute of Mathematics, Novosibirsk, Russia
(e-mail: kostochk@math.uiuc.edu)
${ }^{3}$ DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK
(e-mail: A.G.Thomason@dpmms.cam.ac.uk)

Received 10 May 2010; revised 24 February 2011; first published online 13 April 2011

Abstract

We develop lower bounds on the Hadwiger number $h(G)$ of graphs G with high chromatic number. In particular, if G has n vertices and chromatic number k then $h(G) \geqslant(4 k-n) / 3$.

1. Introduction

The order of the largest complete minor of a graph G is called the Hadwiger number of G, denoted by $h(G)$. The well-known conjecture of Hadwiger asserts that if G has chromatic number k then $h(G) \geqslant k$. Hadwiger's conjecture is straightforward for $k=3$ and was proved for $k=4$ by Dirac [1]. Wagner [8] proved that the case $k=5$ is equivalent to the Four Colour Theorem, and Robertson, Seymour and Thomas [6] did the same for the case $k=6$. But for $k \geqslant 7$ the conjecture remains unknown.

In recent times, the case of graphs of very high chromatic number has attracted more attention. In particular, graphs with $\alpha=2$ (where $\alpha(G)$ is the independence number) have been studied: see Plummer, Stiebitz and Toft [5] for an essay on this case. It is easy to show that if G has order n and $\alpha(G) \leqslant 2$, then $h(G) \geqslant n / 3$ (see Lemma 2.1 below). The main result of this paper extends this bound to take account of the chromatic number $\chi(G)$.

[^0]Theorem 1.1. Let G be a graph with n vertices and chromatic number k. Then $h(G) \geqslant$ $(4 k-n) / 3$.

Theorem 1.1 gives better lower bounds for $h(G)$ when k is large. For example, if $k \geqslant 2 n / 3$, then it yields $h(G) \geqslant 5 k / 6$. The inequality becomes weaker as k diminishes indeed for $k \leqslant n / 4$ it gives nothing. In Theorem 4.2 we give other lower bounds on $h(G)$ that are better than Theorem 1.1 for $k<3 n / 8$. We state them in Section 4.

2. Graphs with $\alpha=2$

Duchet and Meyniel [2] showed that a graph G of order n has a connected dominating set of order at most $2 \alpha(G)-1$, and hence $h(G) \geqslant n /(2 \alpha(G)-1)$. As mentioned above, this is easy to show if $\alpha=2$; we state something very slightly stronger in a form that will be helpful to us.

Lemma 2.1. If G has $n \geqslant 5$ vertices and $\alpha(G) \leqslant 2$, then $h(G) \geqslant 1+n / 3$.
Proof. We proceed by induction on n. Since $\chi(G) \geqslant n / 2$, the theorem holds for $5 \leqslant n \leqslant 8$, by Hadwiger's conjecture for graphs of chromatic number 3 or 4 . Suppose $n \geqslant 9$. Now G has at most two components because $\alpha(G) \leqslant 2$. Either each is complete, in which case $h(G) \geqslant n / 2>1+n / 3$, or G contains an induced path $x y z$ of length two. Since $\alpha(G) \leqslant 2$, every vertex of $G-\{x, y, z\}$ is joined to at least one of x and z, and so $h(G) \geqslant 1+h(G-\{x, y, z\}) \geqslant 1+1+(n-3) / 3$ by the induction hypothesis, completing the proof.

A graph G is called k-critical if $\chi(G)=k$ but $\chi(G-v)=k-1$ for every vertex v. The following result about critical graphs is quite deep, though a simpler variant of Gallai's original proof has been given by Stehlík [7].

Theorem 2.2 (Gallai [3]). Let G be a k-critical graph where $k \geqslant 3$. If $|V(G)| \leqslant 2 k-2$, then G has a spanning complete bipartite subgraph.

It follows from Gallai's theorem that if G is k-critical then it is the join of vertex-disjoint subgraphs G_{1}, \ldots, G_{ℓ} (meaning that any two vertices from different G_{i} must be adjacent), where each G_{i} is either a single vertex or it is k_{i}-critical for some $k_{i} \geqslant 3,\left|V\left(G_{i}\right)\right| \geqslant 2 k_{i}-1$, and G_{i} has no apex vertex joined to all the other vertices of G_{i}. Of course, $\ell=1$ is allowed. It is important for the next lemma that $k=k_{1}+\cdots+k_{\ell}$ and $h(G) \geqslant h\left(G_{1}\right)+\cdots+h\left(G_{\ell}\right)$.

We can now prove Theorem 1.1 for graphs with $\alpha=2$.
Lemma 2.3. Let G be a graph with n vertices and chromatic number k, having $\alpha(G) \leqslant 2$. Then $h(G) \geqslant(4 k-n) / 3$.

Proof. Suppose the lemma is false, and let G be a minimal counterexample. Certainly G is k-critical. By the remarks following Theorem 2.2 it follows that the lemma fails
for some subgraph G_{i}, and the minimality of G thus means $\ell=1$. But the lemma is true if $k=1$ and so Theorem 2.2 implies that $n \geqslant 2 k-1 \geqslant 5$. Lemma 2.1 then gives $h(G) \geqslant 1+n / 3=1+2 n / 3-n / 3 \geqslant 1+2(2 k-1) / 3-n / 3>(4 k-n) / 3$, contradicting the choice of G.

3. Graphs with $\alpha=3$

The main tool we need for the proof of Theorem 1.1 is information about graphs with $\alpha=3$, as given by the next theorem. We write $N(v)$ for the neighbourhood of a vertex v and $\bar{N}(v)$ for the set $V(G)-N(v)-\{v\}$ of non-neighbours. Given a subset $S \subset V(G)$, we write $G[S]$ for the subgraph of G induced by S.

Definition. A graph G is called critical-like if both the following hold:
(1) G has no vertex v for which $G[N(v)]$ is complete, and
(2) G has no vertex v with $N(v)=V(G)-\{v\}$ (that is, no apex vertex).

The term 'critical-like' is used because a k-critical graph G generally has these properties. To be precise, if G has a vertex v for which $G[N(v)]$ is complete then, because the degree of v is at least $k-1, G$ itself must be complete. Moreover G has an apex vertex v if and only if $G-v$ is $(k-1)$-critical.

We can now state our main result about graphs with $\alpha=3$.

Theorem 3.1. Let G be a critical-like graph with $\alpha(G)=3$. Then there is a set $S \subset V(G)$ with $|S|=5$, such that $G[S]$ is connected and bipartite.

Proof. Condition (1) of the definition means that G has no vertices of degree 0 or 1 , and so G must have at least 5 vertices, because $\alpha(G)=3$. Suppose that the theorem is false and that G is a counterexample.

Note first that G contains no induced $K_{1,3}$. For if $G\left[\left\{x, y_{1}, y_{2}, y_{3}\right\}\right]$ is such a subgraph with centre x, then by condition (2) there is a vertex $z \in \bar{N}(x)$, and since $\left\{y_{1}, y_{2}, y_{3}, z\right\}$ is not independent this means $G\left[\left\{x, y_{1}, y_{2}, y_{3}, z\right\}\right]$ is connected and bipartite, a contradiction.

Let $\{a, b, c\}$ be an independent set of size 3. Every other vertex has at least one neighbour in $\{a, b, c\}$ because $\alpha(G)=3$, and no vertex has three such neighbours because G has no induced $K_{1,3}$. It follows that $V(G)-\{a, b, c\}$ is partitioned into six sets $A, B, C, A B, A C, B C$, where A is the set of vertices joined to precisely a in the set $\{a, b, c\}, A B$ is the set of vertices joined to precisely a and b, and the other sets are defined similarly.

If $u, v \in A$ then $u v \in E(G)$, else $\{u, v, b, c\}$ would be independent. Thus $G[A]$ is complete, and likewise so are $G[B]$ and $G[C]$. Now $N(a)=A \cup A B \cup A C$ and so condition (1) implies $A B \cup A C \neq \emptyset$. Likewise, $A B \cup B C \neq \emptyset$ and $A C \cup B C \neq \emptyset$; in other words, at most one of $A B, A C, B C$ is empty.

If $u \in A B$ and $v \in B C$ then $u v \in E(G)$, for otherwise $G[\{a, u, b, v, c\}]$ is connected and bipartite. Likewise any two vertices lying in distinct sets among $A B, A C, B C$ are adjacent. Suppose now that $u, v \in A B$ are not adjacent. Since $A C \cup B C \neq \emptyset$, we can pick $w \in$ $A C \cup B C$. But w is adjacent to both u and v, which means that $\{w, u, v, c\}$ induces a $K_{1,3}$,
a contradiction. Hence $G[A B]$ is complete, and likewise so are $G[A C]$ and $G[B C]$. Thus we have shown that $G[A B \cup A C \cup B C]$ is complete.

Not all $A B, A C, B C$ are empty, so we may suppose that $A B \neq \emptyset$, say $w \in A B$. Suppose there exist $u \in A C \cup B C$ and $v \in C$ with $u v \notin E(G)$. Then either $G[\{b, w, u, c, v\}]$ (if $u \in A C$) or $G[\{a, w, u, c, v\}]$ (if $u \in B C$) is connected and bipartite. This contradiction means that every vertex in $A C \cup B C$ is joined to every vertex in C. But then $G[N(c)]=G[C \cup A C \cup$ $B C$] is complete, contradicting (1) and finishing the proof.

4. Lower bounds on $h(G)$

We begin by proving Theorem 1.1.
Proof of Theorem 1.1. Suppose that the theorem is false and that G is a minimal counterexample. Then G is k-critical and, by Lemma 2.3, $\alpha(G) \geqslant 3$.

Assume first that $\alpha(G)=3$. Now G cannot have a vertex v for which $G[N(v)]$ is complete because otherwise, as remarked earlier, $G=K_{k}$ and K_{k} is not a counterexample. Nor can G have an apex vertex w, for then $\chi(G-w)=k-1$ and $h(G)=1+h(G-w)$, so $h(G)=1+h(G-w) \geqslant 1+(4(k-1)-(n-1)) / 3=(4 k-n) / 3$. Thus G is critical-like and so, by Theorem 3.1, G contains a set S of 5 vertices such that $G[S]$ is connected and bipartite. Now $G[S]$ contains an independent set of size (at least) 3 and so this independent set dominates $G-S$. Hence $h(G) \geqslant h(G-S)+1$. But $\chi(G-S) \geqslant k-2$ since $G[S]$ is bipartite. Hence $h(G) \geqslant 1+h(G-S) \geqslant 1+4(k-2) / 3-(n-5) / 3=4 k / 3-n / 3$, contradicting G being a counterexample.

Thus $\alpha(G) \geqslant 4$. Let I be an independent set of size 4. Then $\chi(G-I) \geqslant k-1$. So $h(G) \geqslant h(G-I) \geqslant 4(k-1) / 3-(n-4) / 3=4 k / 3-n / 3$, a final contradiction.

Theorem 1.1 is weak if k is small relative to n. In such cases we can get a somewhat better bound by making use of the theorem of Duchet and Meyniel [2] cited above. In fact we use the improvement obtained by Kawarabayashi and Song [4].

Theorem 4.1 (Kawarabayashi and Song). Let G be a graph with n vertices and $\alpha(G) \geqslant 3$. Then $h(G) \geqslant n /(2 \alpha(G)-2)$.

The bounds we obtain on $h(G)$ can be understood more clearly if we write $y=h(G) / n$ and $x=\chi(G) / n=k / n$. Then Theorem 1.1 states that $y \geqslant(4 x-1) / 3$, and Hadwiger's conjecture corresponds to $y \geqslant x$. We are interested only in the ranges $0 \leqslant x, y \leqslant 1$. We shall define a sequence of straight lines L_{r} for integers $r \geqslant 4$ and prove that the points $(x, y)=(k / n, h(G) / n)$ lie above each of these lines.

The line L_{4} is the line $y=(4 x-1) / 3$ and in general the line L_{r} is of the form $y=$ $(x-1 / r) / a_{r}$, where $a_{4}=3 / 4$ and the other values of a_{r} are determined recursively. Observe that the line L_{r} meets the x-axis at $(1 / r, 0)$. Let L_{r} meet the horizontal line $y=1 /(2 r-2)$ at the point $\left(x_{r}, 1 /(2 r-2)\right)$. Then $x_{r}=1 / r+a_{r} /(2 r-2)$; in particular $x_{4}=3 / 8$. Given a_{r}, we choose a_{r+1} so that L_{r+1} passes through this same point $\left(x_{r}, 1 /(2 r-2)\right)$. This means $x_{r}-1 /(r+1)=a_{r+1} /(2 r-2)$, which implies $a_{r+1}=a_{r}+(2 r-2) / r(r+1)$. This can be

Figure 1. A sketch of the function $g(x)$ for $0 \leqslant x \leqslant 1 / 2$.
rewritten as $a_{r+1}=a_{r}-2 / r+4 /(r+1)$, and so

$$
a_{r}=2 H_{r}+\frac{2}{r}-\frac{47}{12} \quad \text { where } H_{r}=\sum_{i=1}^{r} \frac{1}{i} .
$$

Thus, for example, L_{5} is the line $y=20(x-1 / 5) / 21$. The slopes of the lines L_{r} decrease with r. Thus, if we define $x_{3}=1$, we see that the envelope formed by the lines is given by the function

$$
g(x)=\frac{x-1 / r}{a_{r}} \quad \text { for } \quad x_{r} \leqslant x \leqslant x_{r-1}, \quad \text { where } \quad x_{r}=\frac{1}{r}+\frac{a_{r}}{2 r-2} \quad \text { for } r \geqslant 4 .
$$

A sketch of the function $g(x)$ is shown in Figure 1.
Theorem 4.2. Let G be a graph with n vertices and chromatic number k. Then $h(G) \geqslant$ $n g(k / n)$. In other words, $h(G) \geqslant(k-n / r) / a_{r}$ for every $r \geqslant 4$.

Proof. Since $a_{4}=3 / 4$, the case $r=4$ is just Theorem 1.1. Proceeding by induction, we suppose the theorem true for some $r \geqslant 4$, and prove it for $r+1$.

Suppose instead that the theorem fails for $r+1$ and let G be a smallest counterexample. The slope of the line L_{r+1} is less than the slope of L_{r}, and both these lines pass through the point $\left(x_{r}, 1 /(2 r-2)\right)$, so $(x-1 /(r+1)) / a_{r+1} \leqslant(x-1 / r) / a_{r}$ for $x \geqslant x_{r}$. Since G satisfies the theorem for r but not for $r+1$, it must be that $k / n<x_{r}$.

As $k / n<x_{r},(k-n /(r+1)) / a_{r+1}<\left(x_{r}-1 /(r+1)\right) n / a_{r+1} /(2 r-2)$. Since G fails the theorem for $r+1, h(G)<n /(2 r-2)$, so by Theorem 4.1 we have $\alpha(G) \geqslant r+1$. Let I be an independent set of size $r+1$ in G. By the minimality of $G, h(G) \geqslant h(G-$ $I) \geqslant((k-1)-(n-(r+1)) /(r+1)) / a_{r+1}=(k-n /(r+1)) / a_{r+1}$, contradicting the choice of G.

Our interest in this paper has been in graphs of high chromatic number, interpreted as meaning graphs G where $\chi(G) /|G|$ is substantially greater than zero. All the same, we might ask what the bound given by Theorem 4.2 looks like when k / n is small.

The theorem states that $h(G) \geqslant(k-n / r) / a_{r}$ for $x_{r+1} \leqslant k / n \leqslant x_{r}$. In this range, the value of $(k-n / r) / a_{r}$ lies between $n / 2 r$ and $n /(2 r-2)$ (indeed this is how the line L_{r+1} was constructed). If k / n is small then r is large. In this case it is well known that $H_{r}=$ $\log r+O(1)$, so $a_{r}=2 \log r+O(1)$ and $x_{r}=a_{r} /(2 r-2)=\log r / r+O(1 / r)$. Consequently $x_{r+1}=\log r / r+O(1 / r)$ too, and since $x_{r+1} \leqslant k / n \leqslant x_{r}$ we have $k / n=\log r / r+O(1 / r)$ as well. To express r in terms of k and n, write $x=k / n$; then $x=\log r / r+O(1 / r)$ so $r \approx-(\log x) / x$. Hence Theorem 4.2 yields $h(G) \geqslant n /(2 r-2) \approx-n x / 2 \log x$.

This bound can be compared with that given by Theorem 4.1 for a graph G with independence number $\alpha=\alpha(G)$. Because $k \geqslant n / \alpha$ we have $\alpha \geqslant 1 / x$. If G is a graph for which k is close to n / α then α is close to $1 / x$ and the bound $h(G) \geqslant n /(2 \alpha-2)$ given by Theorem 4.1 is close to $n x / 2$, which is better than that given by Theorem 4.2. On the other hand, if k is much larger than $n(\log \alpha) / \alpha$, then α is much larger than $-(\log x) / x$, and the bound given by Theorem 4.2 is better.

References

[1] Dirac, G. A. (1964) Homomorphism theorems for graphs. Math. Ann. 153 69-80.
[2] Duchet, P. and Meyniel, H. (1982) On Hadwiger's number and the stability number. In Graph Theory (B. Bollobás, ed.), Vol. 13 of Annals of Discrete Mathematics, North-Holland, pp. 71-73.
[3] Gallai, T. (1963) Kritische Graphen II. Publ. Math. Inst. Hungar. Acad. Sci. 8 373-395.
[4] Kawarabayashi, K. and Song, Z. (2007) Independence numbers and clique minors. J. Graph Theory 56 219-226.
[5] Plummer, M. D., Stiebitz, M. and Toft, B. (2003) On a special case of Hadwiger's conjecture. Discussiones Mathematicae Graph Theory 23 333-363.
[6] Robertson, N., Seymour, P. D. and Thomas, R. (1993) Hadwiger's conjecture for K_{6}-free graphs. Combinatorica 13 279-362.
[7] Stehlík, M. (2009) Critical graphs with connected complements. J. Combin. Theory Ser. B 89 189-194.
[8] Wagner, K. (1937) Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114 570-590.

[^0]: \dagger Supported in part by NSF grants DMS-0650784 and DMS-0965587 and by grant 09-01-00244-a of the Russian Foundation for Basic Research.

