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We develop lower bounds on the Hadwiger number h(G) of graphs G with high chromatic

number. In particular, if G has n vertices and chromatic number k then h(G) � (4k − n)/3.

1. Introduction

The order of the largest complete minor of a graph G is called the Hadwiger number of G,

denoted by h(G). The well-known conjecture of Hadwiger asserts that if G has chromatic

number k then h(G) � k. Hadwiger’s conjecture is straightforward for k = 3 and was

proved for k = 4 by Dirac [1]. Wagner [8] proved that the case k = 5 is equivalent to the

Four Colour Theorem, and Robertson, Seymour and Thomas [6] did the same for the

case k = 6. But for k � 7 the conjecture remains unknown.

In recent times, the case of graphs of very high chromatic number has attracted more

attention. In particular, graphs with α = 2 (where α(G) is the independence number) have

been studied: see Plummer, Stiebitz and Toft [5] for an essay on this case. It is easy to show

that if G has order n and α(G) � 2, then h(G) � n/3 (see Lemma 2.1 below). The main

result of this paper extends this bound to take account of the chromatic number χ(G).
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Theorem 1.1. Let G be a graph with n vertices and chromatic number k. Then h(G) �
(4k − n)/3.

Theorem 1.1 gives better lower bounds for h(G) when k is large. For example, if

k � 2n/3, then it yields h(G) � 5k/6. The inequality becomes weaker as k diminishes –

indeed for k � n/4 it gives nothing. In Theorem 4.2 we give other lower bounds on h(G)

that are better than Theorem 1.1 for k < 3n/8. We state them in Section 4.

2. Graphs with α = 2

Duchet and Meyniel [2] showed that a graph G of order n has a connected dominating

set of order at most 2α(G) − 1, and hence h(G) � n/(2α(G) − 1). As mentioned above, this

is easy to show if α = 2; we state something very slightly stronger in a form that will be

helpful to us.

Lemma 2.1. If G has n � 5 vertices and α(G) � 2, then h(G) � 1 + n/3.

Proof. We proceed by induction on n. Since χ(G) � n/2, the theorem holds for 5 � n � 8,

by Hadwiger’s conjecture for graphs of chromatic number 3 or 4. Suppose n � 9. Now

G has at most two components because α(G) � 2. Either each is complete, in which

case h(G) � n/2 > 1 + n/3, or G contains an induced path xyz of length two. Since

α(G) � 2, every vertex of G − {x, y, z} is joined to at least one of x and z, and so

h(G) � 1 + h(G − {x, y, z}) � 1 + 1 + (n − 3)/3 by the induction hypothesis, completing

the proof.

A graph G is called k-critical if χ(G) = k but χ(G − v) = k − 1 for every vertex v. The

following result about critical graphs is quite deep, though a simpler variant of Gallai’s

original proof has been given by Stehlı́k [7].

Theorem 2.2 (Gallai [3]). Let G be a k-critical graph where k � 3. If |V (G)| � 2k − 2,

then G has a spanning complete bipartite subgraph.

It follows from Gallai’s theorem that if G is k-critical then it is the join of vertex-disjoint

subgraphs G1, . . . , G� (meaning that any two vertices from different Gi must be adjacent),

where each Gi is either a single vertex or it is ki-critical for some ki � 3, |V (Gi)| � 2ki − 1,

and Gi has no apex vertex joined to all the other vertices of Gi. Of course, � = 1 is allowed.

It is important for the next lemma that k = k1 + · · · + k� and h(G) � h(G1) + · · · + h(G�).

We can now prove Theorem 1.1 for graphs with α = 2.

Lemma 2.3. Let G be a graph with n vertices and chromatic number k, having α(G) � 2.

Then h(G) � (4k − n)/3.

Proof. Suppose the lemma is false, and let G be a minimal counterexample. Certainly

G is k-critical. By the remarks following Theorem 2.2 it follows that the lemma fails
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for some subgraph Gi, and the minimality of G thus means � = 1. But the lemma

is true if k = 1 and so Theorem 2.2 implies that n � 2k − 1 � 5. Lemma 2.1 then gives

h(G) � 1 + n/3 = 1 + 2n/3 − n/3 � 1 + 2(2k − 1)/3 − n/3 > (4k − n)/3, contradicting the

choice of G.

3. Graphs with α = 3

The main tool we need for the proof of Theorem 1.1 is information about graphs with

α = 3, as given by the next theorem. We write N(v) for the neighbourhood of a vertex v

and N(v) for the set V (G) − N(v) − {v} of non-neighbours. Given a subset S ⊂ V (G), we

write G[S] for the subgraph of G induced by S .

Definition. A graph G is called critical-like if both the following hold:

(1) G has no vertex v for which G[N(v)] is complete, and

(2) G has no vertex v with N(v) = V (G) − {v} (that is, no apex vertex).

The term ‘critical-like’ is used because a k-critical graph G generally has these properties.

To be precise, if G has a vertex v for which G[N(v)] is complete then, because the degree

of v is at least k − 1, G itself must be complete. Moreover G has an apex vertex v if and

only if G − v is (k − 1)-critical.

We can now state our main result about graphs with α = 3.

Theorem 3.1. Let G be a critical-like graph with α(G) = 3. Then there is a set S ⊂ V (G)

with |S | = 5, such that G[S] is connected and bipartite.

Proof. Condition (1) of the definition means that G has no vertices of degree 0 or 1, and

so G must have at least 5 vertices, because α(G) = 3. Suppose that the theorem is false

and that G is a counterexample.

Note first that G contains no induced K1,3. For if G[{x, y1, y2, y3}] is such a subgraph

with centre x, then by condition (2) there is a vertex z ∈ N(x), and since {y1, y2, y3, z} is

not independent this means G[{x, y1, y2, y3, z}] is connected and bipartite, a contradiction.

Let {a, b, c} be an independent set of size 3. Every other vertex has at least one neighbour

in {a, b, c} because α(G) = 3, and no vertex has three such neighbours because G has no

induced K1,3. It follows that V (G) − {a, b, c} is partitioned into six sets A,B, C, AB, AC, BC ,

where A is the set of vertices joined to precisely a in the set {a, b, c}, AB is the set of

vertices joined to precisely a and b, and the other sets are defined similarly.

If u, v ∈ A then uv ∈ E(G), else {u, v, b, c} would be independent. Thus G[A] is complete,

and likewise so are G[B] and G[C]. Now N(a) = A ∪ AB ∪ AC and so condition (1)

implies AB ∪ AC �= ∅. Likewise, AB ∪ BC �= ∅ and AC ∪ BC �= ∅; in other words, at most

one of AB,AC, BC is empty.

If u ∈ AB and v ∈ BC then uv ∈ E(G), for otherwise G[{a, u, b, v, c}] is connected and

bipartite. Likewise any two vertices lying in distinct sets among AB,AC, BC are adjacent.

Suppose now that u, v ∈ AB are not adjacent. Since AC ∪ BC �= ∅, we can pick w ∈
AC ∪ BC . But w is adjacent to both u and v, which means that {w, u, v, c} induces a K1,3,
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a contradiction. Hence G[AB] is complete, and likewise so are G[AC] and G[BC]. Thus

we have shown that G[AB ∪ AC ∪ BC] is complete.

Not all AB,AC, BC are empty, so we may suppose that AB �= ∅, say w ∈ AB. Suppose

there exist u ∈ AC ∪ BC and v ∈ C with uv /∈ E(G). Then either G[{b, w, u, c, v}] (if u ∈ AC)

or G[{a, w, u, c, v}] (if u ∈ BC) is connected and bipartite. This contradiction means that

every vertex in AC ∪ BC is joined to every vertex in C . But then G[N(c)] = G[C ∪ AC ∪
BC] is complete, contradicting (1) and finishing the proof.

4. Lower bounds on h(G)

We begin by proving Theorem 1.1.

Proof of Theorem 1.1. Suppose that the theorem is false and that G is a minimal

counterexample. Then G is k-critical and, by Lemma 2.3, α(G) � 3.

Assume first that α(G) = 3. Now G cannot have a vertex v for which G[N(v)] is

complete because otherwise, as remarked earlier, G = Kk and Kk is not a counterexample.

Nor can G have an apex vertex w, for then χ(G − w) = k − 1 and h(G) = 1 + h(G − w),

so h(G) = 1 + h(G − w) � 1 + (4(k − 1) − (n − 1))/3 = (4k − n)/3. Thus G is critical-like

and so, by Theorem 3.1, G contains a set S of 5 vertices such that G[S] is connected

and bipartite. Now G[S] contains an independent set of size (at least) 3 and so this

independent set dominates G − S . Hence h(G) � h(G − S) + 1. But χ(G − S) � k − 2 since

G[S] is bipartite. Hence h(G) � 1 + h(G − S) � 1 + 4(k − 2)/3 − (n − 5)/3 = 4k/3 − n/3,

contradicting G being a counterexample.

Thus α(G) � 4. Let I be an independent set of size 4. Then χ(G − I) � k − 1. So

h(G) � h(G − I) � 4(k − 1)/3 − (n − 4)/3 = 4k/3 − n/3, a final contradiction.

Theorem 1.1 is weak if k is small relative to n. In such cases we can get a somewhat

better bound by making use of the theorem of Duchet and Meyniel [2] cited above. In

fact we use the improvement obtained by Kawarabayashi and Song [4].

Theorem 4.1 (Kawarabayashi and Song). Let G be a graph with n vertices and α(G) � 3.

Then h(G) � n/(2α(G) − 2).

The bounds we obtain on h(G) can be understood more clearly if we write y = h(G)/n

and x = χ(G)/n = k/n. Then Theorem 1.1 states that y � (4x − 1)/3, and Hadwiger’s

conjecture corresponds to y � x. We are interested only in the ranges 0 � x, y � 1. We

shall define a sequence of straight lines Lr for integers r � 4 and prove that the points

(x, y) = (k/n, h(G)/n) lie above each of these lines.

The line L4 is the line y = (4x − 1)/3 and in general the line Lr is of the form y =

(x − 1/r)/ar , where a4 = 3/4 and the other values of ar are determined recursively. Observe

that the line Lr meets the x-axis at (1/r, 0). Let Lr meet the horizontal line y = 1/(2r − 2)

at the point (xr, 1/(2r − 2)). Then xr = 1/r + ar/(2r − 2); in particular x4 = 3/8. Given ar ,

we choose ar+1 so that Lr+1 passes through this same point (xr, 1/(2r − 2)). This means

xr − 1/(r + 1) = ar+1/(2r − 2), which implies ar+1 = ar + (2r − 2)/r(r + 1). This can be
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Figure 1. A sketch of the function g(x) for 0 � x � 1/2.

rewritten as ar+1 = ar − 2/r + 4/(r + 1), and so

ar = 2Hr +
2

r
− 47

12
where Hr =

r∑

i=1

1

i
.

Thus, for example, L5 is the line y = 20(x − 1/5)/21. The slopes of the lines Lr decrease

with r. Thus, if we define x3 = 1, we see that the envelope formed by the lines is given by

the function

g(x) =
x − 1/r

ar
for xr � x � xr−1, where xr =

1

r
+

ar

2r − 2
for r � 4.

A sketch of the function g(x) is shown in Figure 1.

Theorem 4.2. Let G be a graph with n vertices and chromatic number k. Then h(G) �
ng(k/n). In other words, h(G) � (k − n/r)/ar for every r � 4.

Proof. Since a4 = 3/4, the case r = 4 is just Theorem 1.1. Proceeding by induction, we

suppose the theorem true for some r � 4, and prove it for r + 1.

Suppose instead that the theorem fails for r + 1 and let G be a smallest counterexample.

The slope of the line Lr+1 is less than the slope of Lr , and both these lines pass through the

point (xr, 1/(2r − 2)), so (x − 1/(r + 1))/ar+1 � (x − 1/r)/ar for x � xr . Since G satisfies

the theorem for r but not for r + 1, it must be that k/n < xr .

As k/n < xr , (k − n/(r + 1))/ar+1 < (xr − 1/(r + 1))n/ar+1/(2r − 2). Since G fails the

theorem for r + 1, h(G) < n/(2r − 2), so by Theorem 4.1 we have α(G) � r + 1. Let

I be an independent set of size r + 1 in G. By the minimality of G, h(G) � h(G −
I) � ((k − 1) − (n − (r + 1))/(r + 1))/ar+1 = (k − n/(r + 1))/ar+1, contradicting the choice

of G.
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Our interest in this paper has been in graphs of high chromatic number, interpreted

as meaning graphs G where χ(G)/|G| is substantially greater than zero. All the same, we

might ask what the bound given by Theorem 4.2 looks like when k/n is small.

The theorem states that h(G) � (k − n/r)/ar for xr+1 � k/n � xr . In this range, the

value of (k − n/r)/ar lies between n/2r and n/(2r − 2) (indeed this is how the line Lr+1

was constructed). If k/n is small then r is large. In this case it is well known that Hr =

log r + O(1), so ar = 2 log r + O(1) and xr = ar/(2r − 2) = log r/r + O(1/r). Consequently

xr+1 = log r/r + O(1/r) too, and since xr+1 � k/n � xr we have k/n = log r/r + O(1/r)

as well. To express r in terms of k and n, write x = k/n; then x = log r/r + O(1/r) so

r ≈ −(log x)/x. Hence Theorem 4.2 yields h(G) � n/(2r − 2) ≈ −nx/2 log x.

This bound can be compared with that given by Theorem 4.1 for a graph G with

independence number α = α(G). Because k � n/α we have α � 1/x. If G is a graph for

which k is close to n/α then α is close to 1/x and the bound h(G) � n/(2α − 2) given by

Theorem 4.1 is close to nx/2, which is better than that given by Theorem 4.2. On the

other hand, if k is much larger than n(log α)/α, then α is much larger than −(log x)/x,

and the bound given by Theorem 4.2 is better.
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