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A rainbow subgraph of an edge-coloured graph is a subgraph whose edges have distinct colours.
The colour degree of a vertex v is the number of different colours on edges incident with v. Wang
and Li conjectured that for k � 4, every edge-coloured graph with minimum colour degree k

contains a rainbow matching of size at least �k/2�. A properly edge-coloured K4 has no such
matching, which motivates the restriction k � 4, but Li and Xu proved the conjecture for all other
properly coloured complete graphs. LeSaulnier, Stocker, Wenger and West showed that a rainbow
matching of size �k/2� is guaranteed to exist, and they proved several sufficient conditions for a
matching of size �k/2�. We prove the conjecture in full.

1. Introduction

Some basic graph-theoretic problems can be stated in the language of finding in an edge-coloured
graph a given subgraph with restrictions on the colours of its edges. For example, a version of
Ramsey’s theorem says that for any k, r and t, any huge k-edge-coloured complete r-uniform
hypergraph contains a monochromatic t-vertex complete r-uniform hypergraph. In this paper,
we consider conditions guaranteeing the existence of a multicoloured matching of r edges in an
edge-coloured graph. We consider only simple graphs, that is, with no loops or multi-edges.

Let G be an edge-coloured graph (the colouring does not need to be proper). For v ∈ V (G),
d̂(v) is the number of distinct colours on the edges incident with v. This is called the colour
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degree of v. The smallest colour degree of all vertices in G is the minimum colour degree of G,
or δ̂(G).

A rainbow matching of G is a matching in G whose edges have distinct colours. The topic of
rainbow matchings has been well studied, along with a more general topic of rainbow subgraphs
(see [1] for a survey). In 2008 Wang and Li were able to bound from below the size r(G) of the
largest rainbow matching in G in terms of the minimum colour degree of G. They showed [5]

that r(G) � � 5δ̂(G)−3
12

� for every graph G. In another paper [3], they proved that r(G) � � 2δ̂(G)
3

�
for each bipartite G with δ̂(G) � 3.

Wang and Li [5] conjectured that the lower bound could be improved to r(G) � � k
2
� for every

G with δ̂(G) � k � 4. The conjectured bound is sharp for properly coloured complete graphs.
The motivation for the restriction k � 4 comes from the fact that a properly edge-coloured K4

has no rainbow matching of size 2. However, it is an easy excercise to show that each other graph
with δ̂(G) = k � 3 has a rainbow matching with at least � k

2
� edges.

Li and Xu [4] gave a result on hypergraphs that proved the conjecture for all properly coloured
complete graphs with at least 6 vertices. LeSaulnier, Stocker, Wenger and West [2] proved that
r(G) � � k

2
� for any edge-coloured graph, and proved several conditions sufficient for a rainbow

matching of size � k
2
�. The sufficient conditions include a bound on n, the number of vertices in

G, and thus for each fixed value of k the conjecture only needed to be verified for finitely many
graphs.

The aim of this paper is to prove the conjecture of Wang and Li in full.

Theorem 1.1. If G is not a properly coloured K4 and δ̂(G) � k, then r(G) � � k
2
�.

The only known examples for when this bound is sharp have small values for n (relative to k).
In the next section we set up the proof and cite or prove the main facts needed for it. In the last

two sections we prove the theorem.

2. Preliminary results

By way of contradiction, let G with edge colouring f be a counterexample to Theorem 1.1 with
the fewest edges. Let k = δ̂(G) and r := r(G). By [2] and [4], we may assume that k is odd,
r = k−1

2
, and G is not a properly coloured complete graph.

Claim 2.1. The edges of each colour class of f form a forest of stars.

Proof. Let F be a colour class of f. If an edge e ∈ F connects two vertices of degree at least
two in F , then the colour degrees of all vertices in G and G − e are the same, and any rainbow
matching in G − e is a rainbow matching in G. This contradiction to the minimality of G yields
the claim.

Most of the results and notation in this section come from the paper [2] by LeSaulnier, Stocker,
Wenger and West.

Let M be a maximum rainbow matching in G, with edge set {ej : 1 � j � r}, where ej = ujvj .
Let H = G − V (M). Let Ej denote the set of edges connecting V (H) with {uj , vj}. Let E ′ be the
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Figure 1. An example of G with notation.

set of edges connecting V (H) with V (M), i.e., E ′ =
⋃r

j=1 Ej . Define p = |V (H)| = n − 2r =

n − (k − 1). Since G is not a properly coloured complete graph, n � k + 2 and so p � 3. Label
the vertices of H as {w1, w2, . . . , wp}.

Without loss of generality, we will assume that edge ei is coloured i for i = 1, . . . , r. A free
colour is a colour not used on any of the edges of M. A free edge is an edge coloured with a free
colour. If a free edge is contained in H , then M is not a maximum rainbow matching, so this is
not the case.

Definition 2.2. Let φ : V (M) → [k − 1] be the ordering with

φ(u1) < φ(v1) < φ(u2) < φ(v2) < · · · < φ(u k−1
2

) < φ(v k−1
2

).

A free edge wx coloured α is important if x ∈ V (M), w ∈ V (H), and φ(x) = miny{φ(y) : wy ∈
E ′, wy is coloured α}. All other free edges in E ′ are unimportant.

The motivation for this definition is that for each w ∈ V (H) and each free colour α used on an
edge incident with w, there is exactly one α-coloured important edge incident with w.

Lemma 2.3 ([2]). For any 1 � j � r, if there are three vertices in V (H) incident with import-
ant edges in Ej , then only one such vertex can be incident with two important edges.

Configuration A in the set Ej is a set Aj of important edges such that (a) it contains all p edges
connecting vj with H and one edge, say ujw, incident with uj ; (b) the colour of ujw (say α) is
also the colour of every edge in Aj apart from the edge vjw (which is different).

In this case, α will be called the main colour for Ej . Note that in our definition we are assuming
that vi is the vertex with p important edges and not ui. This assumption will be used for the rest
of the paper.

Corollary 2.4 ([2]). If p � 4, then there are at most p + 1 important edges in Ej for each j.
Furthermore, if Ej has p + 1 important edges, then Ej contains configuration A.

Define configuration B to be the set of four edges Bj = {wuj, w′uj , wvj , w
′vj} ⊆ Ej such that

w,w′ ∈ V (H), all four edges are important, f(wuj) = f(w′vj) and f(wvj) = f(w′uj).
In this case f(wuj) and f(wvj) will be called the major colours for Ej .
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Figure 2. Configuration A.

Figure 3. Configuration B.

Corollary 2.5. If p = 3, then there are at most p + 1 = 4 important edges in Ej for each j. Fur-
thermore, if Ej has 4 important edges, then Ej contains either configuration A or configuration B.

Proof. If each of w1, w2, w3 is incident with an important edge, then the proof of Corollary 2.4
goes through and implies that Ej contains configuration A. If only two of them, say w1 and w2, are
incident with important edges, then, in order to have four such edges, the set of important edges
in Ej must be {w1uj , w2uj , w1vj , w2vj}. Since M is a maximum matching, f(w1uj) = f(w2vj) and
f(w1vj) = f(w2uj).

While configuration A can occur in graphs of any order, configuration B only occurs when
p = 3. Let JA denote the set of indices j such that Ej contains configuration A. Let JB denote
the set of indices j such that Ej contains configuration B. By definition, JA ∩ JB = ∅. Define
a = |JA| and b = |JB |. The values of a and b will depend on G, f, and the choice of M.

A colour α is basic for Ej if either j ∈ JA and α is the main colour for Ej or j ∈ JB and α is a
major colour for Ej .

Claim 2.6. The basic colours for distinct Ej are distinct.

Proof. The edges of a basic colour for Ej are incident with at least p − 1 vertices in H . So if
some colour α was basic for Ej and Ej′ , then some w ∈ V (H) would be incident with two edges
of colour α, and so one of them would be unimportant, a contradiction.

Definition 2.7. Let dI (ej) denote the number of important edges that are incident with uj or vj .
Let dI (wj) be the number of important edges incident with wj .
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There are only r = k−1
2

non-free colours, and each vertex is incident with at least k distinct
colours, therefore:

Each vertex in H is incident with at least k+1
2

important edges. (2.1)

The number of important edges coming out of V (M) equals the number of important edges
coming out of H , which gives the inequality

k−1
2∑

j=1

dI (ej) =

p∑

i=1

dI (wi) � p
k + 1

2
= pr + p. (2.2)

Since dI (ej) � p + 1 for each j, in order to satisfy (2.2):

There are at least p distinct values of j such that dI (ej) = p + 1, i.e., a + b � p � 3. (2.3)

Lemma 2.8. Let i be such that all of the free edges in Ei are important. Let φ be the ordering
of V (H) described in Definition 2.2. If j < i is fixed, then in the ordering φ′ of V (H), where

φ′(u1) < φ′(v1) < φ′(u2) < φ′(v2) < · · · < φ′(uj−1) < φ′(vj−1)

< φ′(ui) < φ′(vi) < φ′(uj) < φ′(vj) < · · · < φ′(ui−1) < φ′(vi−1)

< φ′(ui+1) < φ′(vi+1) < · · · < φ′(u k−1
2

) < φ′(v k−1
2

),

the set of edges that are important is the same for φ and φ′.

Proof. The only change from φ to φ′ is that ui and vi come earlier. Thus, we will consider
the effect of moving one pair of vertices to another spot in the ordering. Note that the number
of important edges is not affected by the order of the vertices, only the selection of the set of
important edges. Thus, for every edge that is changed from important to unimportant, there must
be an edge that changes from unimportant to important. Therefore, since the relative order among
all other vertices does not change, it suffices to show that if the status of the edges incident with
ui and vi does not change, then the set of important edges in the whole graph does not change.

Let e be an edge incident with ui ∈ V (M) and w ∈ V (H) (the case when e is incident with vi
is symmetric). Since e is already important by the hypothesis, it can not change into an important
edge. By the definition of an important edge, e can turn from important to unimportant if and
only if ui is the earliest edge with its colour incident with w and then moved after another edge
with the same colour. And since ui is being moved earlier by hypothesis, it can not change into
an unimportant edge.

Because M is a maximum rainbow matching, if Ej contains configuration A or B, then Ej

contains exaclty p + 1 free edges. That is, if j ∈ JA ∪ JB , then every free edge of Ej is important.

3. Proof of Theorem 1.1: Case a > 0

Definition 3.1. A special vertex v is a vertex with d(v) = n − 1 and d̂G(v) = k such that one
colour appears on n − k = p − 1 distinct edges incident with v (each other colour appears exactly
once). For a special vertex v, the colour that appears n − k times is called the main colour of v.
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If a colour is on n − k different edges incident with v, then v is special. This proves that if
j ∈ JA then vj is a special vertex.

We call an edge xy a main edge if x is special and xy is coloured with the main colour of x.
Let M have the most main edges among all rainbow matchings in G with r edges. This implies
that:

If i ∈ JA then ui is special and i is the main colour of ui. (3.1)

This is because vi is special and its main colour is free, and therefore not i. Since ei could be
replaced by one of the main edges of vi, the choice of M shows that ei is already a main edge.
This shows that ei is a main edge of ui.

We will use a fixed index i ∈ JA. By Lemma 2.8 and the remark immediately after, we may
assume i = 1.

Consider edges u1uj for j ∈ JA ∪ JB . These edges exist for j �= 1 because u1 is a special
vertex.

Case 1: f(u1uj) is the main colour of v1, or the main colour of vj (if j ∈ JA). Without loss of
generality, we will assume that u1uj is the main colour of v1. By the definition of configuration A,
the main colour of v1 is free and it is on an edge that is incident with u1 and a vertex in H . Thus
there are two different edges incident with u1 with the main colour of v1, but only the main colour
may be repeated at special vertex u1. This creates a contradiction.

Case 2: f(u1uj) is 1, j, or free, and neither the main colour of vj nor a major colour for Ej . In
this case, a larger rainbow matching can be obtained by replacing e1 and ej with three edges:
u1uj , a main edge of v1 (we have p − 1 choices for such an edge), and either a main edge of vj
(if i ∈ JA) or a major edge of Ej (if j ∈ JB).

Case 3: j ∈ JB and f(u1uj) is a major colour of Ej . If f(u1vj) is not a major colour of Ej , then
we may swap uj and vj (because configuration B is symmetric) and get Case 2. So suppose each
of f(u1uj) and f(u1vj) is a major colour of Ej . Then each of uj and vj has a free colour repeated
on edges incident with it. Configuration B only occurs only when p = 3, so a vertex is special
when a colour is repeated n − k = p − 1 = 2 times. Therefore both uj and vj are special with
free main colours. This implies that ej is not a main edge. But this is a contradiction because M

could have contained more main edges by replacing edge ej with a main edge of vj .

Case 4: f(u1uj) = h, where 2 � h � r, and j ∈ JA. Consider an important edge e ∈ Eh. It cannot
be coloured with the main colour of v1 or vj , or else some vertex in H will be incident with two
important edges with the same colour, which is a contradiction. We will attempt to replace eh, e1,
and ej with edges e, v1ws, u1uj , and vjwt for some s �= t that give the main colours of v1 and vj .
The only way for this to not be possible is if p = 3, and the two main edges of v1 and vj form a
C4 that is incident with e. But in this case, the important edge that is incident with v1 and is not a
main edge of v1 is incident with the important edge of vj that is not a main edge, and they must
have different colours. Then we can replace eh, e1, and ej with edges e, v1ws, u1uj , and vjwt for
some s �= t that give the main colour of v1 or vj , and a free colour that is not the main colour of
either v1 or vj and not the colour of e. Therefore Eh has no important edges.

Case 5: f(u1uj) = h, where 2 � h � r, and j ∈ JB . Since p = 3, V (H) = {w1, w2, w3}. Without
loss of generality, assume that the major edges of Ej are incident with w1 and w2.
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Consider an important edge e ∈ Eh. It cannot have the main colour of v1, or have a major
colour of Ej and be incident with w1 or w2. Suppose first that the edges with the main colour
of v1 incident with v1 go to w1 and w2. If f(e) is a major colour of Ej and e is incident with w3

(without loss of generality, assume that f(e) = f(vjw1)), then replace e1, ej , and eh with u1uj , e,
vjw2, and v1w1. This will also work if e has any other free colour and is incident with w3. If e is
incident with w1 and f(e) �= v1w3, then replace e1, ej , and eh with u1uj , e, v1w3, and vjw2. This
works symmetrically if e is incident with w2. This leaves only the case when f(e) = f(v1w3) and
e is incident with w1 or w2. By the minimality of G, only two such edges may exist.

Suppose now that the edges with the main colour of v1 go to w1 and w3 (w2 and w3 is a sym-
metric situation). If e is incident with w1, then replace e1, ej , and eh with u1uj , e, v1w3, and vjw2.
If e is incident with w2, then replace e1, ej , and eh with u1uj , e, v1w3, and vjw1. This leaves only
the case when e is incident with w3. Since G is a simple graph, only two such edges may exist.

Cases 1, 2 and 3 all led to contradictions. The vertex u1 is special with main colour 1. There-
fore, there must be a − 1 instances of Case 4 and b instances of Case 5. This creates a − 1 values
of i where Ei has no important edges and b other values of i where Ei has at most 2 important
edges. By definition, for all i /∈ JA ∪ JB , the set Ei has at most p important edges. Then

r∑

i=1

dI (ei) =
∑

i∈JA∪JB

dI (ei) +
∑

i/∈JA∪JB

dI (ei)

� (p + 1)(a + b) + ((a + b − 1)2 + p(r − (a + b) − (a + b − 1)))

= pr + (a + b) − (p − 2)(a + b − 1).

Recall that by (2.3), a + b � 3. Thus, since p � 3 and a � 1,
r∑

i=1

dI (ei) < pr + p, (3.2)

a contradiction to (2.2).

4. Proof of Theorem 1.1: Case a = 0

If a = 0, then b � 3 by (2.3). This also implies that p = 3 and V (H) = {w1, w2, w3}.
We will partition JB into three sets: J1

B will be the set of indices i such that the free edges
of Ei are incident with w1 and w2; J2

B will be the set of indices i such that the free edges of Ei

are incident with w1 and w3; and J3
B will be the set of indices i such that the free edges of Ei are

incident with w2 and w3. We define b1 = |J1
B |, b2 = |J2

B |, and b3 = |J3
B |, so that b1 + b2 + b3 = b.

Subsection 4.1 will cover the situation when at least two of the values b1, b2, and b3 are
positive. The vertices w1, w2, and w3 can be reordered, so that b1 is the smallest positive value of
the three. Then 0 < b1 � b2 + b3.

Subsection 4.2 will cover the situation when two of the values are zero. Without loss of
generality, we will assume b3 = b2 = 0 and b1 = b.

In both subsections, b1 > 0. We will use a fixed index i ∈ J1
B . By Lemma 2.8 and the remark

immediately after, we may assume i = 1. We will show that:

There are b − 1 values for j such that Ej has 2 or fewer important edges. (4.1)
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If (4.1) holds, then it generates a contradiction to (2.2) exactly as in (3.2).

4.1. Subcase: a = 0 and 1 � b1 � b2 + b3.
Since k = n − 2, d̂(u1) � n − 2. Thus the number of distinct colours on the edges connecting u1

with
⋃

i∈J2
B∪J3

B
{ui, vi} is at least 2(b3 + b2) − 1 � b − 1.

Case A: i ∈ J3
B , and the edge u1ui exists. This is symmetric to the case when i ∈ J2

B .
If f(u1ui) = f(v1w1) (Case f(u1ui) = f(viw3) is symmetric), then we replace edges e1 and ei

in M with edges v1w2, viw3, and u1ui. If f(u1ui) is equal to a free colour other than f(v1w1) or
f(viw3), then replace edges e1 and ei in M with edges v1w1, viw3, and u1ui.

It follows that f(u1ui) is not free. We will consider what important edges may be in Eh

for f(u1ui) = h. Suppose e ∈ Eh is an important edge. First, assume that e is incident with
w2. Since w2 is incident with at most one important edge of each colour, f(e) �= f(u1w2) and
f(e) �= f(uiw2). So, since f(u1w2) = f(v1w1) and f(uiw2) = f(viw3), we can replace edges e1, ei,
and eh in M with edges u1ui, e, v1w1 and viw3. Thus e is not incident with w2. Second, assume
that e is incident with w3. Since w3 is incident with at most one important edge of colour f(e), we
have f(e) �= f(uiw3) = f(viw2). If also f(e) �= f(v1w1), then we replace in M edges e1, ei, and
eh with u1ui, e, v1w1 and viw2. Finally, assume that f(e) = f(v1w1). Again, since w3 is incident
with at most one important edge of colour f(v1w1), only one edge incident with w3 in Eh can be
important. So, altogether Eh has at most two important edges.

Case B: i ∈ J2
B ∪ J3

B , and the edge u1vi exists. By the symmetry of configuration B, the proof is
exactly the same as in case A.

This implies that there are b − 1 values for j such that Ej has 2 or fewer important edges. Thus
(4.1) holds.

4.2. Subcase: a = 0 and b3 = b2 = 0.
Let i ∈ J1

B = JB . Suppose that edge w3vi exists. Since Ei has configuration B, edge w3vi cannot
be free. Let f(w3vi) = h. Suppose e is a free edge in Eh. Assume first that e is incident with w1.
Since w1 is incident with at most one important edge of colour f(e), f(e) �= f(viw1) = f(uiw2).
So we can replace edges ei and eh in M with edges viw3, uiw2, and e, a contradiction. Hence e

is not incident with w1 and similarly is not incident with w2. Thus all important edges in Eh are
incident with w3. It follows that Eh has at most two such edges.

Similarly to the start of Subsection 4.1, since d̂(w3) � k = n − 2, at least b1 − 1 = b − 1

distinct colours were used on the edges in the set {w3vi : i ∈ J1
B}. This implies that there are

b − 1 values for j such that Ej has 2 or fewer important edges. So (4.1) holds again.
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