Many disjoint dense subgraphs versus large k-connected subgraphs in large graphs with given edge density

Thomas Böhme ${ }^{\mathrm{a}, *}$, Alexandr Kostochka ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ Institut für Mathematik, Technische Universität Ilmenau, Ilmenau, Germany
${ }^{\mathrm{b}}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\text {c }}$ Institute of Mathematics, 630090 Novosibirsk, Russia

Received 24 October 2006; accepted 7 January 2008
Available online 1 May 2008

Abstract

It is proved that for all positive integers d, k, s, t with $t \geq k+1$ there is a positive integer $M=M(d, k, s, t)$ such that every graph with edge density at least $d+k$ and at least M vertices contains a k-connected subgraph on at least t vertices, or s pairwise disjoint subgraphs with edge density at least d. By a classical result of Mader [W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem Univ. Hamburg, 37 (1972) 86-97] this implies that every graph with edge density at least $3 k$ and sufficiently many vertices contains a k-connected subgraph with at least r vertices, or r pairwise disjoint k-connected subgraphs. Another classical result of Mader [W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) $154-168]$ states that for every n there is an $l(n)$ such that every graph with edge density at least $l(n)$ contains a minor isomorphic to K_{n}. Recently, it was proved in [T. Böhme, K. Kawarabayashi, J. Maharry, B. Mohar, Linear connectivity forces dense minors, J. Combin. Theory Ser. B (submitted for publication)] that every ($\frac{31}{2} a+1$)-connected graph with sufficiently many vertices either has a topological minor isomorphic to $K_{a, p q}$, or it has a minor isomorphic to the disjoint union of p copies of $K_{a, q}$. Combining these results with the result of the present note shows that every graph with edge density at least $l(a)+\left(\frac{31}{2} a+1\right)$ and sufficiently many vertices has a topological minor isomorphic to $K_{a, p a}$, or a minor isomorphic to the disjoint union of p copies of K_{a}. This implies an affirmative answer to a question of Fon-der-Flaass.

(c) 2008 Elsevier B.V. All rights reserved.

Keywords: Graph minors; Edge density; Connected subgraphs

1. Introduction and results

In this note all graphs are finite and do not have loops or multiple edges. For a graph G, let $|G|$ and $\|G\|$ denote the number of its vertices and of its edges, respectively. The quotient $\|G\| /|G|$ is called the edge density of G. A separation of a graph G is a pair (G_{1}, G_{2}) of induced subgraphs G_{1}, G_{2} of G such that $G=G_{1} \cup G_{2}$. The order of a separation $\left(G_{1}, G_{2}\right)$ is $\left|G_{1} \cap G_{2}\right|$. A separation $\left(G_{1}, G_{2}\right)$ is non-trivial if $V\left(G_{1}\right) \backslash V\left(G_{2}\right) \neq \emptyset$ and $V\left(G_{2}\right) \backslash V\left(G_{1}\right) \neq \emptyset$. We call a graph k-separable if it has a non-trivial separation of order at most k. Clearly, a graph is not $(k-1)$-separable

[^0]if and only if it is either k-connected or it is a complete graph with at most k vertices. Our main result is the following Theorem 1.1.

Theorem 1.1. For any positive integers d, k, s, t there is a number $M=M(d, k, s, t)$ such that every graph on n vertices with at least $(d+k-1) n+M$ edges contains either a not $(k-1)$-separable subgraph with at least t vertices or s pairwise disjoint subgraphs with edge density at least d.

The following result mentioned in the abstract is an immediate consequence of Theorem 1.1.
Theorem 1.2. For any positive integers d, k, s, t there is a number $M=M(d, k, s, t)$ such that every graph with edge density at least $d+k$ and at least $M(d, k, s, t)$ vertices contains a not ($k-1$)-separable subgraph with at least t vertices, or s pairwise disjoint subgraphs with edge density at least d.

Our first application of Theorem 1.2 deals with the existence of k-connected subgraphs in graphs with given edge density. Mader [10] (see also [3], p. 11) proved that every graph with edge density at least $2 k$ contains a k-connected subgraph. Mader's result together with Theorem 1.2 immediately implies the following Theorem 1.3. (Let $d=2 k$, $s=t=r$, and $N(k, r)=M(2 k, k, r, r)$.)

Theorem 1.3. There exists a function $N: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for $r \geq k+1$ every graph with edge density at least $3 k$ and at least $N(k, r)$ vertices contains a k-connected subgraph with at least r vertices, or r pairwise disjoint k-connected subgraphs.

We also use Theorem 1.2 to prove a result on the existence of certain (topological) minors in graphs with given edge density. A graph G is a subdivision of a graph H if G can be obtained from H by replacing the edges of H with paths between their ends, such that none of these paths has an inner vertex on another path or in H. A graph H is a topological minor of a graph G if G contains a subdivision of H as a subgraph. A graph H is a minor of another graph G if H can be obtained from a subgraph of G by contracting edges. Clearly, every topological minor of a graph is a also a minor of this graph.

Mader $[8,9]$ proved that there exist functions $h, l: \mathbb{N} \rightarrow \mathbb{R}$ such that every graph with edge density at least $h(n)$ has a topological minor isomorphic to the complete graph K_{n}, and every graph with edge density at least $l(n)$ has a minor isomorphic to the complete graph K_{n}. It was proved independently by Bollobás and Thomason [2], and by Komlós and Szemerédi [5] that $h(n)=\Theta\left(n^{2}\right)$. Kostochka [7,6] and Thomason [11] independently proved that $l(n)=\Theta(n \sqrt{\log n})$. Recently, Thomason [12] found the asymptotically best possible bound of $l(n)$.

Applying Theorem 1.2 with $d=h(n)$ (resp., $d=l(n)$) shows that for $t \geq k+1$ every graph with edge density at least $h(d)+k($ resp. $l(d)+k)$ and at least $M(h(d), k, s, t)$ (resp., $M(l(d), k, s, t))$ vertices contains a k-connected subgraph with at least t vertices, or it has a topological minor (resp. a minor) isomorphic to the disjoint union of s copies of the complete graph K_{n}. We will combine this result with a recent theorem of Böhme, Kawarabayashi, Maharry, and Mohar [1].

Theorem 1.4 ([1]). There exists a function $L: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that every $\left(\frac{31}{2} a+1\right)$-connected graph with at least $L(p, q)$ vertices either has a topological minor isomorphic to $K_{a, p q}$, or it has a minor isomorphic to the disjoint union of p copies of $K_{a, q}$.

We let $P(a, p)=M\left(l(a),\left\lceil\frac{31}{2} a+1\right\rceil, p, L(p, a)\right)$ and obtain the following Theorem 1.5. (Note that K_{a} is a minor of $K_{a, a}$.)
Theorem 1.5. Every graph with edge density at least $l(a)+\frac{31}{2} a+1$ and at least $P(a, p)$ vertices has a topological minor isomorphic to $K_{a, p a}$, or a minor isomorphic to the disjoint union of p copies of K_{a}.
D. Fon-der-Flaass [4] has asked whether there are functions $r: \mathbb{N} \rightarrow \mathbb{N}$ and $R: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for all $a, p \in \mathbb{N}$ every $r(a)$-regular graph on at least $R(a, p)$ vertices has a minor isomorphic to the disjoint union of p copies of K_{a}. Since $K_{a, p a}$ contains vertices of degree $p a$, Theorem 1.5 implies the following Corollary that answers the question of D. Fon-der-Flaass.

Corollary 1.6. Every graph with edge density at least $l(a)+\frac{31}{2} a+1$, maximum degree Δ and at least $P\left(a,\left\lceil\frac{\Delta+1}{a}\right\rceil\right)$ vertices has a minor isomorphic to the disjoint union of p copies of K_{a}.

2. Proof of Theorem 1.1

Let $M(d, k, s, t)=2^{s-1}\binom{t}{2}+\left(2^{s-1}-1\right)(d+k-1)(k-1)$. If $\|G\| \geq(d+k-1)|G|+M(d, k, 1, t)$, then the graph G itself has edge density greater than d, and so the statement of the theorem is trivially true for $s=1$.

Suppose there is an $s>1$ such that the statement of the theorem is not true, and let G be a graph such that:
(a) $\|G\| \geq(d+k-1)|G|+2^{s-1}\binom{t}{2}+\left(2^{s-1}-1\right)(d+k-1)(k-1)$;
(b) G contains neither a not $(k-1)$-separable subgraph on at least t vertices nor s pairwise disjoint subgraphs with edge density at least d;
(c) s is minimum with respect to (a) and (b);
(d) $|G|$ is minimum with respect to (a), (b) and (c).

Since G has more than $\binom{t}{2}$ edges, $|G|>t$. Hence it follows from (b) that G has a non-trivial separation $\left(G_{1}, G_{2}\right)$ of order at most $k-1$.

Claim 1. There is an $i \in\{1,2\}$ such that

$$
\left\|G_{i}\right\| \geq(d+k-1)\left|G_{i}\right|+2^{s-2}\binom{t}{2}+\left(2^{s-2}-1\right)(d+k-1)(k-1) .
$$

Proof of Claim 1. Suppose that for $i \in\{1,2\}$,

$$
\left\|G_{i}\right\|<(d+k-1)\left|G_{i}\right|+2^{s-2}\binom{t}{2}+\left(2^{s-2}-1\right)(d+k-1)(k-1) .
$$

Then, since $\left|G_{1}\right|+\left|G_{2}\right| \leq|G|+(k-1)$, we have

$$
\begin{aligned}
\|G\| & \leq\left\|G_{1}\right\|+\left\|G_{2}\right\|<(d+k-1)\left(\left|G_{1}\right|+\left|G_{2}\right|\right)+2^{s-1}\binom{t}{2}+\left(2^{s-1}-2\right)(d+k-1)(k-1) \\
& \leq(d+k-1)|G|+2^{s-1}\binom{t}{2}+\left(2^{s-1}-1\right)(d+k-1)(k-1)-\text { a contradiction. }
\end{aligned}
$$

Assume w.l.o.g. that

$$
\left\|G_{2}\right\| \geq(d+k-1)\left|G_{2}\right|+2^{s-2}\binom{t}{2}+\left(2^{s-2}-1\right)(d+k-1)(k-1)
$$

and let $G_{1}^{-}=G_{1}-V\left(G_{2}\right)$.
Claim 2. $\left\|G_{1}^{-}\right\| \geq d\left|G_{1}^{-}\right|$.
Proof of Claim 2. Suppose that $\left\|G_{1}^{-}\right\|<d\left|G_{1}^{-}\right|$. Then

$$
\begin{aligned}
\left\|G_{2}\right\| & \geq\|G\|-\left\|G_{1}^{-}\right\|-(k-1)\left|G_{1}^{-}\right| \\
& >(d+k-1)|G|-d\left|G_{1}^{-}\right|-(k-1)\left|G_{1}^{-}\right|+2^{s-1}\binom{t}{2}+\left(2^{s-1}-1\right)(d+k-1)(k-1) \\
& =(d+k-1)\left|G_{2}\right|+2^{s-1}\binom{t}{2}+\left(2^{s-1}-1\right)(d+k-1)(k-1) .
\end{aligned}
$$

Since $\left|G_{2}\right|<|G|$, this contradicts (d).
Since G_{2} is a subgraph of G it follows from (b) that G_{2} does not contain a not ($k-1$)-separable subgraph on at least t vertices. This implies by (c) and Claim 1 that G_{2} contains $s-1$ pairwise disjoint subgraphs with edge density at least d. Claim 2 implies that these subgraphs together with G_{1}^{-}form a family of s pairwise disjoint subgraphs of G with edge density at least d. This contradicts (b), and the theorem is proved.

Acknowledgement

The research of the second author is supported in part by the NSF grant DMS-0400498 and grant 03-01-00796 of the Russian Foundation for Fundamental Research.

References

[1] T. Böhme, K. Kawarabayashi, J. Maharry, B. Mohar, Linear connectivity forces dense minors, J. Combin. Theory Ser. B (submitted for publication).
[2] B. Bollobás, A. Thomason, Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European. J. Combin. 19 (8) (1998) 883-887.
[3] R. Diestel, Graph Theory, Springer-Verlag, New York, Inc., 1996.
[4] D. Fon-der-Flaass, oral communication.
[5] J. Komlós, E. Szemerédi, Topological cliques in graphs II, Combin. Probab. Comput. 5 (1) (1996) 79-90.
[6] A.V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982) 37-58. (in Russian).
[7] A.V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984) 307-316.
[8] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967) 265-268.
[9] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968) 154-168.
[10] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math. Sem Univ. Hamburg 37 (1972) 86-97.
[11] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984) 261-265.
[12] A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001) 318-338.

[^0]: * Corresponding author.

 E-mail addresses: tboehme@theoinf.tu-ilmenau.de (T. Böhme), kostochk@math.uiuc.edu (A. Kostochka).

