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a b s t r a c t

Refining a bound by Lih, Wang and Zhu, we prove that if the square G2 of a K4-minor-free
graph Gwith maximum degree∆ > 6 does not contain a complete subgraph on

⌊ 3
2∆
⌋
+ 1

vertices, then G2 is
⌊ 3
2∆
⌋
-colorable.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Problems involving coloring squares of graphs have recently attracted some attention. If G is a graph with maximum
degree∆(G) = ∆, then the chromatic numberχ(G2), and even the clique number ofG2, may be of the order of∆2. However,
this should not happen with graphs of small genus. In particular, Wegner [6] made the following conjecture.

Conjecture 1. Let G be a planar graph. Then

χ(G2) 6


∆(G)+ 5 if 4 6 ∆(G) 6 7,⌊
3
2
∆(G)

⌋
+ 1 if ∆(G) > 8.

Recently Havet, van den Heuvel, McDiarmid and Reed [2] proved an approximate upper bound of 32∆ + o(∆), but the
exact result has not been proved.
The bound of Wegner’s conjecture, if true, is sharp. Moreover, for every ∆ > 4, there are series–parallel (hence, K4-

minor-free) graphs Gwith maximum degree∆ such that the chromatic number and clique number of G2 are both equal to⌊ 3
2∆
⌋
+ 1: see Fig. 1, where A, B and C are independent sets of suitable orders, as explained in Section 3. Lih, Wang, and

Zhu [5] proved the following theorem, which implies that Wegner’s conjecture holds for K4-minor-free graphs.
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Fig. 1. The two possible forms for G[Q ].

Fig. 2. A K4-minor-free graph Gwith∆(G) = 4 such that χ(G2) = 7 and G2 does not contain K7 .

Theorem 2 ([5]). Let G be a K4-minor-free graph. Then

χ(G2) 6


∆(G)+ 3 if 2 6 ∆(G) 6 3,⌊
3
2
∆(G)

⌋
+ 1 if ∆(G) > 4.

Hetherington and Woodall [3] proved that the upper bound in Theorem 2 holds not only for χ(G2) but also for the list
chromatic number ch(G2). They remarked that they ‘‘strongly suspect’’ that the bound t =

⌊ 3
2∆
⌋
+ 1 is attained for∆ > 4

only when G2 contains a clique of order t . In this paper we show that this suspicion is incorrect for ∆ ∈ {4, 5} but correct
for every∆ > 6, at least for the (ordinary) chromatic number. (We do not see how to prove the analogous result for the list
chromatic number. Any counterexample for list coloringswould disprove also the conjecture of the first and third authors [4]
that ch(G2) = χ(G2) for every graph G.)
The main result of this paper is the following.

Theorem 3. Let G be a K4-minor-free graph with maximum degree at most ∆ > 6. If G2 does not contain a clique of order⌊ 3
2∆
⌋
+ 1, then χ(G2) 6

⌊ 3
2∆
⌋
.

Our proof uses the approach ofHetherington andWoodall [3]. In the next sectionwe introduce somenotation and present
examples for∆ ∈ {4, 5}. In Section 3 we discuss the structure of the cliques of order

⌊ 3
2∆
⌋
+ 1 in the square of a K4-minor-

free graph G with maximum degree ∆, and in particular we show that if Q is the vertex-set of such a clique in G2, then Q
induces a subgraph of Gwith one of the forms shown in Fig. 1. The proof of Theorem 3 is then given in Sections 4 and 5.
The structure of the proof is as follows. We define G to be a smallest counterexample to Theorem 3 (for a fixed value of

∆). In Section 4 we prove various results about G, culminating in the fact that G must contain an induced subgraph of the
form shown in Fig. 7. In Section 5 we use this induced subgraph, and the minimality of G, to show that G is

⌊ 3
2∆
⌋
-colorable;

this contradicts the choice of G and so proves Theorem 3. In proving the results in Sections 4 and 5, we consider a number of
graphs with fewer vertices than G, which are constructed from G in various different ways. We wish to prove that each such
graph G̃ is

⌊ 3
2∆
⌋
-colorable, using the fact that G is a minimal counterexample to Theorem 3. To do this, we must verify that

∆(G̃) 6 ∆, G̃ is K4-minor-free, and G̃2 contains no clique of order
⌊ 3
2∆
⌋
+ 1. In most cases, verifying the first two of these

hypotheses is easy, but the third is much less straightforward. It is here that we repeatedly use the main result of Section 3,
which tells us that if Q is the vertex-set of such a clique in G̃2, then Q induces a subgraph of G̃ of a particular form.

2. Some preliminaries

If G is a graph with vertex-set V (G) and edge-set E(G), and v ∈ V (G), then the set of neighbors of v in G is denoted by
NG(v) or just N(v), and the degree of v is dG(v) = |NG(v)|. If u, v ∈ V (G) then dG(u, v) denotes the distance between u and
v in G, i.e., the length of a shortest u,v-path. If X ⊆ V (G), then G[X] denotes the subgraph of G induced by X . We denote by
G2 the square of G: G2 has the same vertex-set as G, and two vertices are adjacent in G2 if they are within distance two of
each other in G.
Let G be the graph in Fig. 2. By inspection, G is a K4-minor-free graph and G2 does not contain K7 as a subgraph. For

i = 1, 2, 3, let Ci := {xi, yi} ∪ (NG(xi) ∩ NG(yi)). Let f be a proper coloring of G2, and let α := f (u) and β := f (v). Since
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uv ∈ E(G2), α 6= β . Because x1, x2 and x3 all have different colors, at most one of them is colored with β . Similarly, at most
one of y1, y2 and y3 is colored with α. Thus, for some i ∈ {1, 2, 3}, neither α nor β is used to color any vertex of Ci. But all
five vertices of Ci have different colors in f ; thus f uses at least seven colors, i.e., χ(G2) > 7.
The example for ∆ = 5 is very similar, only instead of three copies of K2,3 we take three copies of K2,4. So the example

would need eight colors.
Thus for ∆ ∈ {4, 5} there is a K4-minor-free graph G with maximum degree ∆ such that χ(G2) =

⌊ 3
2∆
⌋
+ 1 but G2

contains no clique of order χ(G2), contrary to the ‘‘strong suspicion’’ of Hetherington and Woodall [3]. Theorem 3 shows
that this cannot happen if∆ > 6.
Our proof of Theorem 3 depends heavily on the following classic result of Dirac, which is used explicitly in Lemmas 7 and

14.

Lemma 4 ([1]). Every K4-minor-free graph has a vertex with degree at most 2.

3. Structure of large cliques

Let F denote the configuration F1 or F2 in Fig. 1, where A, B and C are sets of vertices which initially we do not assume
to be independent, and v0 is adjacent to all vertices in B ∪ C , v1 to all vertices in C ∪ A, and v2 to all vertices in A ∪ B. Let
a := |A|, b := |B| and c := |C |. For F 21 − v0 or F

2
2 to be a clique of order

⌊ 3
2∆
⌋
+ 1, with∆(F) 6 ∆, we require

a+ b 6 ∆− 1, a+ c 6 ∆− 1;

also, in Fig. 1(a),

b+ c 6 ∆,

a+ b+ c =
⌊
3
2
∆

⌋
− 1;

and, in Fig. 1(b),

b+ c 6 ∆− 2,

a+ b+ c =
⌊
3
2
∆

⌋
− 2.

If∆ is even, then there is a unique solution in each case. If∆ is odd, then there are three solutions in each case, depending
on which one of the three inequalities is strict; but two of the three solutions are isomorphic (interchanging B and C). Note
for future reference that a, b, c > 1

2 (∆ − 3) in each solution, so that each of the sets A, B, C has at least two elements if
∆ > 6. Note also that if A, B, C are independent sets then, in F ,

if∆ is even then all of v0, v1, v2 have degree∆;
if∆ is odd then two of v0, v1, v2 have degree∆ and one has degree∆− 1;
every other vertex of F has degree 2.

(1)

By an F-pathwe mean a path whose endvertices are in F but whose internal vertices (if any) are not in F .

Lemma 5. Suppose that F (∼= F1 or F2) is a subgraph of a K4-minor-free graph G, where each of A, B and C has at least two
vertices. Then A ∪ B ∪ C is an independent set in G, and there is no F-path in G that joins two vertices in A ∪ B ∪ C, or that joins
one vertex u in this set to the vertex v ∈ {v0, v1, v2} that is not adjacent to u in F .

Proof. It is easy to see that if there were an edge or an F-path of the type described, then G would have a K4 minor. For
example, if there is an edge uv or an F-path from u to v, where u ∈ A and v ∈ A ∪ B ∪ C ∪ {v0}, then there is a K4 minor
with branch vertices u, v, v1 and v2. (Note that, since |A| > 2, there is a path from v1 to v2 through A that does not use u.)
The remaining cases are similar. �

If Q ⊆ V (G) and Q induces a clique of order t =
⌊ 3
2∆
⌋
+ 1 in G2, then we will say that Q , its t-clique, and G[Q ], are all

of standard form if there is a vertex v ∈ V (G) such that G[Q ∪ {v}] ∼= F1, or if G[Q ] ∼= F2. We will define

F(G,Q ) :=
{
G[Q ∪ {v}] if G[Q ∪ {v}] ∼= F1,
G[Q ] if G[Q ] ∼= F2.

(2)

Lemma 6. Let G be a 2-connected K4-minor-free graph with maximum degree at most ∆ > 6, and suppose that G2 contains a
standard-form clique of order

⌊ 3
2∆
⌋
+ 1 with vertex-set Q . Let F := F(G,Q ). Then either G ∼= F , or ∆ is odd and there is a

connected subgraph H of G, and an edge uv of F , where dG(u) = ∆, dF (u) = ∆− 1 and dF (v) = 2, such that G = F ∪ H and
F ∩ H = {u, uv, v}.

Proof. It follows from Lemma 5 and (1) that F is an induced subgraph of G. Suppose that G 6∼= F , and let C1, . . . , Ck be the
components of G − V (F). Since G is 2-connected, each component Ci has at least two neighbors in F , all of which have F-
degree less than ∆ (since a vertex with F-degree ∆ can have no neighbors outside F ). So it follows from Lemma 5 and (1)
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Fig. 3. The vertex-sets in Q .

that if u, v ∈ V (F) ∩ N(Ci), then uv ∈ E(F),∆ is odd, and one of u and v, say u, is the unique vertex of F-degree∆− 1, and
the other, v, has F-degree 2. Since the one edge between u and Ci raises the degree of u to its maximum possible value ∆,
there is therefore exactly one component C1 of G − V (F), and exactly two edges uu′ and vv′ between F and C1, and if we
define H to be the union of C1 and the path u′uvv′ then G = F ∪ H and F ∩ H = {u, uv, v} as required. �

The main result of this section is the following.

Lemma 7. Let G be a K4-minor-free graph with maximum degree at most ∆ > 6, and let t :=
⌊ 3
2∆
⌋
+ 1. Then every clique of

order t in G2 is of standard form.

Proof. Assume that this is false, and consider a minor-minimal K4-minor-free graph G with maximum degree at most ∆
such that G2 contains a t-clique K with V (K) = Q that is not of standard form. By the minimality of G, G has no vertices
with degree 0 or 1. Therefore, by Lemma 4, G has a vertex with degree 2. Let v be such a vertex, with neighbors u andw. We
consider two cases.
Case 1: v 6∈ Q . If u 6∈ Q orw 6∈ Q or uw ∈ E(G), then (G− v)2 contains the t-clique K . By the minimality of G, (G− v)[Q ] is
of standard form, which is a contradiction since G[Q ] = (G− v)[Q ]. Therefore u, w ∈ Q and uw 6∈ E(G).
Let H := G − v + uw. Since H is a minor of G (obtained by contracting the edge uv), H is K4-minor-free. Since v 6∈ Q ,

K ⊆ H2. By the minimality of G, H[Q ] is of standard form. This implies that uw is one of the edges in Fig. 1, and that by
subdividing uw we obtain G such that G2[Q ] is the t-clique K . Notice that every edge in Fig. 1 is incident with some vertex
vi (i ∈ {0, 1, 2}). By symmetrywemay assume that u ∈ {v0, v1}. If u = v0 andw ∈ B (respectively,w ∈ C) then the distance
in G between w and C (respectively, w and B) is greater than two, which contradicts the supposition that G2[Q ] is a clique.
If u = v1 we get a similar contradiction with A instead of B. If uw = v1v2 in F1, then the distance in G between v1 and B is
greater than two. Finally, if uw = v0v1 (respectively, v0v2) in F2, then the distance between v1 and B (respectively, v2 and
C) is greater than two. In each case we have a contradiction; thus Case 1 cannot arise.
Case 2: v ∈ Q . Partition the set of vertices in Q at distance exactly two from v as X0 ∪ X1 ∪ X2, where

X0 := (N(u) ∩ N(w)) ∩ Q \ {v},
X1 := (N(u) \ N(w)) ∩ Q \ {w},
X2 := (N(w) \ N(u)) ∩ Q \ {u},

as shown in Fig. 3. Let xi := |Xi| for i = 0, 1, 2.

Claim 7.1. There is a vertex z0 ∈ V (G) \ {u, v, w} such that z0 is adjacent to all vertices in (X1 ∪ X2)− z0.
Proof. Since X1 ∪ X2 ⊂ Q by the definition of the sets Xi, and the distance between any two vertices of Q is at most two,
every vertex of X1 is connected to every vertex of X2 by a path of length at most two. Let H be the subgraph of G induced
by the vertices of all paths of length at most two between X1 and X2. Note that u, v, w 6∈ V (H), since there are no edges
between u and X2 or betweenw and X1.
Suppose that there is no vertex z0 as in the statement of the claim. Then there is no single vertex whose removal

disconnects all paths of H between X1 and X2. Thus, by Pym’s version of Menger’s theorem, there are two vertex-disjoint
paths P1 and P2 in H between X1 and X2. Let P1 have endvertices p ∈ X1 and q ∈ X2, and P2 have endvertices r ∈ X1 and
s ∈ X2. Since p and s are in a clique in G2, there is a path P3 of length at most two with endvertices p and s. If P3 is internally
disjoint from P1 and P2, then G has a K4 minor with branch vertices p, s, u and w. If P3 has a central vertex t , and t ∈ V (P1),
then G has a K4 minor with branch vertices s, t , u and w. Similarly, if t ∈ V (P2), then G has a K4 minor with branch vertices
p, t , u andw. In every case we have a contradiction. �

The argument now splits into two subcases.
Subcase 2.1: uw ∈ E(G). In this case x0 + x1, x0 + x2 6 ∆− 2 and, since |Q | = t , x0 + x1 + x2 >

⌊ 3
2∆
⌋
− 2. This implies that

x1, x2 >
⌊ 1
2∆
⌋
> 1
2 (∆− 1).

By Claim 7.1, there is a vertex z0 ∈ V (G) such that z0 is adjacent to every vertex in (X1 ∪ X2)− z0. Note that z0 cannot be
in X0 because |X1 ∪ X2 ∪ {u, w}| > ∆. If z0 6∈ X1 ∪ X2, then G[Q ∪ {z0}] has the form in Fig. 1(a), with A = X0 ∪ {v}, B = X1,
C = X2, and (v0, v1, v2) = (z0, w, u). If z0 ∈ X1 then G[Q ] has the form in Fig. 1(b) with A = X2, B = X0 ∪ {v}, C = X1 − z0,



6576 A.V. Kostochka et al. / Discrete Mathematics 309 (2009) 6572–6584

and (v0, v1, v2) = (u, z0, w). If z0 ∈ X2 then the situation is similar, interchanging X1 and X2, and u and w. In each case we
have a contradiction.
Subcase 2.2: uw 6∈ E(G). In this case x0 + x1, x0 + x2 6 ∆− 1 and, since |Q | = t , x0 + x1 + x2 >

⌊ 3
2∆
⌋
− 2. This implies that

x1, x2 >
⌊ 1
2∆
⌋
− 1, so that x1, x2 > 2 since we are assuming that∆ > 6.

Recall that the distance between any two vertices of Q is at most two. Consider the subgraph induced by the vertices of
all paths of length at most two connecting the pairs (u, X2), (w, X1) and (X1, X2). If all these paths go through the vertex z0,
whose existencewas proved in Claim 7.1, then z0 6∈ X1∪X2∪{u, w}, since u andw are not adjacent to X2 and X1 respectively;
but z0 is adjacent to all vertices in X1 ∪ X2 ∪ {u, w}, so that z0 ∈ Q . Thus z0 ∈ X0, and G[Q ] has the form in Fig. 1(b) with
A = (X0 ∪ {v})− z0, B = X1, C = X2, and (v0, v1, v2) = (z0, w, u).
This contradiction shows that not all of the paths mentioned go through z0. By symmetry, interchanging X1 and X2 if

necessary, we may assume that there is a vertex q ∈ X2 such that there is a shortest path (of length at most two) from u to
q that does not contain z0, and clearly does not contain w. Then G has a K4 minor with branch vertices u, w, q and z0. (This
uses the fact that |X1| > 2 and |X2| > 2.) This contradiction completes the proof of Lemma 7. �

4. Structure of minimum counterexamples

Let∆ > 6 and t :=
⌊ 3
2∆
⌋
+ 1. If Theorem 3 fails for∆, then there exists a K4-minor-free graph G, minimumwith respect

to the total number of edges and vertices, such that∆(G) 6 ∆, G2 does not contain a Kt , and χ(G2) > t . We will call such a
graph a (∆, t)-graph. In this section, we derive a number of properties of (∆, t)-graphs.We also introduce some terminology
that will be used in the proof of Theorem 3 in the final section. Note that

t − 1 =
⌊
3
2
∆

⌋
> ∆+ 3. (3)

Lemma 8. Let G be a (∆, t)-graph, where∆ > 6 and t =
⌊ 3
2∆
⌋
+ 1. Then G is 2-connected.

Proof. Clearly G is connected. Suppose that G has a cutvertex v, say G = G′ ∪ G′′ where G′ ∩ G′′ = {v}, |V (G′)| > 1
and |V (G′′)| > 1. By the minimality of G, there are proper colorings f ′ and f ′′ of G′2 and G′′2 respectively, using colors in
{1, 2, . . . ,

⌊ 3
2∆
⌋
}. Permute colors in f ′′ if necessary so that v has color f ′(v) and no G′′-neighbor of v has the same color as

any G′-neighbor of v; this is possible since |NG(v) ∪ {v}| 6 ∆+ 1 <
⌊ 3
2∆
⌋
. Now the union of the two colorings is a proper⌊ 3

2∆
⌋
-coloring of G2, and this contradicts the definition of G. �

For a graph Gwith∆(G) > 3, we follow [3] in denoting by G1 the graphwhose vertices are the vertices of degree at least 3
in G, where two vertices are adjacent in G1 if and only if they are either adjacent in G or connected in G by a path whose
internal vertices all have degree 2. By definition, G1 is a minor of G.

Lemma 9. Let G be a graph that does not contain a vertex with degree 0 or 1 or two adjacent vertices with degree 2. Then G1
exists and has no isolated vertices, and if G is 2-connected then either G1 is 2-connected or G1 ∼= K2.
Proof. It is easy to see that G1 exists and has no isolated vertices. (This fact was stated and used in [3].) Note that G1 can be
obtained from G by contracting some edges, each of which has an endvertex of degree 2 at the time of its contraction, and
deletingmultiple edges. Neither of these operations can create a cutvertex, and so ifG is 2-connected thenG1 is nonseparable,
i.e., it is 2-connected or K2. �

Lemma 10. Let G be a (∆, t)-graph, where∆ > 6 and t =
⌊ 3
2∆
⌋
+ 1. Then

(a) G does not contain a vertex with degree 0 or 1 or two adjacent vertices with degree 2;
(b) G1 exists and is 2-connected.
Proof. Suppose first that G contains two adjacent vertices u and w of degree 2. Then (G − {u, w})2 = G2 − {u, w}. By the
minimality of G, (G−{u, w})2 is

⌊ 3
2∆
⌋
-colorable. Since dG2(u), dG2(w) 6 ∆+2 <

⌊ 3
2∆
⌋
, we can extend a

⌊ 3
2∆
⌋
-coloring of

(G− {u, w})2 to G2, by coloring u andw with available colors not used on NG2(u) and NG2(w), respectively. This contradicts
the fact that χ(G2) >

⌊ 3
2∆
⌋
. Thus G does not contain two adjacent vertices of degree 2. Also, by the minimality of G, it has

no vertex with degree 0 or 1. This proves (a).
Since G is 2-connected by Lemma 8, it follows immediately from (a) and Lemma 9 that G1 exists and is either 2-connected

or K2. But if G1 ∼= K2, with vertices u, v, say, then every vertex of G other than u, v is adjacent to u and v, and so G2 is a
complete graph; thus G cannot be a (∆, t)-graph, and this contradiction proves (b). �

For u, v ∈ V (G), define
Muv := {x ∈ NG(u) ∩ NG(v) : dG(x) = 2},

εuv :=

{
1 if uv ∈ E(G),
0 otherwise,

and
duv := |Muv| + εuv.
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Fig. 4. The neighborhood of a vertex v contradicting Lemma 11.

Lemma 11. Let G be a (∆, t)-graph, where ∆ > 6 and t =
⌊ 3
2∆
⌋
+ 1. If v ∈ V (G) and NG1(v) = {u, w}, then duv >

⌊ 1
2∆
⌋

and dvw >
⌊ 1
2∆
⌋
.

Proof. Since v ∈ V (G1), duv + dvw = dG(v) > 3. W.l.o.g. we may assume that duv > 2, so that Muv 6= ∅. Let x ∈ Muv; then
(G− x)2 = G2 − x. By the minimality of G, (G− x)2 has a

⌊ 3
2∆
⌋
-coloring f . Let

N2(x) := (N(u) \ {x}) ∪ (N(v) \ N(u)) ∪ {u, v},

which is the set of G2-neighbors of x. We may assume that |N2(x)| >
⌊ 3
2∆
⌋
, since otherwise we can extend f to G2 by

giving x a color that is not used on any vertex in N2(x). Since |N(u)| 6 ∆ and |N(v) \ (N(u) ∪ {u})| 6 dvw , it follows that
∆− 1+ dvw + 2 > |N2(x)| >

⌊ 3
2∆
⌋
, so that

dvw >
⌊
1
2
∆

⌋
− 1 > 2. (4)

By symmetry we may assume also that

duv >
⌊
1
2
∆

⌋
− 1. (5)

Suppose now that the lemma is false, say dvw <
⌊ 1
2∆
⌋
. Then (4) and its derivation imply that

dvw =
⌊
1
2
∆

⌋
− 1, |N2(x)| =

⌊
3
2
∆

⌋
, and dG(u) = ∆. (6)

If uv ∈ E(G) then v ∈ N(u) \ {x} and so we have counted v twice in our estimate for |N2(x)|; thus we may assume that
uv 6∈ E(G). If vw 6∈ E(G) then the degree of v in G2 is at most∆+ 2 6

⌊ 3
2∆
⌋
− 1, and so we can uncolor v, color x, and then

recolor v; thus we may assume that vw ∈ E(G). If uw ∈ E(G) then, since vw ∈ E(G), |N(v) \ (N(u) ∪ {u})| = dvw − 1, and
so |N2(x)| <

⌊ 3
2∆
⌋
; thus we may assume that uw 6∈ E(G). Let y be a vertex inMvw . The picture now is as in Fig. 4.

If duv <
⌊ 1
2∆
⌋
, then by exactly the same argument we can deduce that uv ∈ E(G) and vw 6∈ E(G). Since this is not so,

we can strengthen (5) to

duv >
⌊
1
2
∆

⌋
> 3. (7)

Let G′ be the graph obtained from G by deleting all vertices in Muv ∪ Mvw ∪ {v} and adding an edge between u and w.
Then G′ is a minor of G, and so G′ is K4-minor-free and connected, since G is.
Suppose that G′ has a cutvertex y. If y ∈ {u, w}, then y is also a cutvertex in G. Similarly, if y 6∈ {u, w}, then since

uw ∈ E(G′), vertices u and w are in the same component of G′ − y, and hence y is a cutvertex in G. But G is 2-connected,
by Lemma 8, and so has no cutvertex. It follows that G′ also has no cutvertex, and so G′ is 2-connected. (Clearly G′ 6∼= K2,
otherwise v is a cutvertex of G.)
Suppose now that G′2 contains a Kt , with vertex-set Q , say. By Lemma 7, Q is of standard form, and so F(G′,Q ), defined

by (2), is one of the graphs shown in Fig. 1. Let F := F(G′,Q ). Since G′ − uw ⊂ G, and G2 contains no Kt , it follows that
uw ∈ E(F). Now, dF (u) 6 dG′(u) = ∆ + 1 − duv < ∆ − 1 by (6) and (7). By (1), therefore, dF (u) = 2 and dF (w) > ∆ − 1,
with strict inequality if∆ is even. But dF (w) 6 dG′(w) 6 ∆+ 1− dvw = ∆+ 2−

⌊ 1
2∆
⌋
, by (6). The only possibility is that

∆ = 7, dvw = 2, and dF (w) = dG′(w) = 6, so that w is the unique vertex of degree∆− 1 in F , and it has the same degree
in G′. It now follows from Lemma 6 that F = G′, so that dG′(u) = dF (u) = 2 and, since dG(u) = ∆ = 7 by (6), duv = 6 and
dG(v) = duv + dvw = 8 > ∆. This contradiction shows that G′2 contains no Kt .
By theminimality of G, there is a proper

⌊ 3
2∆
⌋
-coloring f of G′2. Wewill use f to give a proper

⌊ 3
2∆
⌋
-coloring of G2. Since

uw ∈ E(G′), color f (u) is not used on vertices in NG′(w) \ {u}. So we can use f (u) to color y. Then we consecutively color
vertices inMvw , then v, and then vertices inMuv . We can do this since at the moment of coloring, each vertex inMvw ∪ {v}
has at most dG(w) colored G2-neighbors, and (because f (y) = f (u)) each vertex inMuv has at most |N2(x)| − 1 =

⌊ 3
2∆
⌋
− 1

colors on its neighbors.
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Fig. 5. The neighborhood of vertices x and y contradicting Lemma 12.

This contradiction shows that dvw >
⌊ 1
2∆
⌋
, and it follows by symmetry that duv >

⌊ 1
2∆
⌋
. This completes the proof of

Lemma 11. �

Lemma 12. Let G be a (∆, t)-graph, where ∆ > 6 and t =
⌊ 3
2∆
⌋
+ 1. Then the graph G1 cannot have two adjacent vertices

with degree two.

Proof. Suppose that there are two adjacent vertices x, y ∈ V (G1) with degree two. Let w and z, respectively, be the other
neighbors of x and y in G1.
Suppose first that w = z. Note that z cannot be a cutvertex of G1, since G1 is 2-connected by Lemma 10. Thus z also has

degree 2 in G1, which is a triangle. Let V0 consist of the vertices in {x, y, z} that are not adjacent in G to another vertex of
this set, and let V1 := {x, y, z} \ V0. Then Mxy ∪ Mxz ∪ Myz ∪ V1 induces a clique in G2, with order at most

⌊ 3
2∆
⌋
since G is

a (∆, t)-graph. Thus these vertices can be colored with at most
⌊ 3
2∆
⌋
colors, and the vertices in V0 are now easily colored

since each has degree at most∆+ 2 in G2.
Thus we may assume thatw 6= z. (See Fig. 5, where the broken edges may or may not be present.) By Lemma 11,⌊

1
2
∆

⌋
6 dwx 6

⌈
1
2
∆

⌉
and

⌊
1
2
∆

⌋
6 dyz 6

⌈
1
2
∆

⌉
, (8)

since dwx = dG(x) − dxy 6 ∆ − dxy, and similarly for dyz . Without loss of generality we may assume that dwx 6 dyz . Let
s := dwx − 1, and note that s > 2 by (8). Also

dwx = s+ 1 and dyz 6 s+ 2 (9)

by (8). LetG′ be the graph obtained fromG by deleting all vertices inMwx∪Mxy∪Myz∪{x, y}, and adding s vertices, v1, . . . , vs,
each of which is adjacent tow and z. By the definition of s,

dG′(w) 6 ∆− 1 and dG′(z) 6 ∆− 1; (10)

in particular, the maximum degree of G′ is at most∆.
Since G is 2-connected, G′ also is 2-connected. Since G′ is a minor of G, G′ does not have a K4 minor. If G′2 contains a Kt ,

with vertex-set Q , say, then Q is of standard form by Lemma 7, and Q clearly contains at least one of the vertices vi, and so
at least one of w and z has degree ∆ in G′ by (1); but this contradicts (10). Thus G′2 contains no Kt . By the minimality of G,
G′2 has a

⌊ 3
2∆
⌋
-coloring f . We will extend f to a

⌊ 3
2∆
⌋
-coloring of G. Color s vertices of Mwx and s vertices of Myz with the

colors f (vi) (1 6 i 6 s). Then consecutively color the remaining vertices inMwx ∪Myz , which is possible since each of these
vertices has at most∆ colored G2-neighbors at the moment of its coloring.
We now color x and y. The number of colored G2-neighbors of x does not exceed

|{w} ∪ NG(w) \ {x}| + dyz 6 ∆+ (s+ 2) (11)

by (9). But s colors are used on both Mwx and Myz ; thus at most ∆ + 2 <
⌊ 3
2∆
⌋
colors are forbidden for x, and x can be

colored. In coloring y, in the same way as x, we have an extra restriction, that f (y) 6= f (x). But since dwx = s + 1, we can
replace the term (s+ 2) by (s+ 1) on the RHS of (11), which exactly compensates for the extra color f (x) that is forbidden
for y. Thus y can be colored.
Finally, note that if v ∈ Mxy then

dG2(v) = (dG(x)− εxy)+ (dG(y)− εxy)− (dxy − εxy − 1) (12)

6 dG(x)+ dG(y)− dxy + 1, (13)

where the first term in (12) counts x and all its neighbors except v and y, the second term counts y and all its neighbors
except v and x, and the third term subtracts the |Mxy| − 1 vertices ofMxy \ {v} that have been counted twice in the first two
terms. The number of distinct colors that cannot be used on v is at most dG2(v) − s, and so if d

2
G(v) 6

⌊ 3
2∆
⌋
+ 1 then we

can color v, since s > 2. But if dG2(v) >
⌊ 3
2∆
⌋
+ 1 then, by (13) and Lemma 11,∆ is odd, dG(x) = dG(y) = ∆, dxy =

⌊ 1
2∆
⌋
,

and dG2(v) =
⌊ 3
2∆
⌋
+ 2. But then dwx = dyz = ∆ − dxy =

⌈ 1
2∆
⌉
> 4, and so s > 3 and dG2(v) − s 6

⌊ 3
2∆
⌋
− 1. In every
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Fig. 6. The subgraphs induced by NG1 (y) ∪ {y} in G1 .

case, dG2(v) − s <
⌊ 3
2∆
⌋
, and so we can consecutively color all the vertices of Mxy to obtain a

⌊ 3
2∆
⌋
-coloring of G2. This

contradicts the definition of G, and this contradiction completes the proof of Lemma 12. �

Lemma 13. Let G be a (∆, t)-graph, where∆ > 6 and t =
⌊ 3
2∆
⌋
+ 1. Then the graph G1 cannot contain a 4-cyclewxyzw such

that x and z both have degree 2 in G1.

Proof. Suppose there is such a 4-cyclewxyzw in G1; call it C . By Lemma 12, G1 does not contain two adjacent vertices with
degree 2, and sow and y both have degree at least 3 in G1. By Lemma 11,∆ is odd and

dwx = dxy = dyz = dzw =
⌊
1
2
∆

⌋
, (14)

andw and y each have exactly one edge in G that is not counted in (14). Let these edges joinw and y tow′ and y′ respectively.
Note that |Mwx| =

⌊ 1
2∆
⌋
ifwx 6∈ E(G) and |Mwx| =

⌊ 1
2∆
⌋
− 1 ifwx ∈ E(G), and similarly for the other edges of C .

Suppose first thatwy ∈ E(G), so thatw′ = y, y′ = w, and

V (G) = Mwx ∪Mxy ∪Myz ∪Mzw ∪ {w, x, y, z}.

Then we can color the vertices of G2 with ∆ + 3 6
⌊ 3
2∆
⌋
colors, by coloring the vertices ofMwx and those ofMyz from the

same set of
⌊ 1
2∆
⌋
colors, coloring the vertices of Mxy and Mzw from another set of

⌊ 1
2∆
⌋
colors, and giving the remaining

four colors tow, x, y, z.
So we may suppose that wy 6∈ E(G). Form G′ from G by deleting x, z and all their neighbors except for w and y. By the

minimality of G, there is a
⌊ 3
2∆
⌋
-coloring f of G′2. We will extend this coloring to G2. We may assume that f (y) 6= f (w),

since y has at most∆ colored neighbors in G′2 and so can be recolored if necessary. Choose two disjoint sets A and B of
⌊ 1
2∆
⌋

colors each, which do not include any of the colors ofw,w′, y, y′. If there is a color not in A∪ B∪ f ({w,w′, y, y′}) then let γ
be such a color and define α := γ and β := γ ; otherwise, the colors of w, w′, y and y′ are all distinct (and∆ = 7), and we
define α := f (w′) and β := f (y′).
Color all vertices of Mwx and Myz with colors from A, and all vertices of Mxy and Mzw with colors from B, ensuring that

if |Mwx| = |Myz | = |A| − 1 then one color from A is not used at all, and similarly with B. If G contains all four edges of C ,
then there is a color in A and one in B that we have not used, and we can use these on x and z. If G omits only one edge
of C , say the edge wx, then we can color x with α and use a color from B to color z. If G contains edges wx, wz (only) of C ,
then we can color x with the color from A that is not used onMwx, and z with the color from B that is not used onMwz . If G
contains edges wx, xy (only) of C , then we can color x with color γ if it exists; if γ does not exist then let v be the unique
vertex inMyz whose color is not used onMwx, color x with f (v), and recolor v with f (w); now z can be colored since it has
only∆+ 1 G2-neighbors. Finally, if G does not contain two adjacent edges of C , saywx, yz 6∈ E(G), then we can color xwith
α and z with β . Every other case is similar to one of these, leading to a

⌊ 3
2∆
⌋
-coloring of G, and this contradiction proves

Lemma 13. �

Let a 2-path in G1 be a path of length 2 whose central vertex has degree 2 in G1.

Lemma 14. Let G be a (∆, t)-graph, where ∆ > 6 and t =
⌊ 3
2∆
⌋
+ 1. Then the graph G1 has a triangle xywx such that

dG1(w) = 2 and dG1(y) = 3.

Proof. By Lemma 10, G1 is 2-connected and so does not contain a vertex with degree 0 or 1. By Lemma 12, G1 does not
contain two adjacent vertices with degree 2. Let G2 be the graph obtained from G1 by suppressing each vertex v of degree
2 (i.e., contracting one edge incident with v) and removing multiple edges; in other words, G2 = (G1)1. It follows from
Lemma 9 that G2 exists and is 2-connected or K2. But if G2 ∼= K2, with vertices w, y, then, since dG1(w) > 3, G1 contains at
least two 2-paths wxy and wzy between w and y, and so contains a 4-cycle wxyzw of the sort that was proved impossible
in Lemma 13. Thus G2 is 2-connected and has minimum degree at least 2.
Since G2 is a minor of G1, G2 is K4-minor-free. So, by Lemma 4, G2 has a vertex y with degree 2; let its G2-neighbors be x

and z. By Lemma 13, there cannot be two or more 2-paths in G1 between x and y or between y and z, and so y is connected
to each of x and z by an edge, or a 2-path, or both. By the definition of G2, dG1(y) > 2, and so there is no loss of generality
in assuming that y is connected to x in G1 by an edge and a 2-path ywx, forming a triangle xywx. If y is connected to z by a
2-path but not by an edge, then redefine z to be the middle vertex of this 2-path. Then y and its neighbors in G1 induce one
of the graphs in Fig. 6 (where the broken edges may or may not be present). However, the graph in Fig. 6(b) is impossible
because, in G, ywould have degree at least duy+ dwy+ 2 > ∆+ 1, by Lemma 11. Therefore, y and its neighbors in G1 induce
the subgraph in Fig. 6(a). �



6580 A.V. Kostochka et al. / Discrete Mathematics 309 (2009) 6572–6584

Fig. 7. The induced subgraph of G.

5. Proof of the main theorem

Let ∆ > 6 and t :=
⌊ 3
2∆
⌋
+ 1. Suppose that the theorem fails for ∆. Then there exists a (∆, t)-graph G (defined at

the start of Section 4). By Lemma 14, G1 contains a subgraph of the form depicted in Fig. 6(a). In G, this corresponds to the
subgraph depicted in Fig. 7, where the broken edges may or may not be present. Among all possible subgraphs of this form
in G, choose one such that dwy is as small as possible. By Lemma 11,

dwx >
⌊
1
2
∆

⌋
and dwy >

⌊
1
2
∆

⌋
. (15)

Since dwx + dwy = dG(w) 6 ∆, it follows that equality holds in both parts of (15) if∆ is even, and in at least one part if∆ is
odd.
If v ∈ Mwx then

dG2(v) = (dG(w)− εwx)+ (dG(x)− εwx)− (dwx − εwx − 1)− εwyεxy, (16)

where the first term in (16) counts w and all its neighbors except v and x, the second term counts x and all its neighbors
except v and w, the third term subtracts the |Mwx| − 1 vertices of Mwx \ {v} that have been counted twice in the first two
terms, and the last term accounts for y which is also counted twice if wy, xy ∈ E(G). Let p := dG2(v), which is the same for
all v ∈ Mwx. It follows from (16), using (15) in the third line, that

p = dG(w)+ dG(x)+ 1− dwx − εwx − εwyεxy
6 2∆+ 1− dwx − εwx − εwyεxy

6

⌈
3
2
∆

⌉
+ 1

=


⌊
3
2
∆

⌋
+ 2 if∆ is odd,⌊

3
2
∆

⌋
+ 1 if∆ is even.

(17)

Similarly, let q := dG2(v) for all v ∈ Mwy. Then

q = dG(w)+ dG(y)+ 1− dwy − εwy − εwxεxy
6 2∆+ 1− dwy − εwy − εwxεxy

6


⌊
3
2
∆

⌋
+ 2 if∆ is odd,⌊

3
2
∆

⌋
+ 1 if∆ is even.

(18)

Let Gw denote the graph obtained from G by deleting w and all its neighbors except x and y. Let G− be obtained from
Gw by deleting y and all its neighbors except x and z. Let G+ be obtained from G− by adding the edge xz if it is not already
present. Let N ′(x) := NG−(x) and N ′(z) := NG−(z). Since, by (15), dwx + dxy and dwy + dxy are both at least

⌊ 1
2∆
⌋
+ 1, it

follows that

|N ′(x)| 6
⌈
1
2
∆

⌉
− 1 and dyz 6

⌈
1
2
∆

⌉
− 1. (19)

Let S := N ′(x) ∪Mxy ∪Myz ∪ {x, y} and S+ := S ∪ {z}. Note that

|S| 6
(⌈
1
2
∆

⌉
− 1

)
+ (∆− dwy)+ 2 6 ∆+ 2, (20)

by (15) and (19). Recall that t − 1 =
⌊ 3
2∆
⌋
> ∆+ 3 by (3).
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Lemma 15. Suppose that z 6∈ N ′(x), and either (i) or (ii) holds, and at least one of (iii) and (iv) holds:

(i) |N ′(x)| = 1;
(ii) |N ′(x)| = 2 and Myz = ∅;
(iii) there is a

⌊ 3
2∆
⌋
-coloring f of (G−)2 such that all vertices in N ′(x) ∪ {x, z} have different colors;

(iv) (G+)2 has no t-cliques.

Then there is a
⌊ 3
2∆
⌋
-coloring of (Gw)2 such that all vertices in S+ have different colors.

Proof. We start by proving a claim, which is needed only in one special case, but which cannot be avoided.

Claim 15.1. Suppose that dG(z) = ∆ ∈ {6, 7}, and (ii) and (iii) hold, say N ′(x) = {u1, u2}. Then f can be chosen so that some
vertex in N ′(z) has the same color as one of u1, u2, x.

Proof. Let us assume that this is not true for the given f , so that the
⌊ 3
2∆
⌋
= ∆+ 3 distinct colors are those of u1, u2, x, z

and the∆− 1 vertices in N ′(z) (and u1, u2 6∈ N ′(z)). Note that x has degree 2 in G− and is not a cutvertex, since if it were a
cutvertex in G− then it would be a cutvertex in G, which is 2-connected by Lemma 8. There are two cases.
Case 1: There are two internally disjoint paths between x and z in G−. Then there is no path between u1 and u2 in G−−{x, z},
otherwise G contains a K4 minor. Thus u1 and u2 are in different components of G− − {x, z}. Choose a vertex z1 ∈ N ′(z),
and let u1 be in the component not containing z1. Then interchanging the colors f (u1) and f (z1) throughout this component
gives a coloring that satisfies the requirements of the claim.
Case 2: There do not exist two paths as in Case 1. Then there is a cutvertex v ∈ V (G−) such that x and z are in different
components of G−−v. Let C(x) be the component that contains x, and let α be a color not in f (N(v)∪{v, z}). If α ∈ f (N ′(z)),
then interchange colors f (x) and α throughout C(x). Otherwise, α ∈ f ({u1, u2, x}), by the first sentence of the proof; so
choose z1 ∈ N ′(z) such that f (z1) 6= f (v), and interchange colors f (z1) and α throughout C(x). �

We can now prove Lemma 15. Suppose first that (iii) holds. Transfer the given coloring f to (Gw)2, and extend it to
all uncolored vertices in NG(z) by consecutively coloring each of them differently from all colored vertices in the set
T := N ′(x) ∪ NG(z) ∪ {x, z}. This is possible, because if we are coloring a vertex in T then there are at most |T | − 1 vertices
in T that are colored already; thus at each stage the number of colored vertices in T is at most

⌊ 3
2∆
⌋
− 1 unless |N ′(x)| = 2

(so that (ii) holds), and |NG(z)| = ∆, and
⌊ 3
2∆
⌋
= ∆+ 3, and we have shown in Claim 15.1 that in this case we can choose

f so that the colors of the vertices in T are not all distinct.
We can now consecutively color all vertices in Mxy, and y if yz 6∈ E(G), by coloring each of them differently from all

colored vertices in S+, of which there are at most |S+| − 1 6 ∆+ 2 by (20). This gives the required
⌊ 3
2∆
⌋
-coloring of (Gw)2.

This proves the result when (iii) holds. Suppose now that (iv) holds. Since G+ is a minor of G, G+ is K4-minor-free, and
by construction its maximum degree is at most ∆. By hypothesis (iv), (G+)2 has no t-cliques, and so, by the minimality of
G, (G+)2 has a

⌊ 3
2∆
⌋
-coloring f , in which all vertices in N ′(x) ∪ {x, z} necessarily have different colors; thus (iii) holds, and

the result follows. �

Lemma 16. Suppose there is a
⌊ 3
2∆
⌋
-coloring f of (Gw)2 in which all vertices of S have different colors and f (x) 6= f (z). Then

f can be chosen so that there exists a vertex u ∈ N ′(x) with f (u) 6= f (z).

Proof. Suppose this is not true for the given f . Then |N ′(x)| 6 1. Since G is 2-connected by Lemma 8, z is not a cutvertex,
and so |N ′(x)| = 1 and N ′(x) 6= {z}. Let N ′(x) = {u}. Since f (u) = f (z), dG(u, z) > 3 and xz 6∈ E(G).
Suppose, for a contradiction, that (G+)2 has a t-clique, with vertex-set Q , say. By Lemma 7, Q is of standard form in G+,

and so F(G+,Q ), defined by (2), is one of the graphs shown in Fig. 1. Since x has degree 2 in G+, and G2 has no t-cliques, it
follows that x ∈ Q and u is connected to z by more than one path of length 2 in G+. But this is impossible since dG(u, z) > 3.
Thus (G+)2 has no t-cliques. Thus hypotheses (i) and (iv) of Lemma 15 hold, and the result follows from Lemma 15. �

Lemma 17. Suppose there is a
⌊ 3
2∆
⌋
-coloring f of (Gw)2 in which all vertices of S have different colors and f (x) 6= f (z). Then

there is a
⌊ 3
2∆
⌋
-coloring of G2.

Proof. By Lemma 16, we may assume that there is a vertex u ∈ N ′(x) such that f (u) 6= f (z). (We use u in Case 1 only.)
We first colorw differently from all the colored vertices in (NG(x) \Mwx) ∪Myz ∪ (NG(y) ∩ {z}) ∪ {x, y}, of which there

are at most∆− dwx + dyz + 2 6 ∆+ 2 by (15) and (19).

Case 1: dwy =
⌊ 1
2∆
⌋
. Then either∆ is even, or dG(w) < ∆, or dwx =

⌊ 1
2∆
⌋
+ 1. In this case we first color consecutively all

vertices inMwy, each of them differently from the (at most∆− 1) colored neighbors of y and fromw, x, y, a total of at most
∆+2 6

⌊ 3
2∆
⌋
−1 by (3). In doing this, we take care to use the color f (u) on one vertex ofMwy. We now consecutively color

the vertices ofMwx, in four subcases.
Subcase 1.1:wx ∈ E(G). Then p 6

⌊ 3
2∆
⌋
by the hypothesis of Case 1 and (17) (since εwx = 1). Since every vertex inMwx has

two G2-neighbors with the same color f (u), the vertices inMwx can all be colored.
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Subcase 1.2:wx, wy 6∈ E(G). Then p 6
⌊ 3
2∆
⌋
+1, and so if we try to color the vertices ofMwx as in Subcase 1.1 it is only with

the last vertex that we may fail. If this happens, uncolor w, color the last vertex in Mwx, then recolor w, which is possible
sincew has at most∆+ 2 neighbors in G2.
Subcase 1.3:wx 6∈ E(G) andwy, xy ∈ E(G). Then p 6

⌊ 3
2∆
⌋
by (17), and we color as in Subcase 1.1.

Subcase 1.4: wx, xy 6∈ E(G) and wy ∈ E(G). Then p 6
⌊ 3
2∆
⌋
+ 1. But now x is not adjacent to the vertices ofMwy in G2, and

so when we colorMwy, as well as using f (u) on one vertex ofMwy, we also use f (x) on another vertex. Then, when we color
the vertices ofMwx as in Subcase 1.1, each has two pairs of G2-neighbors with the same color, and the coloring succeeds.
Case 2: dwy 6=

⌊ 1
2∆
⌋
. Then ∆ is odd, dwx = 1

2 (∆ − 1), and dwy =
1
2 (∆ + 1), by (15). We first color consecutively all

vertices inMwx, each of them differently from the (at most∆− 1) colored neighbors of x and fromw, x, y, a total of at most
∆+ 2 6

⌊ 3
2∆
⌋
− 1. Case 2 now divides into Cases 2a, 2b and 2c.

Case 2a: EitherMyz 6= ∅, orMyz = ∅ (so that yz ∈ E(G)) and f (z) is not used on any vertex of N ′(x). Choose v ∈ Myz in the
first case and let v := z in the second.Whenwe colorMwx wemake sure to use f (v) on one vertex ofMwx. We can now color
the vertices inMwy exactly as in Case 1, interchanging x and y, p and q, and using v instead of u and (18) instead of (17). Note
that, in each subcase, q satisfies the same upper bound as was given for p in the corresponding subcase of Case 1.
Case 2b:Myz = ∅ and f (z) ∈ f (N ′(x)) and dG(y) < ∆. Then there is no vertex v as in Case 2a, but in each subcase the upper
bound for q is one less than in Case 2a, and so the argument works with no need for v.
Case 2c:Myz = ∅ and f (z) ∈ f (N ′(x)) and dG(y) = ∆. Then dxy = 1

2 (∆− 3) and so |N
′(x)| 6 2. Let N ′(x) = {u1, u2}, where

for the moment we allow the possibility that u1 = u2. We may assume that

f (z) ∈ f (N ′(x)) (21)

for every
⌊ 3
2∆
⌋
-coloring f of (Gw)2 satisfying the hypotheses of the lemma, since otherwise the result follows by Case 2a.

Subcase 2c.1: z ∈ {u1, u2}, i.e., xz ∈ E(G). Then we have a t-clique in G2, a contradiction, unless either all of the edges
wx, wy, xy are in G, or none of these edges are in G. If all of these edges are in G, then q 6

⌊ 3
2∆
⌋
− 1 by (18), and so we can

color all the vertices inMwy. If none of the edgeswx, wy, xy are in G, then q 6
⌊ 3
2∆
⌋
+1, but we can use f (y) on some vertex

ofMwx and also uncolorw before coloring the last vertex ofMwy, after which it easy to recolorw.
Subcase 2c.2: z 6∈ {u1, u2}. Assume f (u1) = f (z). This implies that dG(u1, z) > 3.
If (G+)2 has no t-cliques, then hypotheses (i) or (ii), and (iv), of Lemma 15 hold, and the

⌊ 3
2∆
⌋
-coloring of (Gw)2, whose

existence was proved in Lemma 15, contradicts (21). So we may assume that (G+)2 has a t-clique; let its vertex-set be Q .
Then by Lemma 7, Q is of standard form in G+, i.e., F(G+,Q ), defined by (2), is isomorphic to one of the graphs F1 and F2 in
Fig. 1. Let F := F(G+,Q ).
Since G2 has no t-cliques, and x has degree at most 3 < ∆− 1 in G+, it follows from (1) that x has degree 2 in F and the

three vertices of degree at least∆− 1 in F are z, another neighbor ui of x, and a third vertexw′. Then ui and z have common
neighbors other than x in F , and hence in G. Since dG(u1, z) > 3, it follows that i 6= 1, so that u1 6= u2 and the ‘big’ vertices
in F are z, u2 andw′. It follows from this that Q induces the only t-clique in (G+)2.
Since x has a G+-neighbor u1 that is not in F , and G is 2-connected by Lemma 8, it follows from Lemma 6 that either

{u2, x} or {x, z} is a cutset of G, and there is a subgraphH of G+ such that G+ = F ∪H where F ∩H = {u2, u2x, x} or {x, xz, z}.
There are two cases to consider.
Subcase 2c.2i: F ∩ H = {u2, u2x, x}. Then u2 is a cutvertex of G−. The given coloring f of (Gw)2 induces a coloring of (G−)2,
and we can permute colors on the vertices of V (F)\V (H) in this induced coloring so that z has a different color from both u1
and x (and, automatically, from u2). Then hypotheses (ii) and (iii) of Lemma 15 hold, and the

⌊ 3
2∆
⌋
-coloring of (Gw)2, whose

existence was proved in Lemma 15, contradicts (21).
Subcase 2c.2ii: F ∩ H = {x, xz, z}. In this case z is the vertex of degree ∆ − 1 in F , and both x and z have degree 2 in H .
Now, H2 has no t-cliques, since we have already seen that Q induces the only t-clique in (G+)2. But H is a minor of G and
so is K4-minor-free. By the minimality of G, H2 has a

⌊ 3
2∆
⌋
-coloring f ′. Let z1 6= x be the other neighbor of z in H . Note that

f ′(u1) 6= f ′(z) and f ′(x) 6= f ′(z1).
Let C ′ := F − xz. Then C ′ is a configuration of the same type as the configuration C in Fig. 7 that we have been working

with, with the vertices w′, z, u2, x playing the roles of w, x, y, z respectively; and this configuration exists in G− with z
having exactly one neighbor, z1, outside C ′. Let us emphasize this by writing x′ = z, y′ = u2, z ′ = x, and u′ = z1 (see Fig. 8).
Since dwy >

⌊ 1
2∆
⌋
by the hypothesis of Case 2, we may assume that dw′y′ >

⌊ 1
2∆
⌋
also, since otherwise we would have

chosen to work with C ′ rather than C at the start of Section 5.
Let H− := H − xz. Then H− is obtained from G− by deleting w′, y′ and all their neighbors other than x′ and z ′; in other

words, C ′, H− and G− are related to each other in exactly the same way that C , G− and G are. Also, f ′ is a
⌊ 3
2∆
⌋
-coloring

of (H−)2 in which the vertices u′, x′, z ′ (i.e., z1, z, x) all have different colors. With respect to C ′, H− and G−, therefore,
hypotheses (i) and (iii) of Lemma 15 hold, and the proof of that lemma, and Case 2a of this lemma, show that f ′ can be
extended to a

⌊ 3
2∆
⌋
-coloring of (G−)2, in which necessarily f ′(u2) 6= f ′(z) since dG−(u2, z) 6 2.

Note that the color modifications required by Claim 15.1 and Lemma 16 have not been needed here, and the colors
of vertices in H have not changed. (This is because Claim 15.1 is needed only when hypothesis (ii) of Lemma 15 holds,
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Fig. 8. The graph G− in Subcase 2c.2ii.

not hypothesis (i), and Lemma 16 is not needed if all vertices in S+ already have different colors, which is guaranteed by
Lemma 15.) Thus all vertices in N ′(x) ∪ {x, z} now have different colors. This shows that, with respect to C , hypotheses (ii)
and (iii) of Lemma 15 hold, and the

⌊ 3
2∆
⌋
-coloring of (Gw)2, whose existence was proved in Lemma 15, contradicts (21).

This completes the proof of Lemma 17. �

Now let s := dyz and let Ĝ be the graph obtained from G− by adding s vertices y1, . . . , ys of degree 2, each with neighbors
x and z.

Lemma 18. ∆(Ĝ) 6 ∆, Ĝ has no K4 minor, and (Ĝ)2 has no t-cliques.

Proof. By (19),

dĜ(x) = |N
′(x)| + dyz 6 2

⌈
1
2
∆

⌉
− 2 6 ∆− 1, (22)

and so∆(Ĝ) 6 ∆. The graph obtained from G− by adding just one vertex y1 adjacent to x and z is a minor of G, and so is K4-
minor-free. Adding s− 1 further vertices of degree 2 in parallel with y1 cannot create a K4 minor, and so Ĝ is K4-minor-free.
The proof of the final statement of Lemma 18 uses the following claim.

Claim 18.1. If (Ĝ)2 has a t-clique with vertex-set Q , then:

(a) ∆ is odd and |N ′(x)| = dyz = s = 1
2 (∆− 1);

(b) dwx = dwy = 1
2 (∆− 1) and dxy = 1;

(c) all vertices y1, . . . , ys are in Q .

Proof. By Lemma 7, Q is of standard form. Since G2 has no t-clique, Q must contain at least one new vertex yi. By (1), in
F(Ĝ,Q ), x and z both have degree∆ if∆ is even, and if∆ is odd then one of them has degree∆ and the other has degree at
least∆−1. It follows from (22) that x has degree∆−1 (in both F(Ĝ,Q ) and Ĝ), so that∆ is odd; and equality in (22) implies
that there is equality in both parts of (19), so that the rest of (a) holds. In proving (19), we used the inequalities dwx >

⌊ 1
2∆
⌋
,

dwy >
⌊ 1
2∆
⌋
(by (15)) and dxy > 1, and equality must hold in each case if there is equality in (19); thus (b) holds. (Equality

in (19) also implies that dG(x) = dG(y) = ∆, but we do not need this here.) Finally, (c) holds because otherwise z, which has
degree∆ in F(Ĝ,Q ), would have degree greater than∆ in Ĝ and hence in G. �

Now suppose, for a contradiction, that (Ĝ)2 has a t-clique, with vertex-set Q , say. Then the graph G∗ := Ĝ − ys is a K4-
minor-free graph with maximum degree at most∆whose square does not contain a Kt , by Claim 18.1(c). By the minimality
of G, (G∗)2 has a

⌊ 3
2∆
⌋
-coloring f . We will use f to construct a

⌊ 3
2∆
⌋
-coloring of G2. First we use colors f (y1), . . . , f (ys−1)

to color all but one vertex, say vyz , in Myz , and to color y if yz ∈ E(G). Then we choose a vertex u ∈ N ′(x) such that
f (u) 6= f (z) and we color vyz with a color not used on any vertex in NG(z) ∪ {u, x, z}. There remain at most two uncolored
vertices in Gw: possibly y, and, by Claim 18.1(b), at most one vertex in Mxy. These vertices (if they exist) can be colored (in
this order) differently from all the colored vertices in N ′(x) ∪ Myz ∪ {x, y, z}, of which by Claim 18.1(a) there are at most
(∆− 1)+ 3 <

⌊ 3
2∆
⌋
.

At this point we have a
⌊ 3
2∆
⌋
-coloring of (Gw)2. It may fail to satisfy the hypotheses of Lemma 17, but only because it is

possible that vyz ∈ Myz may have the same color as some vertex in N ′(x). However, we have ensured that u ∈ N ′(x) does
not have the same color as any vertex inMyz ∪ {z}, and this is enough to ensure that Case 1 in the proof of Lemma 17 works
and gives a

⌊ 3
2∆
⌋
-coloring of G2. This contradicts the choice of G as a (∆, t)-graph, and this contradiction shows that (Ĝ)2

has no t-cliques. �

Finally, we prove Theorem 3. By Lemma 18 and the minimality of G, Ĝ2 has a
⌊ 3
2∆
⌋
-coloring f ; clearly f (x) 6= f (z). We

will use f to construct a
⌊ 3
2∆
⌋
-coloring of (Gw)2. First, we use f (y1), . . . , f (ys) to color all vertices in Myz , and to color y if

yz ∈ E(G). Then we consecutively color all vertices inMxy, and y if yz 6∈ E(G), differently from all colored vertices in S (see
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(20)). The result is a
⌊ 3
2∆
⌋
-coloring of (Gw)2 such that all vertices in S have different colors. It now follows from Lemma 17

that there is a
⌊ 3
2∆
⌋
-coloring of G2, and this contradiction completes the proof of Theorem 3.
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