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a b s t r a c t

Aweakening of Hadwiger’s conjecture states that every n-vertex graphwith independence
number α has a clique minor of size at least n

α
. Extending ideas of Fox (2010) [6], we prove

that such a graph has a clique minor with at least n
(2−c)α vertices where c > 1/19.2.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Weuse standard notation: for a graph G, V (G) and E(G) are the sets of vertices and edges of G, respectively; |G| := |V (G)|
and ‖G‖ := |E(G)|. Also, ∆(G), α(G), ω(G), and η(G) denote the maximum degree, the independence number, the clique
number, and the order of a largest clique minor of G, respectively.

Hadwiger’s conjecture [8] from 1943 (see [14] for a survey) states the following conjecture.

Conjecture 1.1. For every k-chromatic graph G, Kk is a minor of G.

Hadwiger’s conjecture for k = 4was proved by Dirac [3], the case k = 5was shown equivalent to the Four Color Theorem
by Wagner [15] and the case k = 6 was shown equivalent to the Four Color Theorem by Robertson et al. [12]. For k ≥ 7,
the conjecture remains open. Since α(G)χ(G) ≥ |V (G)| for every graph G, Hadwiger’s conjecture implies the following
conjecture.

Conjecture 1.2. For every graph G, α(G)η(G) ≥ |V (G)|.

Formally, this conjecture is weaker than Hadwiger’s conjecture; however, Plummer et al. [11] showed that for graphs Gwith
α(G) = 2, the two conjectures are equivalent. In 1981, Duchet and Meyniel [4] showed that

(2α(G) − 1)η(G) ≥ |V (G)|. (1)

In particular, this means that

η(G) ≥
n
3

for every n-vertex graph Gwith α(G) = 2. (2)

No significant improvement of (2) is known. Seymour suggested to prove that there exists an ϵ > 0 such that if α(G) = 2
and |V (G)| = n, then G has a complete minor of order (1/3 + ϵ)n; but this also is not proved. For the case α(G) ≥ 3,
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several improvements of (1) were obtained recently (see, e.g. [9,10,16,1,6]). The best known bound for α(G) = 3 is due to
Kawarabayashi and Song [10]: they proved that η(G) ≥

n
4 for every n-vertex graph G with α(G) = 3. The best result for

large α(G) is due to Fox [6]: he proved that η(G) ≥ |V (G)|/((2 − c)α(G)), where c ≈ 1/57.5 is a constant. Using the main
tool of Fox [6], the notion of set potentials, together with additional ideas, we prove the following.

Theorem 1.1.

η(G) ≥
|V (G)|

(2 − c)α(G)
,

where c = (80 −
√
5392)/126 > 1/19.2.

In Section 2we provide the key concepts and the outline of the proof of Theorem 1.1. In Section 3we prove one of our key
lemmas on the use of sets with large potential. In Section 4 we prove some properties of graphs with independence number
2, in Section 5 we describe three different ways to find sets with large potential. In Section 6 we have the final computation,
and Section 7 contains a long proof of a lemma.

2. Preliminaries and outline of the proof

A claw in a graph G is an induced K1,3-subgraph.
For a subset X of the vertex set of a graph G,G[X] is the subgraph of G induced by X . Sometimes, we will identify X with

G[X]. For example, by α(X) we denote α(G[X]) and by c(X) denote the number of components of G[X]. In these terms, for
X ⊆ V (G) Fox [6] defined the potential of X , φ(X) = φG(X), as follows:

φ(X) := 2α(X) − |X | − c(X). (3)

Also, for X ⊂ V (G),N(X) is the set of vertices in V (G) − X that have neighbors in X .
A useful property of potentials is that if the vertex sets of the components of G[X] are X1, . . . , Xs, then

φ(X) :=

s−
i=1

φ(Xi). (4)

In view of (4), a component G[Xi] of G[X] will be called a j-component if φ(Xi) = j. For j = 1, 2, . . . , let cj(X) denote the
number of j-components of G[X], so that

c(X) =

s−
j=1

cj(X) and φ(X) =

s−
j=1

jcj(X). (5)

A graph G is decomposable, if there is a partition (V1, V2) of V (G) into non-empty sets such that α(G[V1]) + α(G[V2]) =

α(G), and non-decomposable otherwise. Fox [6] proved and used the fact that if a non-decomposable graph G contains an
X ⊆ V (G) with φ(X) = k, then it contains a connected dominating set X ′ with φ(X ′) ≥ 2k/7. Extending his ideas we prove
in Section 3 the following strengthening of this result.

Lemma 2.1. Let G be a non-decomposable connected graph with independence number α. For every X ⊆ V (G), G contains a
connected dominating set X with |X | ≤ 2α − 2φ(X)/3 − 1.1

Outline of the proof of Theorem 1.1:We assume that G is a minimal counter-example for our theorem. Let n = |V (G)| and
α = α(G). If we find a connected dominating setX with at most (2− c)α vertices, thenX can be contracted to be a vertex of
a clique minor of G. Then it is sufficient to find in G−X a clique minor of size |V (G)|

(2−c)α(G)
− 1, which can be done by induction.

To find such anX , by Lemma 2.1, it is sufficient to find an X ⊂ V (G) with φ(X) ≥ 3cα/2. In Section 3 we prove Lemma 2.1.
The rest of the proof of Theorem 1.1 tries to find either a subset of vertices with potential at least 3cα/2, or a clique minor
of the required size.

We say that subsets X1, . . . , Xk of V (G) are separated if they are disjoint and there are no edges with ends in distinct Xi.
We follow the basic idea of Fox [6]: any graphG either has a large claw-free induced subgraph or hasmany vertex-disjoint

claws. In the former case, a recent result of Fradkin [7] on minors in claw-free graphs can be used. In the latter case, either
there aremany separated claws forming a setwith large potential, or by the induction assumption the subgraph ofG induced
by the vertex-disjoint claws has a large clique minor. However, we implement the idea in a different way, which together
with Lemma 2.1 allows to improve the bound.

Let A = {C1, . . . , Cm} be a maximum family of separated claws in G, and let A :=
m

j=1 Cj. Then φ(A) = m. By the
maximality of A, the graph F := G − A − N(A) is claw-free. The following theorem of Fradkin [7] gives an upper bound on
the order of each component F ′ of F in terms of its independence number.

Theorem 2.2. Let F ′ be a connected claw-free graph with α(F ′) ≥ 3. Then η(F ′) ≥ |F ′
|/α(F ′).

1 We do not know whether our bound is best possible.
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The known bounds for componentswith independence number 2 giveweaker bounds than Theorem2.2. To have a better
control over the such components, we will use a corollary of the following result of Chudnovsky and Seymour [2].

Theorem 2.3. Let F ′ be a graph with independence number 2, and t := ⌈|F ′
|/2⌉. If |F ′

| is even and ω(F ′) ≥ |F ′
|/4, or |F ′

| is
odd and ω(F ′) ≥ (|F ′

| + 3)/4, then F ′ has a clique minor of order at least t.

So a large F has many components with independence number 2 and a small clique number.
Let I be a maximum independent set in G[A ∪ N(A)]. Either I is large, and A ∪ I has potential at least 3cα/2, or I is small

and we can apply the induction hypothesis to G[A∪N(A)]. The worst case occurs when I is in the ‘‘middle range’’, and F has
many components with independence number 2 and small clique number. In this case we find a newway to find subsets of
vertices with potential larger thanm. This last part of the proof is the most technical part of the paper.

Note that at the end of our proof, the case analysis could have been refined, but the improvement on c would have been
relatively small, and the proof is rather technical. The approach cannot prove Conjecture 1.2 (which in our terms corresponds
to c = 1): for example, if G contains n/4 vertex disjoint claws (covering V (G)), then the method yields only c = 1/6.

3. Finding small connected dominating sets

In this section, we prove Lemma 2.1. First, recall some known results.

Lemma 3.1 ([1], Lemma 12). Let G be a connected graph with α(G) = k. Let v ∈ V (G). Then G contains a connected induced
subgraph G′ with α(G′) = k such that v ∈ V (G′) and |V (G′)| ≤ 2k − 1.

Claim 3.1 ([6], Lemma 3). If X is a subset of the vertex set of a connected graph G, then there is a dominating set X ′ such that
(i) the potential of every component of G[X ′

] is positive;
(ii) φ(X ′) ≥ φ(X), c(X ′) ≤ c(X), and
(iii) each vertex in V (G) − X ′ is adjacent to vertices in only one component of G[X ′

].

Claim 3.2 ([6], Corollary 1). If X is a dominating set in a non-decomposable graph G and α(X) = α(G), then there is a connected
dominating set X ′ containing X with φ(X ′) ≥ φ(X).

We also need an easy observation.

Claim 3.3. If X is a dominating set in a connected graph G, then there is a connected dominating set X ′ containing X with
|X ′

| ≤ |X | + 2(c(X) − 1).

Proof. If c(X) = 1, then X ′
= X works. Proving the claim by induction on c(X), suppose that the claim holds for all X with

c(X) < k for some k ≥ 2. Let X be a dominating set in G such that the vertex sets of the components of G[X] are X1, . . . , Xk.
Let Vi := Xi ∪ N(Xi) for i = 1, . . . , k. If x ∈ Vi ∩ Vj for some i ≠ j, then let X ′

:= X ∪ {x} and note that c(X ′) ≤ k − 1, hence
we are done by the induction hypothesis. In the case when the sets Vi form a partition of V (G), since G is connected, there
is some edge, say xy, that connects vertices from distinct Vis. Let X0 := X + x + y. Then c(X0) ≤ k − 1 and by induction
assumption, there is a connected X ′ containing X0 with |X ′

| ≤ |X0| + 2((k − 1) − 1). This X ′ is what we need. �

Remark A. IfX is a connected dominating set with α(X) = α, then the inequality |X | ≤ 2α − 2k/3 − 1 is equivalent to the
inequality φ(X) ≥ 2k/3. Thus by Claim 3.2, if we construct a dominating set X0 with α(X0) = α and φ(X0) ≥ 2φ(X)/3, then
the lemma will be proved.

Proof of Lemma 2.1. Let G and X satisfy the conditions of the lemma. By Claim 3.1, we may assume that X is dominating,
each component of G[X] has a positive potential and each vertex in V (G) − X is adjacent to vertices in only one component
of G[X]. Let X1, . . . , Xs be the vertex sets of the components of G[X], and for i = 1, . . . , s, let Vi := Xi ∪ N(Xi). By the above,
the sets V1, . . . , Vs form a partition of V (G). If for some i, α(Vi) = α(Xi), then α(Vi) + α(G − Vi) = α(G), and hence G is
decomposable. So

α(Vi) > α(Xi) for all i ∈ {1, . . . , s}. (6)

By Claim 3.3, G has a connected dominating set X0 with |X0| ≤ |X | + 2(c(X) − 1). If this is at most 2α − 2φ(X)/3 − 1
then the lemma is proved, otherwise

|X | + 2(c(X) − 1) > 2α − 2φ(X)/3 − 1,

and since |X | + 2c(X) = 2α(X) − φ(X) + c(X), we have

2α(X) − φ(X) + c(X) − 2 > 2α − 2φ(X)/3 − 1. (7)

Plugging the expressions from (5) into (7), we get

2c1(X)

3
+

c2(X)

3
≥ c(X) −

φ(X)

3
> 2(α − α(X)) + 1. (8)
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For each i and each v ∈ Vi, by Lemma 3.1, there exists a connected subset Yi(v) ⊂ Vi containing v with α(Yi(v)) = α(Vi) ≥

1+α(Xi) and φ(Yi(v)) ≥ 0. Since G is connected, Vi contains a vertex x adjacent to some y in another Vi′ . If some x ∈ Vi has a
neighbor y in some Vi′ for i′ ≠ i, then let I(Y (x), y) be the set of indices ℓ such that Xℓ has a neighbor in Yi(x) + y. (Note that
I(Y (x), y) = ∅ before the first change.) In this case, an (i, i′, x, y)-expansion of X is the set X ′ obtained from X by replacing Xi
with Yi(x) + y. The components of G[X ′

] will be: (a) one component X ′

i′ whose vertex set is obtained frommerging Yi(x) + y
with Vi′ and


ℓ∈I(Y (x),y) Xℓ, and (b) the components with vertex sets Xu, where u ∈ {1, . . . , s} − {i, i′} − I(Y (x), y). The

component Xi′ containing ywill be called the attracting component of X .
By construction, we have
(P1) α(X ′) ≥ α(X) − α(Xi) + α(Yi(x)) ≥ α(X) + 1.
Since φ(Xi′) ≥ 1 and φ(Yi(x)) ≥ 0, connecting them together via y and possible merging with other components keeps

the potential of the resulting set positive, i.e.,
(P2) φ(X ′

i′) ≥ φ(Xi′) ≥ 1.
By construction and (4),
(P3) φ(X ′) ≥ φ(X) − φ(Xi).
Since each Xj dominates Vj and Yi(x) dominates Vi,
(P4) X ′ is dominating.
An (i, i′)-expansion of X is an (i, i′, x, y)-expansion of X for some x ∈ Vi and y ∈ Vi′ . An expansion of X is any (i, i′)-expansion

of X .
If all the components ofG[X] are 1-components, then choose one of them and call it senior. Otherwise, senior components

are all j-components for all j ≥ 2. Since G is connected, if c1(X) ≥ 1 and X is not connected, then there exist i and i′ such
that Xi is a 1-component, Xi′ is a senior component, and a vertex x ∈ Xi is adjacent to a vertex y ∈ Xi′ . Take any such
pair (i, i′) and perform an (i, i′)-expansion of X . The component obtained by merging Xi′ with Yi(x) + y (and maybe some
others) is considered senior, again. Repeat such merges until either the resulting set is connected, or the resulting set has an
independent subset of size α, or the resulting set does not have 1-components. Let Z be the resulting set and suppose that
we made exactly z expansions. By (P1) and (8),

z ≤ α − α(X) <
c1(X)

3
+

c2(X)

6
−

1
2
. (9)

By (P3),

φ(Z) ≥ φ(X) − z. (10)

By (P4), Z is dominating. Since φ(X) ≥ c(X), by (9) and (10),

φ(Z) > φ(X) −
1
3
c(X) +

1
2

>
2
3
φ(X). (11)

Case 1: c(Z) = 1. By (11), 2α(Z) − |Z | − 1 > 2
3φ(X), i.e.,

|Z | < 2α(Z) − 1 −
2
3
φ(X) ≤ 2α − 1 −

2
3
φ(X).

Case 2: α(Z) = α. By (11) and Remark A we are done.
Case 3: c(Z) ≥ 2, α(Z) < α, and c1(Z) = 0. Note that in this case there was at least one non-1-component in X , so

the senior components in X were j-components for j ≥ 2. This implies that at any expansion, no new 2-component arises,
and in particular, c2(X) ≥ c2(Z). Our strategy and the computations will be similar to above, but we will eliminate all 2-
components. Note that after each expansion, each component of the new X ′ either was a component of the set X before
expansion, or is the result of merging of a senior component with some other components, and hence the potential of the
new component is not less than it was before expansion. It follows that for every expansion from X ′ to X ′′, c(X ′) − c(X ′′) ≥

c1(X ′) − c1(X ′′). This yields that

c(X) − c(Z) ≥ c1(X) − c1(Z) = c1(X). (12)

Also, if before an expansion from X ′ to X ′′, the attracting component X ′

i′ was a 2-component and after it is a j-component for
some j ≥ 3, then φ(X ′′) ≥ φ(X ′). So, (10) can be strengthened as follows:

φ(Z) ≥ φ(X) − z + c2(X) − c2(Z). (13)

By Claim 3.3, G has a connected dominating set X0 with |X0| ≤ |Z |+2(c(Z)−1). Also as above, if this X0 does not satisfy the
lemma, i.e., |X0| > 2α − 2φ(X)/3− 1, then similarly to (7), and using the definition of the potential function φ(Z), we have

2α(Z) − φ(Z) + c(Z) − 2 > 2α − 2φ(X)/3 − 1. (14)

By (12), (10) and (5), this gives

2(α − α(Z)) < z − 1 − φ(X)/3 + c(X) − c1(X) ≤ z − 1 −
c1(X)

3
+

c2(X)

3
. (15)
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In this case, we continue extensions. If all the components of G[Z] are 2-components, then choose any one of them and
call it senior. Otherwise, senior components are all j-components for all j ≥ 3. SinceG is connected, if c2(Z) ≥ 1 and c(Z) ≥ 2,
then there exist i and i′ such that Zi is a 2-component, Zi′ is a senior component, and vertex x ∈ Zi is adjacent to a vertex
y ∈ Zi′ . Take any such a pair (i, i′) and perform an (i, i′)-expansion of Z . The component obtained bymerging Zi′ with Yi(x)+y
(and maybe some others) is considered senior, again. Repeat such merges until either the resulting set is connected, or the
resulting set has an independent subset of size α, or the resulting set does not have 2-components. Let U be the resulting
set and suppose that we made exactly u expansions after Z was obtained. By (P1) and (15),

u ≤ α − α(Z) <
1
2


z − 1 −

c1(X)

3
+

c2(X)

3


. (16)

By (P3),

φ(U) ≥ φ(Z) − 2u. (17)

By (P4), U is dominating. By (16), (17) and (10),

φ(U) > φ(Z) −


z − 1 −

c1(X)

3
+

c2(X)

3


> φ(X) − 2z + 1 +

c1(X)

3
−

c2(X)

3
.

So, by (9) and (5),

φ(U) > φ(X) −
c1(X)

3
−

2c2(X)

3
+ 2 ≥

2φ(X)

3
+ 2. (18)

Subcase 3.1: c(U) = 1 or α(U) = α. Similarly to Cases 1 and 2, we are done by (18).
Subcase 3.2: c(U) ≥ 2, α(U) ≤ α − 1 and c1(U) = c2(U) = 0. As it was observed above, at every expansion, no

component that was not a 2-component before the expansion, becomes such a component after it. In particular, this implies
that if all components of G[Z] were 2-components, then at the end, only a senior component survives, i.e. we have Case 3.1.
Another implication is that

c(Z) − c(U) ≥ c2(Z) − c2(U) = c2(Z). (19)

By Claim 3.3, G has a connected dominating set X0 with |X0| ≤ |U| + 2(c(U) − 1). If this X0 is larger than what we want
to achieve in the proof, then |X0| > 2α − 2φ(X)/3 − 1 and we have

2α(U) − φ(U) + c(U) − 2 > 2α − 2φ(X)/3 − 1.

By (19), (17) and (13), this yields

2(α − α(U)) <
2φ(X)

3
− 1 − φ(Z) + 2u + c(Z) − c2(Z)

≤
2φ(X)

3
− 1 − φ(X) + z − c2(X) + c2(Z) + 2u + c(Z) − c2(Z).

So, by (12),

2(α − α(U)) < −
φ(X)

3
− 1 + z + 2u + c(X) − c1(X) − c2(X).

By (16), (5) and (9), the left-hand side is at most

−1 −
φ(X)

3
+ 2z − 1 −

c1(X)

3
+

c2(X)

3
+

∞−
j=3

cj(X)

≤ −2 −
1
3

∞−
j=1

jcj(X) +
2c1(X)

3
+

c2(X)

3
− 1 −

c1(X)

3
+

c2(X)

3
+

∞−
j=3

cj(X) ≤ −3.

Since α − α(U) ≥ 1, this is a contradiction. �

4. Graphs with independence number 2

A graph F is good if η(F)α(F) ≥ |V (F)|, and bad otherwise. In particular, by Theorem 2.3, if α(F) = 2 and ω(F) ≥
|F |+1

4
then F is good (if |F | is odd, this follows by the integrality of ω(F)). Hence,

if F is a bad graph with α(F) = 2, then 4ω(F) − 1 ≤ |F |. (20)
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Theorem 4.1. Let F be an n-vertex graph with independence number 2, and

w = ω(F) ≤ (2 + n)/4. (21)

Then η(F) ≥
n+2w−2

3 .

Proof. If w = 1 then n ≤ 2, and the claim holds: η(G) = 1 > (2 + 2 − 2)/3. So let w ≥ 2. Let W be the vertex set
of a clique of size w in F . Let P1, . . . , Pt be a maximum set of vertex-disjoint induced paths of length 2 in F − W . Consider
F0 := F−W−P1−· · ·−Pt . By themaximality of t , each component of F0 is a clique, and hence |F0| ≤ 2w. So, 3t+w+2w ≥ n,
i.e.,

t ≥


n − 3w

3


. (22)

Let t ′ :=
 n−4w+2

3


. Since w ≥ 2, t ′ ≤ t . Let F1 := G − P1 − · · · − Pt ′ . Then

|F1| = n − 3t ′ ≤ n − (n − 4w + 2) = 4w − 2.

So by (20), η(F1) ≥


|F1|
2


. Since each of P1, . . . , Pt ′ forms a connected dominating set in F ,

η(F) ≥ t ′ + η(F1) ≥ t ′ +
n − 3t ′

2
=

n − t ′

2
≥

n − (n − 4w + 4)/3
2

=
n + 2w − 2

3
,

as claimed. �

The known values of Ramsey numbers (R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18, R(3, 7) = 23) together
with (20) yield:

Corollary 4.1. If F is a bad graph with α(F) = 2, then ω(F) ≥ 7.

The next fact is a corollary of (20).

Lemma 4.2. Let G0 be a bad graph with α(G0) = 2. Then for every two cliques Q1 and Q2 in G0 with Q1 ≠ ∅, there are vertices
q ∈ Q1 and p1, p2 ∈ N(q) − Q1 − Q2 such that p1p2 ∉ E(G0).

Proof. Letw = ω(G0). Let q ∈ Q1, C = N(q)−Q1 −Q2, B = V (G0)−N(q)−q and B′
= V (G0)−Q1 −Q2 −C = B−Q1 −Q2.

Since α(G0) = 2, B is a clique in G0. If C is not a clique, then the lemma holds, so assume that C is a clique. Then
|C | ≤ w − 1, |B′

| ≤ |B| ≤ w, |Q1| ≤ w and |Q2| ≤ w. Moreover, if q is adjacent to all vertices in Q2, then |Q2| ≤ w − 1,
otherwise B′

≠ B and so |B′
| ≤ w − 1. In any case, |G0| = |C | + |B′

| + |Q1| + |Q2| ≤ 4w − 2, a contradiction to (20). �

We will apply this lemma in the following form.

Lemma 4.3. Let G be a graph and G0 = (V0, E0) be a bad induced subgraph of G with α(G0) = 2. Let W ⊂ V (G) − V0 be such
that
(a) for every w ∈ W ,N(w) ∩ V0 is a clique (maybe empty);
(b) there are w1, w2 ∈ W such that {w1} ⊆ N(V0) ∩ W ⊆ {w1, w2}.

Then φ(W ′) ≥ 1 + φ(W ) for some W ′
⊆ W ∪ V0.

Proof. For j = 1, 2, let Qj = N(wj) ∩ V0. By (a), Q1 and Q2 are cliques in G0. So by Lemma 4.2, there is a q ∈ Q1 and
p1, p2 ∈ N(q) − Q1 − Q2 such that p1p2 ∉ E(G0). Let W ′

:= W ∪ {q, p1, p2}. By (b), α(W ′) = α(W ) + 2. Since the number
of components of G(W ) and G(W ′) is the same, we have φ(W ′) − φ(W ) ≥ 2 · 2 − 3 = 1. �

We will also use the following extensions of Lemmas 4.2 and 4.3.

Lemma 4.4. Let G0 be an n-vertex bad graph with α(G0) = 2 and w := ω(G) ≥ 6. Let j ≥ 3 and Q1, . . . ,Qj be cliques
in G0 not all empty. Then either there are vertices q ∈

j
i=1 Qi and p1, p2 ∈ N(q) −

j
i=1 Qi such that p1p2 ∉ E(G0), or

|G0| ≤ (j + 2)(w − 1).

Proof. Suppose that G0 is a counter-example to the lemma. LetQ1 be a non-empty clique in our family, and q ∈ Q1. Similarly
to the proof of Lemma 4.2, let A = N(q) −

j
i=1 Qi, B = V (G0) − N(q) − q and B′

= V (G0) − A −
j

i=1 Qi = B −
j

i=1 Qi.
Since α(G0) = 2, B is a clique in G0. If A is not a clique, then the first claim of the lemma holds, so we can assume that A is a
clique. Also, since G0 has no cliques of size w + 1, |Qi − B − q| ≤ w − 1 for all i = 2, . . . , j. It follows that

|G0| = |A ∪ B ∪

j
i=1

(Qi − B − q)| ≤ |A| + |B| + |Q1| +

j−
i=2

|Qi − B − q| (23)

≤ (w − 1) + w + w + (j − 1)(w − 1) = (j + 2)(w − 1) + 2. (24)
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By (23) and (24), in order the second statement of the lemma to fail we need all the conditions below to be satisfied:
(a) |Q1| ≥ w − 1 and |Qi − B − q| ≥ w − 2 for i = 2, . . . , j (in particular, each Qi is non-empty);
(b) since we can choose Q1 ourselves, by (a), |Qi| ≥ w − 1 for all i = 1, . . . , j;
(c) for all i, i′ ∈ {1, . . . , j} with i ≠ i′,

(w − |Qi|) + |Qi ∩ Qi′ | ≤ 1 (25)

(otherwise, choose Qi as Q1, then choose q ∈ Q1 so that either |(Q1 ∩ Qi′) − q| ≥ 2 or |Q1| = w − 1 and |(Q1 ∩ Qi′) − q| = 1,
and then apply (23));

(d) no vertex belongs to more than two Qis: if v ∈ Q1 ∩ Q2 ∩ Q3, then choose q ∈ Q1 − v, and v will be counted 3 times
(in Q1, in Q2 − B and in Q3 − B).

Now that (a)–(d) hold, we may assume that |Q1| ≤ |Q2| ≤ · · · ≤ |Qj|. Let H = G[Q1 ∪ Q2 ∪ Q3]. If some v ∈ V (H) has
degree at least 4 in the complement, H , then taking its clique as Q1 and v as q, (23) yields |G0| ≤ (j + 2)(w − 1). So,

∆(H) ≤ 3 and H is triangle-free. (26)

It was proved in [5,13] that if F is a triangle-free graph with maximum degree at most 3 then α(F) ≥ 5|F |/14. Applying this
to H̄ we obtain that ω(H) ≥ 5|H|/14.

Because of (b), we have two cases.
Case 1: |Q1| = w − 1. By (c), Q1 ∩ (Q2 ∪ Q3) = ∅. Suppose first that |Q2| = w − 1. Since ω(G) = w < 2w − 2, there are

q ∈ Q1 and q′
∈ Q2 with qq′

∉ E(G). So in (23), |Q2 − B| ≤ w − 2 and the lemma follows. Thus |Q2| = |Q3| = w. If there
exists v ∈ Q2 ∩Q3, then by (a), there exists q ∈ Q1 ∩N(v); so that in (23), vertex v will be counted twice. Thus Q2 ∩Q3 = ∅.
Therefore, |V (H)| = 3w − 1. Then by (26),

w = ω(H) = α(H) ≥ 5|V (H)|/14 = (15w − 5)/14,

hence w ≤ 5, a contradiction to Corollary 4.1.
Case 2: |Q1| = |Q2| = |Q3| = w. If |V (H)| ≥ 3w − 1, then we repeat the end of the previous paragraph. So,

|V (H)| ≤ 3w − 2. By (c), (d) and the symmetry between Q1,Q2, and Q3, we may assume that there are distinct q2, q3 ∈ Q1
such that for i = 2, 3,Q1 ∩Qi = {qi}. Then for q ∈ Q1 − q2 − q3, vertices q2 and q3 are counted twice in (23), and the lemma
follows. �

Lemma 4.5. Let G be a graph and F be a bad induced subgraph of G with α(G0) = 2. Let k ≥ 3 and

η(F) <
k + 4

3(k + 2)
|F |. (27)

Let W ⊂ V (G) − V (F) be such that

(a) for every w ∈ W ,N(w) ∩ F is a clique (maybe empty);
(b) there are w1, . . . , wk ∈ W such that ∅ ≠ N(V (F)) ∩ W ⊆ {w1, . . . , wk}.

Then φ(W ′) ≥ 1 + φ(W ) for some W ′
⊆ W ∪ V (F).

Proof. Let n0 = |F | and w = ω(F). For j = 1, . . . , k, let Qj = N(wj) ∩ V (F). By (a), Q1, . . . ,Qk are cliques in F . Since
F is bad,wehavew ≤ (n0+1)/4, hence by Theorem4.1,η(F) ≥

n0+2(w−1)
3 . Togetherwith (27), this yieldsn0 > (w−1)(k+2).

So by Lemma 4.4, there is q ∈
k

i=1 Qi and p1, p2 ∈ N(q) −
k

i=1 Qi such that p1p2 ∉ E(G0). Let W ′
:= W ∪ {q, p1, p2}.

By (b), α(W ′) = α(W ) + 2. Since the number of components of G(W ) and G(W ′) is the same, we have φ(W ′) − φ(W ) ≥

2 · 2 − 3 = 1. �

5. Finding sets with large potential

Let A = {C1, . . . , Cm} be a maximum collection of separated claws in G, and let A =
m

i=1 V (Ci). Then α(A) = 3m, |A| =

4m and φ(A) = 2α(A)−|A|− c(A) = m. Fox [6] used A as a set with large potential. Since G is a minimum counter-example,
it does not have sets of potential at least 3cα/2. We will try to find sets with larger potential in three different ways, and if
each of the new sets will have potential less than 3cα/2, then we get a system of inequalities that leads to a contradiction.

Given A, we let G′
= G − A − N(A) and α′

:= α(G′). By the maximality of A,G′ is claw-free, and by the definition of G′

we also have α′
≤ α − 3m. Let I be a maximum independent set in A ∪ N(A).

If a component D of G[A ∪ I] has potential greater than (respectively, smaller than and equal to) the number of claws
in A contained in it, then we call D a positive (respectively, negative and neutral) component. Let D+ (respectively, D− and
D0) denote the set of positive (respectively, negative and neutral) components of G[A ∪ I]. Also D denotes the set of all
components of G[A∪ I]. SimilarlyD+

j (respectively,D−

j , D0
j , andDj) is the set of components inD+ (respectively,D−, D0,

and D) containing exactly j claws.
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5.1. First attempt

Our first set R1 is obtained from A by replacing the claws contained in components of D+ with these components
themselves. Let

f :=

∞−
j=1

−
D∈D+

j

(φ(D) − j).

By construction, φ(R1) = m +f , hence
m +f < 3cα/2. (28)

5.2. Second attempt

Let G0 := G[A∪N(A)] and G3 be the subgraph of G′ induced by the good components. Let α′
= α(G′) and for i = 0, 3, let

αi = α(Gi). Write n = |G|, n0 = |G0|, n′
= |G′

|. Then

(2 − c)α0η ≥ n0 and n0 + n′
= n > (2 − c)αη. (29)

A family B of bad components of G′ is bearable, if
∑

B∈B |B| ≤
7
3 |B|η. Since each bad component in G′ has independence

number 2, this is equivalent to−
B∈B

|B| ≤
7
6
α(G[B])η.

Recall that |F | ≤ ηα(F) for each good component F of G′. Let α4 be the size of a maximum independent set of a bearable
family B of bad components of G′. Then

|n′
| ≤ α3η +

7
6
α4η +

3
2
(α′

− α3 − α4)η =


3
2
α′

−
1
2
α3 −

1
3
α4


η.

Together with (29) and the fact that G is a counter-example, we obtain

(2 − c)α0 +
3
2
α′

−
1
2
α3 −

1
3
α4 ≥ (2 − c)α. (30)

Let y := α − 3m − α′. Then (30) can be rewritten as

(2 − c)α0 ≥
1 − 2c

2
α + 4.5m + 1.5y + 0.5α3 +

1
3
α4. (31)

LetM be a largest matching between I and a maximum independent set I ′in G′
−G3 (since all components of G′

−G3 are
bad, I ′ contains two vertices in each such component). By König–Egerváry Theorem, |M| ≥ α0 + α′

− α − α3. By (30) and
the definition of y, we infer that

|M| ≥
(1 − 2c)α′

2(2 − c)
−

(3 − 2c)α3

2(2 − c)
+

α4

3(2 − c)
=

(1 − 2c)(α − 3m − y)
2(2 − c)

−
(3 − 2c)α3

2(2 − c)
+

α4

3(2 − c)
. (32)

Let H be the auxiliary bipartite (multi)graph such that one partite set of H is I , the vertices of the other partite set, call
it T , are the bad components of G′, and the edges of H are defined as follows: if v ∈ I is adjacent in G to two non-adjacent
vertices in a componentW ∈ T , then in H we draw two edges connecting v withW , and if NG(v)∩W is a non-empty clique
in G, then in H we draw one edge connecting v withW .

Let F be a maximummatching in H . Since eachW ∈ T was incident with at most two edges ofM , by (32) we have

|F | ≥
|M|

2
≥

(1 − 2c)(α − 3m − y) − (3 − 2c)α3 + 2α4/3
4(2 − c)

. (33)

Consider the following procedure. Let H0 := H .
Step h, h ≥ 1: If dHh−1(v) ≤ 1 for each v ∈ I ∩ V (Hh−1), then stop and let b := h − 1. Otherwise,

(a) choose some v ∈ I ∩ V (Hh−1) with dHh−1(v) ≥ 2 and call it vh;
(b) let Hh := Hh−1 − NHh−1(vh);
(c) go to Step h + 1.

LetG (respectively,G′) be the graphobtained fromG (respectively,G′) by deleting all the components ofG′ in
b

h=1 NH(vh).
By the construction,

for each w ∈ I,N(w) ∩ V (G′) is a clique. (34)
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LetF = F ∩ E(Hb) and x := |
b

h=1 NH(vh)| − b. Since |NHh−1(vh)| ≥ 2 for each h,

x ≥ b. (35)
Then

|F | ≥ |F | − b − x ≥ |F | − 2x. (36)
Since dHb(v) ≤ 1 for every v ∈ I,Hb is the union of stars with centers in T . Thus, we can constructF by choosing any

edge at each vertex in T ∩ V (Hb). So we will chooseF
with the fewest edges incident with vertices of I in neutral components. (37)

Our second construction of a set with a large potential is as follows. We start from the set P0 := A of m claws and for
h = 1, . . . , b, let Ph be obtained from Ph−1 by adding the vertex vh (from the definition of Hh) and a maximum independent
set in G[NG(vh) ∩


C∈NHh−1 (vh)

C]. The last set Pb is our second set R2. At each step h, we

(a) add 1 + dHh−1(vh) vertices,
(b) do not increase the number of components of the induced subgraph, and
(c) increase the maximum independent set by dHh−1(vh).
Hence

φ(R2) − φ(A) = φ(Pb) − φ(P0) =

b−
h=1

(2dHh−1(vh) − (1 + dHh−1(vh))) =

b−
h=1

(dHh−1(vh) − 1) = x.

It follows that
m + x = φ(A) + (φ(R2) − φ(A)) = φ(R2) < 3cα/2. (38)

5.3. Third attempt

Lemma 5.1. Let D be the vertex set of a component of G[A∪ I] that contains exactly h claws. Then I ∩ D is incident with at most
h edges inF .
Proof. Suppose that I ∩ D is incident with h + 1 edges w1W1, . . . , wh+1Wh+1 in Hb. By Lemma 4.2, for j = 1, . . . , h + 1,
there are uj, u′

j, u
′′

j ∈ Wj such that G[{wj, uj, u′

j, u
′′

j }] is a claw with center uj. By (34), for all j ≠ j′, wj does not have
neighbors in Wj′ . Hence replacing in A the h claws of D with the new h + 1 claws we get a contradiction to the maximality
of A. �

An immediate consequence of Lemma 5.1 is

Corollary 5.1. |F | ≤ m. �

A neutral component D of G[A ∪ I] is h-weak, if
(i) D contains exactly h claws in A;
(ii) D is incident with exactly h edges inF ;
(iii) if B1, . . . , Bh are the bad components of G′ connected by edges inF with D, then D ∪

h
j=1 Bj does not contain a set of

potential h + 1.
We call a component weak if it is h-weak for some h ≥ 2.

Lemma 5.2. Let D be the vertex set of an h-weak component of G[A∪ I], and B1, . . . , Bh be the bad components of G connected
by edges inF with D. Then the family B := {B1, . . . , Bh} is bearable.
Proof. Let ID := I ∩ D. Since D is neutral, |ID| ≤ 5h + 1. Let C1, . . . , Ch be the claws of A contained in D. Since we are
inG,

each v ∈ ID has neighbors (necessarily forming a clique) in at most one Bj. (39)

Since h ≥ 2, there is a vertex vD ∈ ID adjacent to at least two distinct claws, say to C1 and C2. We claim that

vD has no neighbors in
h

j=1

Bj. (40)

Indeed, if vD is adjacent to w ∈
h

j=1 Bj, then the set (A ∩ D) ∪ {vD, w} has 4h + 2 vertices, at most h − 1 components
and independence number 3h + 1; so it has potential at least h + 1, a contradiction to (iii) from the definition of h-weak
components.

Suppose that for j = 1, . . . , h, component Bj has bj neighbors in D. By (39) and (40),

h−
j=1

bj ≤ 5h. (41)
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By Lemma 4.3, bj ≥ 3 for all j. So, by Lemma 4.5, for j = 1, . . . , h, |Bj| ≤
3(bj+2)
bj+4 η. It follows, using (41), that

h−
j=1

|Bj| ≤ η


3h − 6

h−
j=1

1
bj + 4


≤ η


3h − 6

h−
j=1

1
5 + 4


=

7h
3

η.

This proves the lemma. �

Suppose that exactly x′ edges of F are incident with weak components of G[A ∪ I]. The immediate consequence of
Lemma 5.2 is

Corollary 5.2. α4 ≥ 2x′.

Our third attempt to construct a set of large potential starts from A∪ I and we compare the potential of the construction
with |I ∩ D| − 5h. The procedure is that we replace the negative components in G[A ∪ I] with the original claws, and then
modify 1-weak and neutral non-weak components by deleting some vertices from them and/or adding some vertices from
the bad components ofG′ adjacent to themvia edges inF in order to increase their potential. Since distinct edges inF connect
I to different components in G′, there will be no conflict. The resulting set is our third set R3.

Observe first that if G[A ∪ I] has exactly s components, then
φ(A ∪ I) = 2|I| − |A ∪ I| − s = |I| − |A| + |A ∩ I| − s

= |I| − 4m + |A ∩ I| − s = α0 − 5m + (m − s) + |A ∩ I|. (42)
We view α0 − 5m as

∑
∞

h=1
∑

D∈Dh
(|I ∩D| − 5h), and will count, how large in comparison with |I ∩D| − 5h can wemake

the potential of a component D ∈ Dh.

Lemma 5.3. Let h ≥ 1 and D ∈ Dh. Let B1, . . . , Bt(D) be the bad components in G′ adjacent via edges inF to D. Then
t(D)

j=1 Bj ∪D
contains a vertex set XD of potential at least
(a) |I ∩ D| − 5h + (t(D) − 1) if D is positive or weak;
(b) |I ∩ D| − 5h + t(D) if D is negative or neutral but not weak.

Proof. Since D ∈ Dh,

φ(D) = 2|I ∩ D| − |D| − 1 ≥ |I ∩ D| − 4h − 1 = (|I ∩ D| − 5h) + (h − 1). (43)

By Lemma 5.1, t(D) ≤ h. This already implies (a).
Suppose D is negative. By (43), φ(D) ≥ (|I ∩ D| − 5h) + (h − 1). Then by the definition of negative components,

φ(D − I) ≥ φ(D) + 1 ≥ (|I ∩ D| − 5h) + h. Since t(D) ≤ h, we obtain (b) for negative components.
Finally, suppose thatD is neutral but notweak. If t(D) ≤ h−1, then the lemma holds by (43). Otherwise, by the definition

of weak components, there exists a set D′ of potential h + 1 contained in D ∪
t(D)

j=1 Bj, where B1, . . . , Bt(D) are the bad
components of G′ connected by edges inF with D. In this case, we replace D with this D′. �

The following lemma has a long proof which is deferred to the final section.

Lemma 5.4. Let D be a component in A ∪ I with φ(D) = 1, h(D) = 1, A ∩ D ∩ I = ∅ such that D is incident with an edge inF .
Let B be the bad component incident with this edge. Then there is a D′

⊂ D ∪ B with φ(D′) ≥ 2.

Recall that x′ was defined as the number of edges inF incident with weak components. Let x+ denote the number of
edges inF incident with positive components, and let x−

= |F | − x′
− x+ denote the number of edges inF incident with

negative or neutral non-weak or 1-weak components. Let Dw denote the family of weak components and D+

0 denote the
set of positive components that are incident with at least one edge inF . The last two lemmas imply the following.

Lemma 5.5. There exists a set R3 of potential at least X := α0 − 5m + x−
+ 0.5x′

+ x+
− |D+

0 |.

Proof. Let R3 be the union of sets guaranteed by the last two lemmas for components of G[A∪ I]. By Lemmas 5.3(b) and 5.4,
negative and neutral non-weak and 1-weak components contribute to X−(α0−5m) at least x−. Since eachweak component
is h-weak for some h ≥ 2, by Lemma 5.3(a), the weak components contribute to X − (α0 − 5m) at least x′

− |Dw
| ≥ x′/2.

Finally, again by Lemma 5.3(a), the positive components contribute to X − (α0 − 5m) at least x+
− |D+

0 |. This proves the
lemma. �

Since x+
− |D+

0 | ≥ 0, by Lemma 5.5 we have
3
2
cα − (α0 − 5m) ≥

2
3
(x−

+ (x+
− |D+

0 |)) +
1
2
x′

=
2
3
(x−

+ x+
− |D+

0 | + x′) −
1
6
x′.

Since x−
+ x′

+ x+
= |F |, we conclude that 3

2 cα − (α0 − 5m) ≥
2
3 (|
F | − |D+

0 |) −
1
6x

′. Since every positive component
contributes at least 1 tof , we havef ≥ |D+

|. Thus,

α0 − 5m +
2
3
(|F | −f ) −

1
6
x′ <

3
2
cα. (44)
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6. Final computation

We start from (44). Plugging in the bound for α0 from (31) and using Corollary 5.2 to exclude α4, we have

(1 − 2c)α + 9m + 3y + α3 +
4
3x

′

2(2 − c)
+

2
3
|F | <

2
3
f + x′/6 +

3cα
2

+ 5m.

Using (36) and (33),

(1 − 2c)α + 9m + 3y + α3 +
4
3x

′

2(2 − c)
+

(1 − 2c)(α − 3m − y) − (3 − 2c)α3 + 4x′/3
6(2 − c)

−
4x
3

<
2
3
f + x′/6 +

3cα
2

+ 5m.

Simplifying and movingm and x to the right, we have

4(1 − 2c)α + (8 + 2c)y + 2cα3 + (10/3 + c)x′

6(2 − c)
<

4x
3

+
2
3
f +

3cα
2

+ 5m + m
−27 + 3(1 − 2c)

6(2 − c)
.

By (38) and (28), the RHS is at most

3cα
2

+


4x
3

+
2
3
f + 2m


+ m

12 − 24c
6(2 − c)

≤
9
2
cα +

(12 − 24c)(1.5cα − x)
6(2 − c)

,

so moving everything to the left hand side and multiplying by 6(2 − c) we get
(4 − 8c) −

9c
2
6(2 − c) −

3c
2

(12 − 24c)


α + (8 + 2c)y + 2cα3 +


10
3

+ c

x′

+ (12 − 24c)x < 0. (45)

The coefficient at α is 4−80c +63c2. Since the coefficients at y, x′, α3 and x are positive, for (45) to hold, the coefficient at α
must be negative. In otherwords, 4−80c+63c2 < 0. But this inequality does not hold for c = (80−

√
5392)/126 > 1/19.2.

7. Proof of Lemma 5.4

First we will characterize the components D satisfying the conditions of the lemma. Let D be a component containing
only one claw of A and ID = I ∩ D − A. Label the vertices of D as follows: v is the root of A, u1, u2, u3 are the leaves of A and
w1, w2, . . . are the vertices in ID. First we show that |ID| = α(D) = 6:

If α(D) ≤ 5 then v(D) = 2α(D) − φ(D) − c(D) = 2(α(D) − 1) ≤ α(D) + 3 so |ID ∩ A| > 0, which contradicts our
assumption that ID ∩ A = ∅.

If α(D) ≥ 7 then v(D) = 2α(D) − φ(D) − c(D) = 2(α(D) − 1) > α(D) + 4 so |ID| > α(D), which is not possible.
Thus, α(D) = 6. Then 1 = φ(D) = 2 · 6 − 4 − |ID| − 1, so |ID| = 6. Observe the following:

(i) For every i, |N(ui) ∩ ID| ≥ 2. Similarly |N(v) ∩ ID| ≥ 2. Otherwise if wj is the unique neighbor of ui or of v, then
α(D − wj) = 6, so φ(D − wj) ≥ 2, a contradiction.

(ii) For every i there is a j such that N(wj) ∩ D = {ui}. Otherwise D − ui is connected, so its potential is at least 2.
(iii) D − v is not connected, otherwise φ(D − v) ≥ 2.
(iv) For every i, |N(ui) ∩ ID| ≤ 3, otherwise φ(N(ui) ∪ {ui}) ≥ 2.
(v) For every j there is an i such that wjui ∈ E(G). Otherwise φ({v, u1, u2, u3, wj}) = 2.

By (i)–(v), every ui has 2 or 3 neighbors in D − A. We may assume w.l.o.g. that uiwi ∈ E(G) for every i = 1, 2, 3, and wi
is not adjacent to uj for i ≠ j (by (ii)). We consider four cases:

Case 1: |N(u1) ∩ ID| = |N(u2) ∩ ID| = |N(u3) ∩ ID| = 2. In this case, there are two possibilities for D, see Fig. 1.
Case 2: |N(u1) ∩ ID| = 3, |N(u2) ∩ ID| = |N(u3) ∩ ID| = 2. W.l.o.g., we may assume that u1w4, u1w5, u3w6 ∈ E(G).
Assume first that u2w6 ∈ E(G). At least one of vw4, vw5 is an edge, but not both; otherwise φ(v, w4, w5, u2, u3) = 2. By

(i), vw6 is an edge, hence up to symmetry the only possible D in this case is on the right-hand side of Fig. 2.
Assume now that u2w5 ∈ E(G). Then by (i), v has at least two neighbors among w4, w5, w6, see the left-hand side of

Fig. 2.
Case 3: |N(u1) ∩ ID| = |N(u2) ∩ ID| = 3, |N(u3) ∩ ID| = 2. W.l.o.g., we may assume that u1w4, u1w5, u3w6 ∈ E(G). If

u2w6 ∈ E(G) then (iii) is violated, so u2w4, u2w5 ∈ E(G). W.l.o.g. vw4 ∈ E(G). Additionally, v has at least one neighbor in
{w5, w6}, see Fig. 3.

Case 4: |N(u1) ∩ ID| = |N(u2) ∩ ID| = |N(u3) ∩ ID| = 3. This is not possible, as (iii) is violated.

Observation 1. Let B be a bad component of G′. Assume that vwi ∈ E(G), N(wi) ∩ {u1, u2, u3} = {uℓ} for some ℓ and
N(wi) ∩ B ≠ ∅. Then by Lemma 4.2 there exist q, p1, p2 ∈ B such that wiq, qp1, qp2 ∈ E(G), and p1p2 ∉ E(G). Therefore
{u1, u2, u3} − {uℓ} together with {v, wi, x, z1, z2} induces a graph with potential 2. So we shall assume that this does not
happen.
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Fig. 1. α(D) = 6, degree sequence 2, 2, 2.

Fig. 2. α(D) = 6, degree sequence 3, 2, 2. On the left-hand side, v is adjacent to at least two of w4, w5, w6 .

Fig. 3. α(D) = 6, degree sequence 3, 3, 2; v is adjacent to at least one of w5 and w6 .

In the rest of the proof we consider all the graphs listed in the figures. Our strategy will be to check if Lemmas 4.2 and 4.3
could be applied, i.e. we try to find a W ⊂ D containing at most two wi’s with edges to B. If such a W was found, the proof
could be completed.

Right-hand side of Fig. 1: By Observation 1, we have to check only i ∈ {1, 2, 3}, and by symmetry we may assume that
i = 1. Then W = {v, u1, u2, u3, w1, w4} works.

Left-hand side of Fig. 1: By Observation 1, we have to check only i ∈ {1, 2, 3, 6}. The proof is exactly the same as in the
previous case.

Right-hand side of Fig. 2: By Observation 1, we have i ≠ 5. If i = 1 or i = 4, then W = {u1, w1, w4} works. If any of w3
or w6 has an edge to B, and none of w1, w4, w5 does, thenW = {v, u1, u3, w1, w4, w5, w3, w6} works.

Left-hand side of Fig. 2: Here we have four graphs to consider, and more or less the same argument works for all. If
i = 3 or i = 6 then we take the set W = {v, u1, u2, u3, w3, w6}. Now assume that neither w3, nor w6 is adjacent to G′,
so we have to check the case that at least three of the other four wj are. If any of w1, w4, w5 is not adjacent to B, then
W = {u1, w1, w4, w5} works. If each of w1, w4, w5 is adjacent to B and vw4 ∈ E(G), then by Observation 1 we are done. If
vw4 ∉ E(G) then vw4, vw5 ∈ E(G). In this final case we set W = {v, u1, w1, w4}.
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Fig. 3: Here we have three graphs to check, the same argument works for all. If i = 3 or i = 6 then we take the set
W = {v, u1, u2, u3, w3, w6}. If at least one and at most two of w1, w4, w5 are adjacent to B, then D′

= {u1, w1, w4, w5}

works for us. Similar statement holds for w2, w4, w5. The remaining case is that each of w1, w2, w4, w5 is adjacent to B. If
vw5 ∈ E(G) thenW = {v, u3, w4, w5} works, and if vw5 ∉ E(G) then we can choose W = {v, u2, w2, w5}. �
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