
Discrete Mathematics 311 (2011) 996–1005

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Ohba’s conjecture for graphs with independence number five
Alexandr V. Kostochka a,b, Michael Stiebitz c, Douglas R. Woodall d,∗
a Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA
b Sobolev Institute of Mathematics, Novosibirsk, Russia
c Institute of Mathematics, Technische Universität Ilmenau, D-98684 Ilmenau, Germany
d School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

a r t i c l e i n f o

Article history:
Received 27 July 2010
Received in revised form 31 January 2011
Accepted 22 February 2011
Available online 29 March 2011

Keywords:
Chromatic number
Vertex coloring
List coloring
List chromatic number
Choosability
Complete multipartite graph

a b s t r a c t

Ohba has conjectured that if G is a k-chromatic graphwith at most 2k+1 vertices, then the
list chromatic number or choosability ch(G) of G is equal to its chromatic number χ(G),
which is k. It is known that this holds if G has independence number at most three. It is
proved here that it holds if G has independence number at most five. In particular, and
equivalently, it holds if G is a complete k-partite graph and each part has at most five
vertices.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

LetGbe a graphwith vertex-setV (G), chromatic numberχ(G) and choosability (or list chromatic number) ch(G). Ohba [6]
made the following conjecture.

Ohba’s Conjecture. If |V (G)| ⩽ 2χ(G) + 1, then ch(G) = χ(G).

Enomoto et al. [1] showed that the complete k-partite graph K(4, 2, . . . , 2) is not k-choosable if k is even, and so the
upper bound on |V (G)| in Ohba’s conjecture would be sharp. The following weaker results are known.

Theorem A. Let G be a graph. Then ch(G) = χ(G) in the following cases:

(i) |V (G)| ⩽ χ(G) +
√
2χ(G) [6].

(ii) |V (G)| ⩽ (2 − ϵ)χ(G) (0 < ϵ < 1, |V (G)| ⩾ n0(ϵ)) [8].
(iii) |V (G)| ⩽ 5

3χ(G) −
4
3 [9].

Because every χ-chromatic graph is a subgraph of a complete χ-partite graph, Ohba’s conjecture is true if and only if it is
true for complete χ-partite graphs. It also suffices to prove it for graphs with the maximum number of vertices. It can thus
be rephrased as follows.
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Ohba’s Conjecture Rephrased. If G is a complete k-partite graph and |V (G)| = 2k + 1, then ch(G) = χ(G) = k.

In the following theorem the number of vertices is not necessarily equal to 2k + 1. Strings of the form x, . . . , x may be
empty, provided that k is large enough (at least 1, unless otherwise stated), and x ∗ t denotes a string of t x’s.

Theorem B. Let G be any of the following complete k-partite graphs. Then ch(G) = χ(G) = k.
(i) K(2, . . . , 2) [2].
(ii) K(3, . . . , 3, 2, . . . , 2, 1, . . . , 1) (|V (G)| ⩽ 2k) [7].
(iii) K(3, 2, . . . , 2, 1, . . . , 1) [3].
(iv) K(3, 3, 2, . . . , 2, 1, . . . , 1) (k ⩾ 3) [3].
(v) K(4, 2, . . . , 2) (k odd) [1].
(vi) K(t + 2, 2, . . . , 2, 1 ∗ t) (t ⩾ 0) [6].
(vii) K(r, 2, . . . , 2, 1 ∗ t) (t ⩾ 1, 2 ⩽ r ⩽ 2t + 1) [1].

Ohba’s conjecture itself has been proved in the following cases.

Theorem C. Let G be any of the following complete k-partite graphs of order 2k + 1. Then ch(G) = χ(G) = k.
(i) K(t + 3, 2 ∗ s, 1 ∗ t) (s ⩾ 0, t ⩾ 0, k = s + t + 1).
(ii) K(t + 2, 3, 2 ∗ s, 1 ∗ t) (s ⩾ 0, 0 ⩽ t ⩽ 4, k = s + t + 2).
(iii) K(3 ∗ (t + 1), 2 ∗ s, 1 ∗ t) (s ⩾ 0, t ⩾ 0, k = s + 2t + 1).
(iv) K(4, 3, 3, 2 ∗ s, 1, 1, 1) (s ⩾ 0, k = s + 6).

Part (i) of Theorem C follows from Theorem B(iii) if t = 0, and it was proved by Enomoto et al. [1] for t ⩾ 1; for t ⩾ 2
it follows from Theorem B(vii). Part (ii) of Theorem C follows from part (i) if t = 0 and from Theorem B(iv) if t = 1; it was
proved by Shen et al. [11] for t = 2, 3, and by Shen et al. [12] for t = 4. Part (iii) is the same as part (i) or part (ii) if t = 0 or
1, respectively; it was proved by He et al. [5] for t = 2, and by Shen et al. [10] in general. Part (iv) was proved by He et al. [5].

Theorem C(iii) implies that Ohba’s conjecture holds for graphswith independence number atmost three. Themain result
of this paper is the following improvement of this; it implies that Ohba’s conjecture holds for graphs with independence
number at most five.

Theorem 1. Let G = (V , E) be a complete k-partite graph such that |V | ⩽ 2k + 1 and every part has at most five vertices. Then
ch(G) = χ(G) = k.

As we will explain in the next section, the method that we use to prove Theorem 1 is somewhat different from the
methods used in most published proofs of parts of Theorem C. We were initially hopeful that our method could be used to
prove the whole of Ohba’s conjecture. However, we have not succeeded in finding a construction that will achieve this.

A k-list-assignment L to a graph G is an assignment of a list L(v) of exactly k colors to each vertex v of G. An L-coloring
of G is a proper coloring in which each vertex v is colored with a color from its own list L(v). If G is L-colorable for every
k-list-assignment L to G, then G is called k-choosable. The choosability ch(G) of G is the smallest k for which G is k-choosable.

The rest of this paper is devoted to a proof of Theorem 1.

2. Proof of Theorem 1

Let G = (V , E) be a complete k-partite graph such that |V | ⩽ 2k + 1 and every part has at most five vertices. Clearly
ch(G) ⩾ χ(G) = k, and so it suffices to prove that ch(G) ⩽ k, that is, G is k-choosable. Let m be a positive integer that
is at least as large as the order of the largest part of G. We may assume that G has a part with at least three vertices, so
that m ⩾ 3, since otherwise G is an induced subgraph of the complete k-partite graph with k parts of order 2, which is
k-choosable by Theorem B(i). Let G have ki parts of order i, for each i ⩾ 1, and let k0 :=

∑m
i=2 ki, so that k = k0 + k1 and

|V | =
∑m

i=1 iki = k+
∑m

i=2(i− 1)ki ⩽ 2k+ 1. Let the parts of G be U1, . . . ,Uk1 of order 1 and V1, . . . , Vk0 of order at least 2.
Let L be a k-list-assignment to G. For a set X ⊆ V , let L∩(X) :=


v∈X L(v). Wewish to prove that G is L-colorable. By a simple

inductive argument we may assume that

L∩(Vp) = ∅ for each p ∈ {1, . . . , k0}. (1)

The strategy of the proof is as follows. In contrast with the type of coloring argument used inmost other proofs of similar
results, we will construct directly a partition Q = (X1, . . . , Xq) of V such that each part of Q induces an independent subset
of V , and we will then prove that G has an L-coloring in which two vertices have the same color if and only if they are in the
same part Xi. This second stage is equivalent to proving that the family of sets (L∩(X1), . . . , L∩(Xq)) has a system of distinct
representatives (c1, . . . , cq); we can then use color ci on all vertices of Xi. The proof is divided into three parts: in Part 1 we
defineQ, and in Part 2 we prove various lemmas, whichwe use in Part 3 to prove that the above family of sets satisfies Hall’s
condition and so has a system of distinct representatives. (A family of sets S = (S1, . . . , Sq) is said to satisfy Hall’s condition
if, for every subfamily (Si1 , . . . , Sir ) of S, |Si1 ∪ . . . ∪ Sir | ⩾ r . Hall [4] proved that this is a necessary and sufficient condition
for there to exist a system of distinct representatives of S, that is, a set of distinct elements c1, . . . , cq such that ci ∈ Si for each
i (1 ⩽ i ⩽ q).)
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Wewill not use the value ofm, the upper limit on the order of a partite set, until after Claim 4 in Part 3, although to cope
with larger values of m would require additional or more general lemmas in Part 2. However, we have not succeeded in
proving the result even for m = 6, and we are doubtful whether this can be done with our present definition of Q. Perhaps
there is a variation of our construction that can be used to prove the result for all values of m, but we have not managed to
find one.
Part 1. Construction of the partition Q. For a partition Pt(p) = (X1, . . . , Xt) of a partite set Vp (p ∈ {1, . . . , k0}), let
f (Pt(p)) :=

∑t
i=1 |L∩(Xi)| and

g(Pt(p)) := k +

t−
i=1

(|L∩(Xi)| − k) = f (Pt(p)) − (t − 1)k. (2)

Thus if |Vp| = s, so that Ps(p) is the partition of Vp into singletons, then g(Ps(p)) = k; and if Ps−1(p) is a partition of Vp
into s − 2 singletons and a 2-set X = {x, y}, then g(Ps−1(p)) = |L∩(X)| = |L(x) ∩ L(y)|. For each p ∈ {1, . . . , k0}, let
s := |Vp| and define partitions Qs(p), . . . , Q2(p) recursively as follows. Let Qs(p) be the partition of Vp into singletons. For
t = s − 1, . . . , 2, let Qt(p) be formed from Qt+1(p) by merging two members so that g(Qt(p)) is as large as possible. In
particular, Qs−1(p) is obtained from Qs(p) bymerging two vertices having themaximum number of common colors in their
lists.

Before defining the partition Q, it will be helpful to explain our terminology. For 2 ⩽ t ⩽ s ⩽ m, sAt will denote the set
of parts Vp of G of order s that are divided into t parts in Q, and (sat) := |

sAt |. (In fact, after specifying the sets sAt , we will
obtain Q from the natural partition (U1, . . . ,Uk1 , V1, . . . , Vk0) of V by replacing Vp with Qt(p) for each set Vp ∈

sAt ; thus
Q will be completely determined by the sets sAt .) For 0 ⩽ q ⩽ m − 2, let Iq := {(s, t) : 2 ⩽ t ⩽ m − q and s − t = q},
Bq :=


(s,t)∈Iq

sAt and bq := |Bq| =
∑

(s,t)∈Iq
(sat). For 0 ⩽ q ⩽ m − 1 and 2 ⩽ t ⩽ s ⩽ m, let

Θq :=

m−2−
i=q

bi, (3)

sΩ0
2 :=

sΩ1
2 := Θs−1 + (sa2), (4)

and, if t ⩾ 3,

sΩ0
t := Θs−t and sΩ1

t :=

t−
i=2

sΩ0
i =

sΩ0
2 +

s−3−
j=s−t

Θj. (5)

We define sΩ1
1 := 0, so that if q = s − t then, by (4) and (5),

sΩ1
t −

sΩ1
t−1 =

sΩ0
t =


Θq+1 + (sa2) if t = 2,
Θq = Θq+1 + bq if t ⩾ 3. (6)

Note that Θm−1 = 0 by (3), and so, by (4), (3) and the definition of bq,

mΩ0
2 =

mΩ1
2 = (ma2) = bm−2 = Θm−2. (7)

Historical note. The main significance of sΩ0
t and sΩ1

t is that they are the threshold values of p and g(Qt(p)). respectively,
between sets Vp ∈

sAt and sets Vp ∈
sAr for r > t; see Eqs. (13)–(15) below. In an earlier and simpler version of the proof,

the case t = 2 in the construction of Q was treated in the same way as all other values of t . In that case there was no need
to introduce sΩ0

t because it was always equal to Θq, where q = s − t and

Θq = bm−2 + bm−3 + · · · + bq+1 + bq (8)

by (3); and sΩ1
t was always equal to

∑s−2
j=q Θj, which is

(t − 1)(bm−2 + bm−3 + · · · + bs−2) + (t − 2)bs−3 + (t − 3)bs−4 + · · · + 2bq+1 + bq. (9)

Unfortunately, this simpler proof did not work whenm = 5. The construction of Q in the current proof treats the case t = 2
differently from larger values of t . Thus sΩ0

t is equal to (8) when t > 2, but when t = 2 it is necessary to replace the final
term bq by (sa2) if that is smaller. And sΩ1

t is obtained from (9) by subtracting bs−2 − (sa2) (which is zero if s = m and
nonnegative otherwise).

We will now construct Q by specifying the values of these parameters. We start with an initialization step: for all s ⩾ 2,
set sΩ1

1 := Θm−1 := 0. Then, for each q = m− 2, . . . , 1 in turn, we will carry out the following construction procedure for q,
which specifies the values of Bq, bq, Θq, sAt , (sat), sΩ1

t and sΩ0
t for all (s, t) ∈ Iq. For each value of q, we first set

sΦ t :=
sΩ1

t−1 + Θq+1 (10)
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for each (s, t) ∈ Iq. Note that the values of the two terms on the RHS of (10) have already been specified previously, the first
in the initialization step if t = 2 and in the construction procedure for q + 1 if t > 2 (which implies q < m − 2), and the
second in the initialization step if q = m− 2 and in the construction procedure for q+ 1 if q < m− 2. We then (see below)
define Bq, bq, sAt and (sat) for all (s, t) ∈ Iq; and finally we set Θq by (3),

sΩ1
t :=

sΦ t +(sbt) (11)

and
sΩ0

t := Θq+1 + (sbt) (12)

for each (s, t) ∈ Iq, where (sb2) := (sa2) and (sbt) := bs−t = bq if t ⩾ 3. For example, ifm = 5 then

b3 = (5a2), b2 = (4a2) + (5a3), b1 = (3a2) + (4a3) + (5a4),
Θ4 = 0, Θ3 = b3, Θ2 = b3 + b2, Θ1 = b3 + b2 + b1,
5Φ2 = 0, 5Ω1

2 = (5a2) = b3, 5Ω0
2 = (5a2) = b3,

4Φ2 = b3, 4Ω1
2 = b3 + (4a2), 4Ω0

2 = b3 + (4a2),
5Φ3 = 2b3, 5Ω1

3 = 2b3 + b2, 5Ω0
3 = b3 + b2,

3Φ2 = b3 + b2, 3Ω1
2 = b3 + b2 + (3a2), 3Ω0

2 = b3 + b2 + (3a2),
4Φ3 = 2b3 + (4a2) + b2, 4Ω1

3 = 2b3 + (4a2) + b2 + b1, 4Ω0
3 = b3 + b2 + b1,

5Φ4 = 3b3 + 2b2, 5Ω1
4 = 3b3 + 2b2 + b1, 5Ω0

4 = b3 + b2 + b1.

For each q, after setting the values of sΦ t for all (s, t) ∈ Iq by (10), we define Bq iteratively in two stages as follows,
starting with Bq := ∅. Firstly, while there is a part Vp ∉

m−2
i=q Bi such that |Vp| = q + 2 and g(Q2(p)) >

q+2
Φ2 +|Bq|,

choose such a part Vp for which g(Q2(p)) is as large as possible, and add Vp to Bq. Secondly, when there is no such part Vp,
but while there is a part Vp ∉

m−2
i=q Bi such that |Vp| > q + 2 and g(Qs−q(p)) > sΦs−q +|Bq|, where s := |Vp|, choose

such a part Vp for which g(Qs−q(p)) −
sΦs−q is as large as possible, and add Vp to Bq. When there is no such part Vp, the

construction of Bq terminates; we then set bq := |Bq|, sAt := {Vp : |Vp| = s and Vp ∈ Bq} and (sat) := |
sAt | for each

(s, t) ∈ Iq, before setting the values of Θq, sΩ1
t and sΩ0

t by (3), (11) and (12). This completes the construction procedure
for q.

Finally, after the sets Bm−2, . . . , B1 have been constructed, let B0 := {Vp : Vp ∉
m−2

i=1 Bi}, b0 := |B0|, and Θ0 := k0,
so that (3) holds when q = 0; and for 2 ⩽ s ⩽ m let sAs := {Vp ∈ B0 : |Vp| = s} and (sas) := |

sAs|. We now reorder the
parts Vp so that they are numbered in the order in which they are assigned to a set Bq; then Bq = {Vp : Θq+1 < p ⩽ Θq}

(0 ⩽ q ⩽ m − 2) and sA2 = {Vp : Θq+1 < p ⩽ sΩ0
2 } (3 ⩽ s ⩽ m, q = s − 2). But if t ⩾ 3 and q = s − t then sΩ0

t = Θq by (5),
and so, for all t ⩾ 2,

if Vp ∈
sAt then p ⩽ sΩ0

t . (13)

As already mentioned, we now define the partition Q by starting with the natural partition (U1, . . . ,Uk1 , V1, . . . , Vk0) of
V , and for each s and t (2 ⩽ t ⩽ s ⩽ m), and each Vp ∈

sAt , replacing Vp by Qt(p).
Note that if q = s− t > 0 then the construction of sAt formally terminates when there is no longer a part Vp ∉

m−2
i=q Bi

such that |Vp| = q + 2 (if t = 2) or |Vp| > q + 2 (otherwise) and g(Qt(p)) > sΦ t +|Bq|; and at this moment of formal
termination, |Bq| = (sat) if t = 2 and |Bq| = bq if t ⩾ 3; i.e., |Bq| = (sbt). But sΩ1

t =
sΦ t +(sbt) by (11), and so

g(Qt(p)) ⩾ sΩ1
t if Vp ∈

sAt (14)

and

g(Qt(p)) ⩽ sΩ1
t if Vp ∈

sAr , r > t . (15)

If Qt(p) = (X1, . . . , Xt) then, by (2) and (14),
t−

i=1

|L∩(Xi)| ⩾ (t − 1)k +
sΩ1

t if Vp ∈
sAt . (16)

Also, if Pt(p) = (X1, . . . , Xt) is any partition of Vp into t parts that is obtained by merging two parts of Qt+1(p), then
g(Pt(p)) ⩽ g(Qt(p)) and so

g(Pt(p)) ⩽ sΩ1
t if Vp ∈

sAr , r > t (17)

by (15); thus
t−

i=1

|L∩(Xi)| ⩽ (t − 1)k +
sΩ1

t if Vp ∈
sAr , r > t; (18)
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in particular, if each part of Pt(p) is a singleton set except for Xt , then

|L∩(Xt)| ⩽ sΩ1
t if Vp ∈

sAr , r > t . (19)

Part 2. Lemmas. To make it easier to apply Eqs. (17)–(19), in this part wewill use tp to denote the number of parts into which
Vp is partitioned in Q, so that if Vp ∈

sAt then tp = t . Then to say that Vp ∈
sAr for some r > t is the same as saying that

tp > t .

Lemma 1. If 2 ⩽ t < s ⩽ m and Vp ∈
sAt , then for every two members X1 and X2 of Qt(p),

|L∩(X1) ∪ L∩(X2)| ⩾ k +
sΩ0

t .

Proof. If t = 2, then we see from (4) that sΩ1
2 =

sΩ0
2 , and it follows from (1) and (16) that

|L∩(X1) ∪ L∩(X2)| = |L∩(X1)| + |L∩(X2)| ⩾ k +
sΩ1

2 = k +
sΩ0

2 .

So assume that t ⩾ 3. Let X ′
:= X1 ∪ X2. Consider the partition Pt−1(p) obtained from Qt(p) by merging X1 and X2 into X ′.

Since Vp ∈
sAt , g(Qt(p)) ⩾ sΩ1

t by (14). Since tp = t > t − 1, g(Pt−1(p)) ⩽ sΩ1
t−1 by (17). Thus, using (2) in the fourth line,

|L∩(X1) ∪ L∩(X2)| = |L∩(X1)| + |L∩(X2)| − |L∩(X1) ∩ L∩(X2)|

= |L∩(X1)| + |L∩(X2)| − |L∩(X ′)|

= f (Qt(p)) − f (Pt−1(p))
= k + g(Qt(p)) − g(Pt−1(p))
⩾ k +

sΩ1
t −

sΩ1
t−1

= k +
sΩ0

t

since sΩ1
t −

sΩ1
t−1 =

sΩ0
t by (6). This proves Lemma 1. �

Lemma 2. If Vp ∈
sAs ⊆ B0 (s ⩾ 3), then for every pair of elements x, y ∈ Vp,

|L(x) ∪ L(y)| ⩾ 2k −
sΩ1

s−1 ⩾ 2k −
mΩ1

m−1.

Proof. LetPs−1(p) be the partition of Vp consisting of {x, y} and s−2 singleton sets. Since tp = s > s−1, |L(x)∩L(y)| ⩽ sΩ1
s−1

by (19). Thus

|L(x) ∪ L(y)| ⩾ |L(x)| + |L(y)| −
sΩ1

s−1 = 2k −
sΩ1

s−1.

Now, sA2 ⊆ Bs−2 and so (sa2) ⩽ bs−2. Also, Θs−1 + bs−2 = Θs−2 by (3). Thus sΩ0
2 ⩽ Θs−2 by (4), with equality if s = m, by

(7), and so (5) gives

sΩ1
s−1 =

sΩ0
2 +

s−3−
j=1

Θj ⩽

s−2−
j=1

Θj ⩽

m−2−
j=1

Θj =
mΩ1

m−1. (20)

The result follows. �

Lemma 3. Let Vp ∈
sAt ⊆ B1, where s ⩾ 4, so that |Vp| = s = t + 1, and let Qt(p) = (X1, . . . , Xt) where Xi = {xi}

(i = 1, . . . , t − 1) and Xt = {xt , xt+1}. Then

(a) |L(x) ∪ L(y)| ⩾ 1
2 (3k −

sΩ1
s−2) for each x, y ∈ {x1, . . . , xt−1}, x ≠ y;

(b) |L(x) ∪ L(y) ∪ L∩(Xt)| ⩾ k + 2(sΩ1
s−1) − 3(sΩ1

s−2) for each x, y ∈ {x1, . . . , xt−1}, x ≠ y;
(c) if s ⩾ 5 then |

t
i=1 L

∩(Xi)| ⩾ 1
4 (7k − 3(sΩ1

s−2) − 2(sΩ1
s−3)).

Proof. Let Ci := L∩(Xi) (i = 1, . . . , t). For x, y ∈ {x1, . . . , xt−1} (x ≠ y), let dxy := |L(x) ∩ L(y)|. Since we formed Qt(p) by
merging xt with xt+1 to form Xt ,

dxy ⩽ |Ct |. (21)

Since Vp ∈
sAs−1, (t − 1)k + |Ct | ⩾ (t − 1)k +

sΩ1
s−1 by (16), and so

|Ct | ⩾ sΩ1
s−1. (22)

Since tp = s − 1 > s − 2,

(s − 4)k + dxy + |Ct | ⩽ (s − 3)k +
sΩ1

s−2
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by (18), and similarly

(s − 3)k + |L(x) ∩ Ct | ⩽ (s − 3)k +
sΩ1

s−2,

so that

dxy + |Ct | ⩽ k +
sΩ1

s−2 (23)

and

|L(x) ∩ Ct | ⩽ sΩ1
s−2. (24)

By (21) and (23), |L(x) ∩ L(y)| = dxy ⩽ 1
2 (k +

sΩ1
s−2), so that

|L(x) ∪ L(y)| = 2k − dxy ⩾
1
2
(3k −

sΩ1
s−2). (25)

This proves (a). And by (23), (24), and the analog of (24) with y in place of x,

|L(x) ∪ L(y) ∪ Ct | ⩾ |L(x)| + |L(y)| + |Ct | − |L(x) ∩ L(y)| − |L(x) ∩ Ct | − |L(y) ∩ Ct |

⩾ k + k + 2|Ct | − (k +
sΩ1

s−2) −
sΩ1

s−2 −
sΩ1

s−2

⩾ k + 2(sΩ1
s−1) − 3(sΩ1

s−2)

by (22), which proves (b).
Now assume that s ⩾ 5, so that t ⩾ 4. Without loss of generality we may assume that Qt−1(p) is formed from Qt(p) by

merging X1 with either X3 or Xt . LetPt−2(p) be formed fromQt(p) bymerging all three of the sets X1, X3 and Xt ; thenPt−2(p)
can be formed from Qt−1(p) by merging two parts, and every other part of Pt−2(p) is a singleton. Since tp = t > s − 3,

|C1 ∩ C3 ∩ Ct | ⩽ sΩ1
s−3 (26)

by (19) applied to Pt−2(p). Let x := x2, y := x3 and c1 := |C1 \ (C2 ∪ C3)|. In order to prove (c), it suffices to prove that

|C1 ∪ C2 ∪ C3| + |C1 ∪ C2 ∪ Ct | ⩾
1
2
(7k − 3(sΩ1

s−2) − 2(sΩ1
s−3)), (27)

since max{a, b} ⩾ 1
2 (a + b). By the definition of dxy,

|C1 ∪ C2 ∪ C3| = c1 + |C2 ∪ C3| = c1 + 2k − dxy, (28)

and

|(C1 \ C2) ∩ Ct | ⩽ |(C1 \ (C2 ∪ C3)) ∩ Ct | + |C1 ∩ C3 ∩ Ct |

⩽ c1 +
sΩ1

s−3 (29)

by (26). Therefore, using (25), (21), (24) and (29) in the second line,

|C1 ∪ C2 ∪ Ct | = |C1 ∪ C2| + |Ct | − |C2 ∩ Ct | − |(C1 \ C2) ∩ Ct |

⩾
1
2
(3k −

sΩ1
s−2) + dxy −

sΩ1
s−2 − (c1 +

sΩ1
s−3)

=
3
2
(k −

sΩ1
s−2) −

sΩ1
s−3 + dxy − c1,

and so, adding in (28),

|C1 ∪ C2 ∪ C3| + |C1 ∪ C2 ∪ Ct | ⩾
1
2
(7k − 3(sΩ1

s−2) − 2(sΩ1
s−3)).

This proves (27) and hence (c). �

Lemma 4. Let Vp ∈
5A3 ⊆ B2 and Q3(p) = (X1, X2, X3). Then

|L∩(X1) ∪ L∩(X2) ∪ L∩(X3)| ⩾
3
2
k −

5Ω1
2 .

Proof. As in Lemma 3, let Ci := L∩(Xi) (i = 1, 2, 3). We consider two cases.
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Case 1. X1 = {x1}, X2 = {x2}, X3 = {x3, x4, x5}. Let h := |C1 ∩ C2| = |L(x1) ∩ L(x2)|. We may assume that Q3(p) was obtained
from Q5(p) by first merging x4 and x5 to form X4 := {x4, x5}, and then merging x3 with X4 to form X3. Since x1 was not
merged with x2 in either of these steps, it follows that h ⩽ |L(x4) ∩ L(x5)| and

2h + k ⩽ h + |L(x3)| + |L(x4) ∩ L(x5)| ⩽ |C1| + |C2| + |C3| = 2k + |C3|,

so that |C3| ⩾ 2h − k. Since tp = 3 > 2, |C1 ∩ C3| ⩽ 5Ω1
2 by (19), and similarly |C2 ∩ C3| ⩽ 5Ω1

2 . Therefore

|C3| − |(C1 ∪ C2) ∩ C3| ⩾ |C3| − |C1 ∩ C3| − |C2 ∩ C3|

⩾ (2h − k) −
5Ω1

2 −
5Ω1

2

⩾ h − k/2 −
5Ω1

2 ,

since (a ⩾ 0 and a ⩾ b) H⇒ a ⩾ 1
2b. Thus

|C1 ∪ C2 ∪ C3| = |C1 ∪ C2| + |C3| − |(C1 ∪ C2) ∩ C3|

⩾ |C1| + |C2| − |C1 ∩ C2| + h − k/2 −
5Ω1

2

= k + k − h + h − k/2 −
5Ω1

2

= 3k/2 −
5Ω1

2

as required.
Case 2. X1 = {x1}, X2 = {x2, x3}, X3 = {x4, x5}. We may assume that |C2| ⩾ |C3|, so that Q3(p) was formed from Q5(p) by
first merging x2 and x3 into X2, and then merging x4 and x5 into X3. Since in the second step we did not merge x1 and X2,

|C1 ∩ C2| + k + k ⩽ k + |C2| + |C3|. (30)

Since tp = 3 > 2, |C1 ∩ C3| + |C2| ⩽ k +
5Ω1

2 by (18), which with (30) gives

|C1 ∩ C2| + |C1 ∩ C3| ⩽ |C3| +
5Ω1

2 . (31)

Similarly, |C1| + |C2 ∩ C3| ⩽ k +
5Ω1

2 , so that |C2 ∩ C3| ⩽ 5Ω1
2 . And since Vp ∈

5A3,

|C1| + |C2| + |C3| ⩾ 2k +
5Ω1

3

by (16), so that

2|C2| ⩾ |C2| + |C3| ⩾ k +
5Ω1

3 . (32)

Therefore, using (31) in the second line,

|C1 ∪ C2 ∪ C3| ⩾ |C1| + |C2| + |C3| − (|C1 ∩ C2| + |C1 ∩ C3|) − |C2 ∩ C3|

⩾ k + |C2| + |C3| − (|C3| +
5Ω1

2 ) −
5Ω1

2

= k + |C2| − 2(5Ω1
2 )

⩾
1
2
(3k +

5Ω1
3 ) − 2(5Ω1

2 )

by (32). But, by (4), 5Ω1
2 = Θ4 + (5a2) ⩽ Θ4 + b3 = Θ3 ⩽ Θ2, and so 5Ω1

3 =
5Ω1

2 + Θ2 ⩾ 2(5Ω1
2 ) by (6); thus the lemma

is proved. �

Part 3. Completion of the proof of Theorem 1. We must prove that the family (L∩(X) : X ∈ Q) has a system of distinct
representatives, which we can then use to form an L-coloring of G as described near the beginning of the proof. Suppose that
there is no such system of distinct representatives. Then, by Hall’s Theorem, there exists R ⊆ Q such that |


X∈R L∩(X)|

< |R|. Let CR :=


X∈R L∩(X), so that |CR| < |R|.
Note that, by (20) and (3),

mΩ1
m−1 =

m−2−
q=1

Θq =

m−2−
q=1

m−2−
i=q

bi =

m−2−
i=1

ibi =

m−2−
q=1

qbq. (33)

For 2 ⩽ t ⩽ m, let At :=
m

s=t
sAt and at := |At |. Then

∑m
s=t(

sat) = at ,
∑s

t=2(
sat) = ks, and

∑m−q
t=2 (t+qat) = bq. So

|Q| − k =

m−
t=2

(t − 1)at =

−
2⩽t⩽s⩽m

(t − 1)(sat), (34)

|V | − k =

m−
s=2

(s − 1)ks =

−
2⩽t⩽s⩽m

(s − 1)(sat), (35)
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and, by (33),

mΩ1
m−1 =

m−2−
q=1

qbq =

−
2⩽t⩽s⩽m

(s − t)(sat). (36)

Hence |Q| +
mΩ1

m−1 = |V |. Since |V | ⩽ 2k + 1, it follows that

|Q| ⩽ 2k + 1 −
mΩ1

m−1. (37)

Claim 1. Suppose R contains more than one subset of Vp for some part Vp ∈
σAσ ⊆ B0. Then σ ⩾ 3, and for any three distinct

elements x, y, z ∈ Vp the following hold: |L(x) ∩ L(y)| ⩾ 1
2k, and

|L(x) ∪ L(y)| = |(L(x) ∩ L(y)) ∪ L(z)| = |CQ| = |Q| − 1. (38)

Proof. Suppose first that R contains both (singleton) subsets of some part Vp ∈
2A2. Then, by (1) and (37), |CR| ⩾ 2k ⩾

2k −
mΩ1

m−1 ⩾ |Q| − 1 ⩾ |R| − 1. Thus equality holds throughout, so that mΩ1
m−1 = 0 and R = Q. By (36), bq = 0 for all

q ⩾ 1. By the construction of Q, this means that, for each part Vp, L(x) ∩ L(y) = ∅ for each two vertices x, y ∈ Vp. Since we
are assuming that there is a part Vp such that |Vp| ⩾ 3, this implies that |CR| ⩾ 3k. This contradiction shows that σ ⩾ 3.

Suppose now that R contains two (singleton) subsets of some part Vp ∈
σAσ , where σ ⩾ 3. Then, by Lemma 2 and

(37), |CR| ⩾ 2k −
mΩ1

m−1 ⩾ |Q| − 1 ⩾ |R| − 1, and so equality holds throughout, including in Lemma 2, and R = Q

and |CQ| = 2k −
mΩ1

m−1 = |Q| − 1. Thus R contains all σ (singleton) subsets of Vp, and L(x) ∪ L(y) = CQ for each pair
of distinct elements x, y ∈ Vp. By (1), this means that each color in CQ is in the list of exactly σ − 1 vertices of Vp, so that
|CQ| = σk/(σ − 1), and for each vertex x ∈ Vp, L(x) omits a different set of k/(σ − 1) colors from CQ . Thus, for each two
distinct vertices x, y ∈ Vp,

|L(x) ∩ L(y)| = (σ − 2)k/(σ − 1) ⩾ k/2

since σ ⩾ 3, and (38) holds because every color not in L(x) or L(y) is in L(z). �

We now divide the proof into two cases, which we will deal with simultaneously.

Case 1. R does not contain more than one subset of any part Vp ∈ B0. In this case we define Q′
:= Q and R′

:= R.

Case 2. R contains more than one subset of Vp for some part Vp ∈
σAσ ⊆ B0. We choose one such part Vp′ and form Q′ from

Q bymerging two vertices x′, y′ of Vp′ into a single set X ′
= {x′, y′

}; that is, we replaceQσ (p′) byQσ−1(p′). If |CR′ | ⩾ |R′
| for

every subsetR′
⊆ Q′, where CR′ :=


X∈R′ L∩(X), then the family (L∩(X) : X ∈ Q′) has a system of distinct representatives,

which we can use to form an L-coloring of G. So we may assume that there is a set R′
⊆ Q′ such that |CR′ | < |R′

|.

Claim 2. R′ contains at most one subset of each part Vp ∈ B0.

Proof. This holds by hypothesis in Case 1, and so it suffices to prove it in Case 2. In this case, if R′ contains two singleton
subsets {x}, {y} of some part Vp ∈ B0, then {x}, {y} ∈ Q = R and so

|CR′ | ⩾ |L(x) ∪ L(y)| = |Q| − 1 = |Q′
| ⩾ |R′

|

by (38), which is a contradiction. And if R′ contains the set X ′
= {x′, y′

} and another subset {z} of Vp′ , then

|CR′ | ⩾ |(L(x′) ∩ L(y′)) ∪ L(z)| = |Q| − 1 = |Q′
| ⩾ |R′

|

by (38). In every case we have a contradiction. �

Claim 3. k0 − k2 ⩽ 1
2 (k + 1).

Proof. Recall that k = k0 + k1. If k0 − k2 ⩾ k1 + 2 then

|V (G)| =

m−
i=1

iki ⩾ 3(k0 − k2) + 2k2 + k1 ⩾ 2(k0 − k2) + 2k2 + 2k1 + 2 = 2k + 2,

a contradiction. Thus k0 − k2 ⩽ k1 + 1, and so 2(k0 − k2) ⩽ k0 − k2 + k1 + 1 ⩽ k + 1, as required. �

Claim 4. R′ contains at least three subsets of some part Vp.
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Table 1
Coefficients for use in the casem = 5.

(5a2) (4a2) (5a3) (3a2) (4a3) (5a4) (2a2) (3a3) (4a4) (5a5)

|Q| − k (34) 1 1 2 1 2 3 1 2 3 4
|V | − k (35) 4 3 4 2 3 4 1 2 3 4
5Ω1

4 (36) 3 2 2 1 1 1 0 0 0 0
5Ω1

3 2 1 1 0 0 0 0 0 0 0
5Ω1

2 1 0 0 0 0 0 0 0 0 0
4Ω1

3 2 2 1 1 1 1 0 0 0 0
4Ω1

2 1 1 0 0 0 0 0 0 0 0

(40) 1 1 2 1 2 3 0 0 0 0
3
4 (|V |−k)− 3

4 (5Ω1
3 )− 1

2 (5Ω1
2 ) (41) 1 3

2
9
4

3
2

9
4 3 3

4
3
2

9
4 3

(42) 1 1 2 1 2 2 0 0 0 0
2(4Ω1

3 ) − 3(4Ω1
2 ) (43) 1 1 2 2 2 2 0 0 0 0

(44) 1 1 2 1 1 2 0 0 0 0
1
2 (|V | − k) −

5Ω1
2 (45) 1 3

2 2 1 3
2 2 1

2 1 3
2 2

(46) 1 1 1 1 1 2 0 0 0 0
1
2 (|V | − k −

5Ω1
3 ) (47) 1 1 3

2 1 3
2 2 1

2 1 3
2 2

Proof. By Claim 2, R′ contains at most one subset of each part Vp ∈ B0. Suppose it contains at most two subsets of each
other part Vp. We consider two cases.
Case 4.1. |R′

| ⩾ k + 1. Since |R′
| > k, R′ must contain exactly two subsets of some Vp ∉ B0. Choose the maximum such p,

so that |R′
| ⩽ k+ p, and let Vp ∈

sAt , so that p ⩽ sΩ0
t by (13). By Lemma 1, |CR′ | ⩾ k+

sΩ0
t ⩾ k+ p ⩾ |R′

|, a contradiction.
Case 4.2. |R′

| ⩽ k. Then |CR′ | ⩽ k − 1, and so R′ contains no singleton set. But for each part Vp = {x, y} of order 2,
L(x) ∩ L(y) = ∅ by (1), and so {x} and {y} are singleton sets in Q′. Thus R′ contains no subset of any part Vp such that
|Vp| ⩽ 2. By Lemma 1, R′ contains at most one subset of any part Vp. Thus |R′

| ⩽ k0 − k2 ⩽ 1
2 (k + 1), by Claim 3.

If R′ contains the set X ′
= {x′, y′

} in Case 2, then |CR′ | ⩾ |L(x′) ∩ L(y′)| ⩾ 1
2k by Claim 1; thus |R′

| ⩾ 1
2k+ 1 > 1

2 (k+ 1),
which contradicts the previous paragraph. Since R′ contains no singleton set, it follows that R′ contains no subset of any
part Vp ∈ B0.

Let p be the maximum index such that some subset X of Vp belongs to R′, so that |R′
| ⩽ p. Assume that Vp ∈

sAt , so that
p ⩽ sΩ0

t by (13). Then g(Qt(p)) ⩾ sΩ1
t ⩾ sΩ0

t by (14) and (5). Since |L∩(Xi)| ⩽ k for every set Xi ∈ Qt(p), it follows from (2)
that

|L∩(X)| = g(Qt(p)) −

−
(|L∩(Xi)| − k) ⩾ g(Qt(p)),

where the sum is taken over the t − 1 sets Xi ∈ Qt(p) such that Xi ≠ X; thus |CR′ | ⩾ |L∩(X)| ⩾ sΩ0
t ⩾ p ⩾ |R′

|, which is a
contradiction. This completes the proof of Claim 4. �

We now consider the relevant values of m. We need only prove the result for m = 5, since it then holds for all smaller
values of m; but it is now so quick to finish the proof for m = 4 that we do it anyway. Suppose m = 4. By Claim 2, R′

contains at most one subset of each part Vp ∈ B0. Thus, by a slight modification of (34),

|R′
| ⩽ k +

−
2⩽t<s⩽m

(t − 1)(sat) = k + (4a2) + (3a2) + 2(4a3). (39)

Note that, by the definition of bq and (3)–(5) with m = 4, b2 = (4a2), b1 = (3a2) + (4a3), 4Ω1
2 = Θ3 + (4a2) = 0 + b2, and

4Ω1
3 =

4Ω1
2 + Θ1 = 2b2 + b1. By Claim 4, R′ contains at least three subsets of some part Vp. The only possibility is that

Vp ∈
4A3, so that, by Lemma 3(b),

|CR′ | ⩾ k + 2(4Ω1
3 ) − 3(4Ω1

2 ) = k + 2(2b2 + b1) − 3b2
= k + b2 + 2b1 = k + (4a2) + 2(3a2) + 2(4a3) ⩾ |R′

|

by (39). But we are assuming that |CR′ | < |R′
|, and this contradiction completes the proof whenm = 4.

Assume now that m = 5. For convenience, in Table 1 we have tabulated the coefficients of the terms (sat) occurring in
various expressions. The analog of (39) is

|R′
| ⩽ k +

−
2⩽t<s⩽m

(t − 1)(sat) = k + (5a2) + (4a2) + 2(5a3) + (3a2) + 2(4a3) + 3(5a4). (40)

By Lemma 3(c), and since |V | ⩽ 2k + 1, if R′ contains all four subsets of some part Vp ∈
5A4 then

|CR′ | ⩾
1
4
(7k − 3(5Ω1

3 ) − 2(5Ω1
2 )) ⩾ k +

3
4
(|V | − k − 1) −

3
4
(5Ω1

3 ) −
1
2
(5Ω1

2 ). (41)
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It follows from (40) and (41) (comparing the coefficients in Table 1) that |CR′ | ⩾ |R′
|−

3
4 , which contradicts the supposition

that |CR′ | ⩽ |R′
| − 1. Thus we deduce that R′ contains at most three subsets of each part Vp ∈

5A4, so that

|R′
| ⩽ k + (5a2) + (4a2) + 2(5a3) + (3a2) + 2(4a3) + 2(5a4). (42)

By Lemma 3(b), if R′ contains all three subsets of some part Vp ∈
4A3, then

|CR′ | ⩾ k + 2(4Ω1
3 ) − 3(4Ω1

2 ). (43)

It follows from (42) and (43) (comparing the coefficients in Table 1) that |CR′ | ⩾ |R′
|, which contradicts the supposition

that |CR′ | ⩽ |R′
| − 1. Thus we deduce that R′ contains at most two subsets of each part Vp ∈

4A3, so that

|R′
| ⩽ k + (5a2) + (4a2) + 2(5a3) + (3a2) + (4a3) + 2(5a4). (44)

By Lemma 4, if R′ contains all three subsets of some part Vp ∈
5A3, then

|CR′ | ⩾
3
2
k −

5Ω1
2 ⩾ k +

1
2
(|V | − k − 1) −

5Ω1
2 . (45)

It follows from (44) and (45) that |CR′ | ⩾ |R′
| −

1
2 , which contradicts the supposition that |CR′ | ⩽ |R′

| − 1. We deduce that
R′ contains at most two subsets of each part Vp ∈

5A3, so that

|R′
| ⩽ k + (5a2) + (4a2) + (5a3) + (3a2) + (4a3) + 2(5a4). (46)

By Claim 4,R′ contains at least three subsets of some part Vp. Sincewe have ruled out all other possibilities,R′ must contain
exactly three subsets, and hence two or more singleton subsets, of some part Vp ∈

5A4. Thus, by Lemma 3(a),

|CR′ | ⩾
1
2
(3k −

5Ω1
3 ) ⩾ k +

1
2
(|V | − k − 1 −

5Ω1
3 ). (47)

It follows from (46) and (47) that |CR′ | ⩾ |R′
| −

1
2 , which contradicts the supposition that |CR′ | ⩽ |R′

| − 1. This completes
the proof of Theorem 1.
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