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every graph with tree-width at most k and odd-girth at least g has
circular chromatic number at most 2 + ε.
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1. Introduction

It has been a challenging problem to prove the existence of graphs of arbitrarily high girth and
chromatic number [2]. On the other hand, graphs with large girth that avoid a fixed minor are known
to have low chromatic number (in particular, this applies to graphs embedded on a fixed surface).
More precisely, as Thomassen observed [8], a graph that avoids a fixed minor and has large girth is 2-
degenerate, and hence 3-colorable. Further, Galluccio, Goddyn and Hell [3] proved the following theo-
rem, which essentially states that graphs with large girth that avoid a fixed minor are almost bipartite.

E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), kral@kam.mff.cuni.cz (D. Král’), sereni@kam.mff.cuni.cz
(J.-S. Sereni), Michael.Stiebitz@tu-ilmenau.de (M. Stiebitz).

1 This author’s work was partially supported by NSF grant DMS-0650784 and by grant 09-01-00244-a of the Russian
Foundation for Basic Research.

2 The Institute for Theoretical Computer Science (ITI) is supported by Ministry of Education of the Czech Republic as project
1M0545. This research has also been supported by the grant GACR 201/09/0197.
0095-8956/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2010.04.004

http://dx.doi.org/10.1016/j.jctb.2010.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jctb
mailto:kostochk@math.uiuc.edu
mailto:kral@kam.mff.cuni.cz
mailto:sereni@kam.mff.cuni.cz
mailto:Michael.Stiebitz@tu-ilmenau.de
http://dx.doi.org/10.1016/j.jctb.2010.04.004


A.V. Kostochka et al. / Journal of Combinatorial Theory, Series B 100 (2010) 554–559 555
Theorem 1. (See Galluccio, Goddyn and Hell, 2001.) For every graph H and every ε > 0, there exists an in-
teger g such that the circular chromatic number of every H-minor free graph of girth at least g is at most
2 + ε.

A natural way to weaken the girth-condition is to require the graphs to have high odd-girth (the
odd-girth is the length of a shortest odd cycle). However, Youngs [9] constructed 4-chromatic pro-
jective graphs with arbitrarily high odd-girth. Thus, the high odd-girth requirement is not sufficient
to ensure 3-colorability, even for graphs embedded on a fixed surface. Klostermeyer and Zhang [4],
though, proved that the circular chromatic number of every planar graph of sufficiently high odd-
girth is arbitrarily close to 2. In particular, the same is true for K4-minor free graphs, i.e. graphs
with tree-width at most 2. We prove that the conclusion is still true for any class of graphs with
bounded tree-width, which answers a question of Pan and Zhu [6, Question 6.2] also appearing as
Question 8.12 in the survey by Zhu [10].

Theorem 2. For every k and every ε > 0, there exists g such that every graph with tree-width at most k and
odd-girth at least g has circular chromatic number at most 2 + ε.

Motivated by tree-width duality, Nešetřil and Zhu [5] proved the following theorem.

Theorem 3. (See Nešetřil and Zhu, 1996.) For every k and every ε > 0, there exists g such that every graph G
with tree-width at most k and homomorphic to a graph H with girth at least g has circular chromatic number
at most 2 + ε.

To see that Theorem 2 implies Theorem 3, observe that if G has an odd cycle of length g , then H
has an odd cycle of length at most g .

2. Notation

A (p,q)-coloring of a graph is a coloring c of the vertices with colors from the set {0, . . . , p − 1}
such that the colors of any two adjacent vertices u and v satisfy q � |c(u)− c(v)| � p −q. The circular
chromatic number χc(G) of a graph G is the infimum (and it can be shown to be the minimum) of the
ratios p/q such that G has a (p,q)-coloring. For every finite graph G , it holds that χ(G) = �χc(G)�
and there is a (p,q)-coloring of G for every p and q with p/q � χc(G). In particular, the circular
chromatic number of G is at most 2+1/k if and only if G is homomorphic to a cycle of length 2k +1.
The reader is referred to the surveys by Zhu [10,11] for more information about circular colorings.

A p-precoloring is a coloring ϕ of a subset A of vertices of a graph G with colors from {0, . . . ,

p − 1}, and its extension is a coloring of the whole graph G that coincides with ϕ on A. The following
lemma can be seen as a corollary of a theorem of Albertson and West [1, Theorem 1], and it is the
only tool we use from this area.

Lemma 4. For every p and q with 2 < p/q, there exists d such that any p-precoloring of vertices with mutual
distances at least d of a bipartite graph H extends to a (p,q)-coloring of H.

A k-tree is a graph obtained from a complete graph of order k + 1 by successively adding vertices
joined to exactly k pairwise adjacent vertices. The tree-width of a graph G is the smallest k such that
G is a subgraph of a k-tree. Graphs with tree-width at most k are also called partial k-trees.

A rooted partial k-tree is a partial k-tree G with k + 1 distinguished vertices v1, . . . , vk+1 such that
there exists a k-tree G ′ that is a supergraph of G and the vertices v1, . . . , vk+1 form a clique in G ′ . We
also say that the partial k-tree is rooted at v1, . . . , vk+1. If G is a partial k-tree rooted at v1, . . . , vk+1
and G ′ is a partial k-tree rooted at v ′

1, . . . , v ′
k+1, then the graph G ⊕ G ′ obtained by identifying vi

and v ′
i is again a rooted partial k-tree (identify the cliques in the corresponding k-trees).

Fix p and q. If G is a rooted partial k-tree, then F (G) is the set of all p-precolorings of the k + 1
distinguished vertices of G that can be extended to a (p,q)-coloring of G .
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The next lemma is a standard application of results in the area of graphs of bounded tree-
width [7].

Lemma 5. Let k and N be positive integers such that N � k +1. If G is a partial k-tree with at least 3N vertices,
then there exist partial rooted k-trees G1 and G2 such that G is isomorphic to G1 ⊕ G2 and G1 has at least
N + 1 and at most 2N vertices.

If G is a partial k-tree rooted at v1, . . . , vk+1, then its type is a (k +1)× (k +1) matrix M such that
Mij is the length of the shortest path between the vertices vi and v j . If there is no such path, Mij is
equal to ∞. Any matrix M that is a type of a partial rooted k-tree satisfies the triangle inequality
(setting ∞+ x = ∞ for any x). A symmetric matrix M whose entries are non-negative integers and ∞
(and zeroes only on the main diagonal) that satisfies the triangle inequality is a type. A type is bipartite
if Mij + M jk + Mik ≡ 0 mod 2 for any three finite entries Mij , M jk and Mik . Two bipartite types M
and M ′ are compatible if Mij and M ′

i j have the same parity whenever both of them are finite. We
define a binary relation on bipartite types as follows: M � M ′ if and only if M and M ′ are compatible
and Mij � M ′

i j for every i and j. Note that the relation � is a partial order.
We finish this section with the following lemma. Its straightforward proof is included to help us

in familiarizing with the just introduced notation.

Lemma 6. Let G1 and G2 be two bipartite rooted partial k-trees with types M1 and M2 such that there exists
a bipartite type M0 with M0 � M1 and M0 � M2 . Then the types M1 and M2 are compatible, G1 ⊕ G2 is a
bipartite rooted partial k-tree and its type M satisfies M0 � M.

Proof. The types M1 and M2 are compatible: if both M1
i j and M2

i j are finite, then M0
i j is finite and has

the same parity as M1
i j and M2

i j . Hence, the entries M1
i j and M2

i j have the same parity.

Let M be the type of G1 ⊕ G2. Note that it does not hold in general that Mij = min{M1
i j, M2

i j}.

We show that M0 � M which will also imply that G1 ⊕ G2 is bipartite since M0 is a bipartite type.
Consider a shortest path P between two distinguished vertices vt and vt′ and split P into paths
P1, . . . , P� delimited by distinguished vertices on P . Note that � � k since P is a path. Let j0 = t and
let ji be the index of the end-vertex of Pi for i ∈ {1, . . . , �}. In particular, j� = t′ . Each of the paths
P1, . . . , P� is fully contained in G1 or in G2 (possibly in both if it is a single edge). Since M0 � M1

and M0 � M2, the length of Pi is at least M0
ji−1 ji

, and it has the same parity as M0
ji−1 ji

. Since M0 is
a bipartite type (among others, it satisfies the triangle inequality), the length of P , which is Mtt′ , has
the same parity as M0

j0 j�
= M0

tt′ and is at least M0
tt′ . This implies that M0 � M . �

3. The main lemma

In this section, we prove a lemma which forms the core of our argument. To this end, we first
prove another lemma that asserts that for every k, p and q, the set of types of all bipartite rooted
partial k-trees forbidding a fixed set of p-precolorings from extending (and maybe some other pre-
colorings, too) has always a maximal element. We state the lemma slightly differently to facilitate its
application.

Lemma 7. For every k, p and q, there exists a finite number of (bipartite) types M1, . . . , Mm such that for any
bipartite rooted partial k-tree G with type M, there exists a bipartite rooted partial k-tree G ′ with type Mi for
some i ∈ {1, . . . ,m} such that F (G ′) ⊆ F (G) and M � Mi .

Proof. Let d � 2 be the constant from Lemma 4 applied for p and q. Let M1, . . . , Mm be all bipartite
types with entries from the set {1, . . . , D(k+1)2 } ∪ {∞} where D = 4d. Thus, m is finite and does not
exceed (D(k+1)2 + 1)k(k+1)/2.
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Let G be a bipartite rooted partial k-tree with type M . If M is one of the types M1, . . . , Mm , then
there is nothing to prove (just choose i such that M = Mi ). Otherwise, one of its entries is finite and
exceeds D(k+1)2

.
For i ∈ {1, . . . , (k + 1)2}, let J i be the set of all positive integers between Di−1 and Di − 1 (inclu-

sively). Let i0 be the smallest integer such that no entry of M is contained in J i0 . Since M has at
most k(k + 1)/2 different entries, such an index i0 exists. Note that if i0 = 1, then Lemma 4 implies
that F (G) contains all possible p-precolorings, and the sought graph G ′ is the bipartite rooted partial
k-tree composed of k + 1 isolated vertices, with the all-∞ type.

Two vertices vi and v j at which G is rooted are close if Mij is less than Di0−1. The relation ≈
of being close is an equivalence relation on v1, . . . , vk+1. Indeed, it is reflexive and symmetric by the
definition, and we now show that it is transitive. Suppose that Mij and M jt are both less than Di0−1.
Then, the distance between vi and vt is at most Mij + M jt � 2Di0−1 − 2 � Di0 − 1 since D � 2.
Consequently, by the choice of i0, the distance between vi and vt is at most Di0−1 − 1 and thus
vi ≈ vt .

Let C1, . . . , C� be the equivalence classes of the relation ≈. Note that C1, . . . , C� is a finer partition
than that given by the equivalence relation of being connected.

Since G is bipartite, we can partition its vertices into two color classes, say red and blue. For every
i ∈ {1, . . . , �}, contract the closed neighborhood of a vertex v if v is a blue vertex and its distance
from any vertex of Ci is at least Di0−1 and keep doing so as long as such a vertex exists. Observe
that the resulting graph is uniquely defined. After discarding the components that do not contain the
vertices of Ci , we obtain a bipartite partial k-tree Gi rooted at the vertices of Ci : it is bipartite as
we have always contracted closed neighborhoods of vertices of the same color (blue) to a single (red)
vertex, and its tree-width is at most k since the tree-width is preserved by contractions. Moreover,
the distance between any two vertices of Ci has not decreased since any path between them through
any of the newly arising vertices has length at least 2Di0−1 − 2 � Di0−1.

Now, let G ′ be the bipartite rooted partial k-tree obtained by taking the disjoint union of
G1, . . . , G� . The type M ′ of G ′ can be obtained from the type of G: set M ′

i j to be Mij if the ver-

tices vi and v j are close, and ∞ otherwise. Thus, M ′ is one of the types M1, . . . , Mm and M � M ′ . It
remains to show that F (G ′) ⊆ F (G).

Let c ∈ F (G ′) be a p-precoloring that extends to G ′ , and recall that D � 4. For i ∈ {1, . . . , �}, let
Ai be the set of all red vertices at distance at most Di0−1 and all blue vertices at distance at most
Di0−1 − 1 from Ci , and let Ri be the set of all red vertices at distance Di0−1 − 1 or Di0−1 from Ci .
Set Bi = Ai \ Ri (Bi is the “interior” of Ai and Ri its “boundary”). The extension of c to Gi naturally
defines a coloring of all vertices of Ai : Gi is the subgraph of G induced by Ai with some red vertices
of Ri identified (two vertices of Ri are identified if and only if they are in the same component of the
graph G − Bi ).

Let H be the following auxiliary graph obtained from G: remove the vertices of B = B1 ∪ · · · ∪ B�

and, for i ∈ {1, . . . , �}, identify every pair of vertices of Ri that are in the same component of G − B .
Let R be the set of vertices of H corresponding to some vertices of R1 ∪ · · · ∪ R� . Precolor the vertices
of R with the colors given by the colorings of the graphs Gi (note that two vertices of Ri in the same
component of G − Bi are also in the same component of G − B , so this is well defined). The graph H is
bipartite as only red vertices have been identified. The distance between any two precolored vertices
is at least d: consider two precolored vertices r and r′ at distance at most d − 1. Let i and i′ be such
that r ∈ Ri and r′ ∈ Ri′ . If i = i′ , then r and r′ are in the same component of G − B and thus r = r′ .
If i �= i′ then by the definition of Ri and Ri′ , the vertex r is in G at distance at most Di0−1 from
some vertex v of Ci and r′ is at distance at most Di0−1 from some vertex v ′ of Ci′ . So, the distance
between v and v ′ is at most 2Di0−1 + d − 1 � Di0 − 1. Since M has no entry from J i0 , the vertices v
and v ′ must be close and thus i = i′ , a contradiction.

Since the distance between any two precolored vertices is at least d, the precoloring extends to H
by Lemma 4 and in a natural way it defines a coloring of G . We conclude that every p-precoloring
that extends to G ′ also extends to G and thus F (G ′) ⊆ F (G). �
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We now prove our main lemma, which basically states that there is only a finite number of bipar-
tite rooted partial k-trees that can appear in a minimal non-(p,q)-colorable graph with tree-width k
and a given odd-girth.

Lemma 8. For every k, p and q, there exist a finite number m and bipartite rooted partial k-trees G1, . . . , Gm

with types M1, . . . , Mm such that for any bipartite rooted partial k-tree G with type M there exists i such that
F (Gi) ⊆ F (G) and M � Mi .

Proof. Let M1, . . . , Mm be the types from Lemma 7. We define the graph Gi as follows: for every
p-precoloring c that does not extend to a bipartite partial rooted k-tree with type Mi , fix a partial
rooted k-tree Gi

c with type Mi such that c does not extend to Gi
c . Set Gi = ⊕

c Gi
c , where c runs over

all such p-precolorings. If the above sum of partial k-trees is non-empty, then the type M of Gi is Mi .
Indeed, M � Mi by the definition of Gi , and Lemma 6 implies that Mi � M . If all the p-precolorings
of the k + 1 vertices in the root extend to each partial k-tree of type Mi , then let Gi be the graph
consisting of k + 1 isolated vertices. This happens in particular for the all-∞ type.

Let us verify the statement of the lemma. Let G be a bipartite rooted partial k-tree and let M be
the type of G . If F (G) is composed of all p-precolorings, the sought graph Gi is the one composed of
k + 1 isolated vertices. Hence, we assume that F (G) does not contain all p-precolorings, i.e., there are
p-precolorings that do not extend to G . By Lemma 7, there exists a bipartite rooted partial k-tree G ′
with type M ′ such that M � M ′ = Mi for some i and F (G ′) ⊆ F (G). For every p-precoloring c that
does not extend to G ′ (and there exists at least one such p-precoloring c), some graph Gi

c has been
glued into Gi . Hence, F (Gi) ⊆ F (G ′) ⊆ F (G). Since the type of Gi is Mi , the conclusion of the lemma
follows. �
4. Proof of Theorem 2

We are now ready to prove Theorem 2, which is recalled below.

Theorem 2. For every k and every ε > 0, there exists g such that every graph with tree-width at most k and
odd-girth at least g has circular chromatic number at most 2 + ε.

Proof. Fix p and q such that 2 < p/q � 2 + ε. Let G1, . . . , Gm be the bipartite partial k-trees from
Lemma 8 applied for k, p and q. Set N to be the largest order of the graphs Gi and set g to be 3N .
We assert that each partial k-tree with odd-girth g has circular chromatic number at most p/q.
Assume that this is not the case and let G be a counterexample with the fewest vertices.

The graph G has at least 3N vertices (otherwise, it has no odd cycles and thus is bipartite). By
Lemma 5, G is isomorphic to G1 ⊕ G2, where G1 and G2 are rooted partial k-trees and the number
of vertices of G1 is between N + 1 and 2N . By the choice of g , the graph G1 has no odd cycle and
thus it is a bipartite rooted partial k-tree. By Lemma 8, there exists i such that F (Gi) ⊆ F (G1) and
M1 � Mi where M1 is the type of G1 and Mi is the type of Gi . Let G ′ be the partial k-tree Gi ⊕ G2.

First, G ′ has fewer vertices than G since the number of vertices of Gi is at most N and the number
of vertices of G1 is at least N + 1. Second, G ′ has no (p,q)-coloring: if it had a (p,q)-coloring, then
the corresponding p-precoloring of the k + 1 vertices shared by Gi and G2 would extend to G1 since
F (Gi) ⊆ F (G1) and thus G would have a (p,q)-coloring, too. Finally, G ′ has no odd cycle of length
less than g: if it had such a cycle, replace any path between vertices v j and v j′ of the root of Gi

with a path of at most the same length between them in G1 (recall that M1 � Mi ). If such paths for
different pairs of v j and v j′ on the considered odd cycle intersect, take their symmetric difference.
In this way, we obtain an Eulerian subgraph of G = G1 ⊕ G2 with an odd number of edges such
that the number of its edges is less than g . Consequently, this Eulerian subgraph has an odd cycle of
length less than g , which violates the assumption on the odd-girth of G . We conclude that G ′ is a
counterexample with fewer vertices than G , a contradiction. �
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We end by pointing out that the approach used yields an upper bound of 3(k + 1) ·
22pk+1

((4d)(k+1)2 +1)k2

for the smallest g such that all graphs with tree-width at most k and odd-girth
at least g have circular chromatic number at most p/q, whenever p/q > 2. More precisely, the value

of N cannot exceed (k + 1) · 22pk+1
((4d)(k+1)2 +1)k2

. To see this, we consider all pairs P = (C, M) where
C is a set of p-precolorings of the root and M is a type such that there is a bipartite rooted partial
k-tree of type M to which no coloring of C extends. Let nP be the size of a smallest such partial
k-tree. We obtain a sequence of at most 2pk+1 × ((4d)(k+1)2 + 1)k2

integers. The announced bound
follows from the following fact: if the sequence is sorted in increasing order, then each term is at
most twice the previous one.

Indeed, consider the tree-decomposition of the partial k-tree G P chosen for the pair P . If the bag
containing the root has a single child, then we delete a vertex of the root, and set a vertex in the
single child to be part of the root. We obtain a partial k-tree to which some p-precolorings of C do
not extend. Thus, nP � 1 + nP ′ for some pair P ′ and nP ′ < nP . If the bag containing the root has more
than one child, then G P can be obtained by identifying the roots of two smaller partial k-trees G
and G ′ . By the minimality of G P , the orders of G and G ′ are nP1 and nP2 for two pairs P1 and P2
such that nPi < nP for i ∈ {1,2}. This yields the stated fact, which in turn implies the given bound,
since the smallest element of the sequence is k + 1.
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