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ABSTRACT: A hypergraph is b-simple if no two distinct edges share more than b vertices. Let
m(r, t, g) denote the minimum number of edges in an r-uniform non-t-colorable hypergraph of girth
at least g.

Erdős and Lovász proved that

m(r, t, 3) ≥ t2(r−2)

16r(r − 1)2

and m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1).

A result of Szabó improves the lower bound by a factor of r2−ε for sufficiently large r. We improve
the lower bound by another factor of r and extend the result to b-simple hypergraphs. We also get a
new lower bound for hypergraphs with a given girth. Our results imply that for fixed b, t, and ε > 0
and sufficiently large r, every r-uniform b-simple hypergraph H with maximum edge-degree at most
trr1−ε is t-colorable. Some results hold for list coloring, as well. © 2009 Wiley Periodicals, Inc. Random
Struct. Alg., 35, 348–368, 2009
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1. INTRODUCTION

Let H be a hypergraph with vertex set V(H) and edge set E(H). The degree of a vertex v is
the number of edges containing v. Similarly, the degree of an edge e is the number of edges
intersecting e. We will denote by �(H) the maximum degree of vertices in H. A cycle of
length k in a hypergraph H is an alternating cyclic sequence e0, v0, e1, v1, . . . , ek−1, vk−1, e0
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of distinct edges and vertices in H such that vi ∈ ei ∩ ei+1 for all i modulo k. The girth of
a hypergraph is the length of its shortest cycle. The distance between two vertices is the
number of edges in a shortest path connecting them. A hypergraph of girth at least three
is also called simple. Let m(r, t, g) denote the smallest number of edges in an r-uniform
hypergraph with girth at least g and chromatic number at least t + 1. In their seminal article
[2], Erdős and Lovász gave the upper bound

m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1) (1)

for all g and the lower bound

m(r, t, 3) ≥ t2(r−2)

16r(r − 1)2
(2)

for simple hypergraphs. The ratio of the upper bound to the lower bound for simple
hypergraphs is only r7. The bound (2) was derived from the following famous result.

Theorem 1 [2]. If t, r ≥ 2, then every r-uniform hypergraph H with maximum degree of
its edges at most 1

4 tr is t-colorable. In particular, if the maximum vertex degree of H is at
most 1

4 trr−1, then H is t-colorable.

To derive the bound, they used an interesting trick of trimming. We discuss trimming in
Subsection 3.1.

Szabó [3] refined the second part of the bound of Theorem 1 for simple hypergraphs as
follows.

Theorem 2. If t ≥ 2 and ε > 0 are fixed and r is sufficiently large, then every r-uniform
simple hypergraph H with maximum degree at most trr−ε is t-colorable.

Actually, Szabó proved the theorem only for t = 2, since that was what he needed for
his applications, but the technique works for any fixed t. Again, applying trimming and this
theorem, one easily gets that for fixed t and ε and large r,

m(r, t, 3) ≥ t2r

r1+ε
. (3)

In this article, we consider simple and so called b-simple hypergraphs. A hypergraph H
is b-simple if |e ∩ e′| ≤ b for every distinct e, e′ ∈ E(H). Sometimes, b-simple hypergraphs
are called partial Steiner systems. A 1-simple hypergraph is a simple hypergraph.

The main result of this article (we state it in the next section) says that for fixed t ≥ 2 and
ε > 0 and sufficiently large r, if a simple r-uniform hypergraph H cannot be colored with t
colors, then either it has a vertex of degree greater than r tr , or there are “many” vertices of
degree greater than trr−ε . This will improve the bound (3) by a factor of r. Our result also
yields an improvement of the edge-degree version of Theorem 1 for simple hypergraphs as
follows.

Theorem 3. If b ≥ 1, t ≥ 2, and ε > 0 are fixed and r is sufficiently large, then every
r-uniform b-simple hypergraph H with maximum edge-degree at most trr1−ε is t-colorable.
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The theorem holds also for list colorings. To keep proofs easier to read, we give the proof
for ordinary colorings and comment at the end of the article how to adapt the proofs to list
coloring.

Let f (r, t, b) denote the smallest possible number of edges in an r-uniform b-simple
hypergraph that is not t-colorable. From our main result we deduce that for fixed t, b, and
ε > 0 and sufficiently large r,

f (r, t, b) ≥ tr(1+1/b)

rε
. (4)

It turns out that in terms of r, the bound cannot be improved by more than a polynomial
factor. Using the Erdős–Lovász technique [2] for proving (2), we show that for large r,

f (r, t, b) ≤ 40t2(trr2)1+1/b. (5)

We also use our main result and trimming to derive the following lower bounds on
m(r, t, g) for arbitrary fixed g (in [2], the bound was only for g = 3):

m(r, t, 2s + 1) ≥ tr(1+s)

rε
, (6)

if r is large in comparison with t, s, and 1/ε.
The structure of the article is as follows. In the next section we prove the main result. In

Section 3, lower bounds on the size of non-t-colorable hypergraphs are given. In Section
4, bound (5) is derived. We conclude the article with some comments. In particular, we
comment on list colorings of hypergraphs.

2. COLORING HYPERGRAPHS WITH BOUNDED EDGE DEGREES

Szabó’s theorem says that for large r, every r-uniform simple hypergraph with the degree
of each vertex at most trr−ε is t-colorable. Our result extends the conclusion to r-uniform
simple (and b-simple) hypergraphs in which the degree of each edge is at most trr1−ε .

A vertex v of H is low, if deg(v) ≤ trr−ε and high otherwise. For an edge e, let L(e)
[respectively, H(e)] be the set of low (respectively, high) vertices in e. An edge e is light, if
|H(e)| ≤ 0.5r and heavy otherwise.

For a given ε > 0, an r-uniform hypergraph H is (t, ε)-sparse if

�(H) ≤ trr, and (7)

every vertex of H is in at most tr/rε heavy edges. (8)

Our main result is the following.

Theorem 4. If b ≥ 1, t ≥ 2, and ε > 0 are fixed and r is sufficiently large, then every
r-uniform b-simple (t, ε)-sparse hypergraph H is t-colorable.

To derive Theorem 3 from our main result, we observe that for sufficiently large r, every
not (t, 0.5ε)-sparse hypergraph H has an edge of degree greater than trr1−ε . This is trivial
if (7) does not hold. Suppose now that (8) does not hold, in particular that some edge e in H
is heavy. Then the sum of degrees of vertices in e is greater than 0.5 rtrr1−0.5ε . Since every
edge e′ �= e contributes at most b to this sum, e itself contributes r, and r0.5ε > 4b, the
degree of e in H is greater than trr1−ε . This proves Theorem 3 (modulo Theorem 4).
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2.1. Szabó’s Approach and the Structure of the Proof

We follow the ideas of Szabó [3]. He used the following lemma of Beck [1], who in turn
used the Local Lemma.

Lemma 5 [Beck]. Let X be a finite set and B1, B2, . . . , Bs be not necessarily distinct
subsets of X with |Bi| ≥ r. For every i, let fi : Bi → {1, 2, . . . , t} be a given t-coloring of Bi.
If

∑
i:p∈Bi

(
1 − 1

r

)−|Bi |
t−|Bi | ≤ 1

r
(9)

for every p ∈ X, then there exists a t-coloring f : X → {1, 2, . . . , t} such that f |Bi �= fi.

Szabó’s idea of the proof is the following. Let H be an r-uniform simple hypergraph
satisfying the conditions of his theorem. Szabó starts from a t-coloring of vertices of H
where each vertex is colored with a color uniformly at random chosen from the set {1, . . . , t}
independently from all other vertices. He considers a special set of so called configurations
that are pairs (Bi, fi), where Bi ⊆ V(H) and fi is a given t-coloring of Bi. The meaning
of configurations, is that they are bad situations that may cause some edges to become
monochromatic after special recolorings in the future. He proved that

a. if f is any (not necessarily proper) t-coloring of V(H) and none of his configurations
occurs, then some vertices of H can be recolored so that the resulting t-coloring of H
is proper;

b. Inequality (9) holds for every p ∈ V(H).

Together with Lemma 5, this yields that H has a proper t-coloring. Observe that each
configuration B ⊆ V(H) contributes to the sum in (9) the amount (1 − 1

r )
−|B|t−|B|, and we

will call this expression the contribution of B. To prove that (9) holds, for every “bad”
configuration B ⊆ V(H), Szabó estimated its contribution.

We will use the same scheme with somewhat changed rules of recoloring and somewhat
different configurations.

Another idea of Szabó is that in each edge e of H he chooses a subset R(e) such that
later, if e is monochromatic, then he tries to recolor only vertices in R(e) and does not touch
other vertices. This choice allows to decrease the number of “bad” configurations whose
contributions we need to estimate. The structure of our proof is the following. In the next
subsection, we construct a subset R(e)of each edge e. Later, if e becomes monochromatic, we
will try to recolor only vertices in R(e). In Subsection 2.3, we give the main proof assuming
that we have some bounds on the contributions of “bad” configurations. In Subsections 2.4
and 2.5, we prove these bounds on contributions.

2.2. Choosing R(e)

Lemma 6. Let k ≤ r/3. Then in every light edge e, we can choose a k-element set
R(e) ⊆ L(e) so that for each low vertex v,

|{e : v ∈ R(e)}| ≤ tr

rε

4k

r
. (10)
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Proof. Consider the bipartite graph G[X , Y ], where X is the set of light edges in H, Y is
the set of low vertices in H, and xy ∈ E(G) if and only if edge x contains vertex y in H. By
the definition of light edges, each vertex in X has degree in G at least r/2. By the definition
of low vertices, dG(v) ≤ tr/rε for every v ∈ Y . Let G1 be the graph obtained from G by
splitting every vertex v ∈ Y into 
2dG(v)/r� vertices, each with degree at most 
r/2�.

Let G2 be obtained from G1 by deleting some edges so that the degree of every vertex
x ∈ X becomes 
r/2�. By Konig’s theorem, there exists a proper edge-coloring φ of G2 with

r/2� colors. Let G3 be the subgraph of G2 formed by the edges with colors {1, 2, . . . k}
in φ. Finally, let G4 be obtained from G3 by gluing back all the split vertices in Y . By
construction, G4 is a spanning subgraph of G, and the degree of every vertex x ∈ X in G4

is exactly k. The degree in G4 of every vertex v ∈ Y is at most

k
2dG(v)/r� ≤ k

⌈
tr

rε

2

r

⌉
.

The last expression for large r does not exceed the RHS of (10).
For every edge e in H, let R(e) be the set of vertices adjacent to vertex e in G4. By the

properties of G4, the lemma holds for these R(e).

Lemma 7. Let k ≤ r/3. Then in every heavy edge e, we can choose a k-element set
R(e) ⊆ H(e) so that for each heavy vertex v,

|{e : v ∈ R(e)}| ≤ tr

rε

4k

r
. (11)

Proof. By (8), every vertex is in at most tr r−ε heavy edges. We essentially repeat the proof
of Lemma 6, only replacing light edges with heavy and low vertices with high ones.

2.3. Configurations and the Main Proof

We start from a random t-coloring f of vertices of H where each vertex v is colored with a
color f (v) uniformly at random chosen from the set {1, . . . , t} independently from all other
vertices.

2.3.1. Configurations of Type 1. A configuration of Type 1, C(j, m, m′, m1, . . . , mm),
with parameters j, m, m′, m1, . . . , mm consists of 1 + m + m′ + (m1 + · · · + mm) (not nec-
essarily distinct) edges D, B1, . . . , Bm′ , C1, . . . , Cm, A1,1, . . . , A1,m1 , A2,1, . . . , Am,mm arranged
and colored (Fig. 1) so that:

(α1) There are m′ distinct vertices b1, . . . , bm′ in H(D) such that bi ∈ R(Bi) for i = 1, . . . , m′.
(α2) There are m distinct vertices c1, . . . , cm in L(D) such that ci ∈ R(Ci) for i = 1, . . . , m.
(α3) All B1, . . . , Bm′ , C1, . . . , Cm are distinct.
(α4) All vertices in D − {b1, . . . , bm′ , c1, . . . , cm} are colored with color j + 1 (modulo t).
(α5) All vertices in B1, . . . , Bm′ are colored with j.
(α6) For i = 1, . . . , m, H(Ci) contains mi distinct vertices ai,1, . . . , ai,mi such that ai,i′ ∈

R(Ai,i′) for all i′ = 1, . . . , mi.
(α7) Vertex ai1,i′1 may coincide with ai2,i′2 , when i1 �= i2, in which case Ai1,i′1 should coincide

with Ai2,i′2 . If ai1,i′1 �= ai2,i′2 , then Ai1,i′1 �= Ai2,i′2 .
(α8) For every i = 1, . . . , m all vertices in Ci − {ai,1, . . . , ai,mi} are colored with j.
(α9) All vertices in all A1,1, . . . , A1,m1 , A2,1, . . . , Am,mm are colored with j − 1 (modulo t).
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Fig. 1. An example of a Configuration of Type 1.

Comments: Since b1, . . . , bm′ ∈ H(D), each of B1, . . . , Bm′ is a heavy edge. For the same
reason, each of A1,1, . . . , A1,m1 , A2,1, . . . , Am,mm is heavy. Similarly, each of C1, . . . , Cm is a
light edge.

In a configuration of Type 1, edge D is called the leading edge, edges B1, . . . , Bm′ are
type B edges, edges C1, . . . , Cm are type C edges. Vertices b1, . . . , bm′ and c1, . . . , cm are
special in C. The size of a configuration is the cardinality of the union of its edges.

Let k = 
 20
ε
�. In the next subsection, we will prove that for every vertex p in H,

the total contribution of configurations of Type 1 containing p such that at least one of
m, m′, m1, . . . , mm exceeds k is o(1/r).

2.3.2. Configurations of Type 2a. There is a heavy edge B such that for each vertex
b ∈ R(B) there is a configuration Cb of Type 1 with m = 0 and m′ ≤ k such that b is special
and B is an edge of type B in Cb.

2.3.3. Configurations of Type 2b. There is a light edge C such that for each vertex
c ∈ R(C) there is a configuration Cc of Type 1 with each of m′, m, m1, . . . , mm at most k
such that c is special and C is an edge of type C in Cc (Fig. 2).

In Subsection 2.5, we prove that for every vertex p in H, the total contribution of con-
figurations of Types 2a and 2b containing p is o(1/r). These facts together with Lemma 5
yield that there exists a t-coloring f ′ avoiding configurations of Type 1 with at least one of
m′m, m1, . . . , mm exceeding k and also avoiding all configurations of Type 2a and 2b. This
coloring f ′ might have monochromatic edges, but we shall see that we can recolor some of
the vertices and get a proper t-coloring.

First recoloring: Since configurations of Type 2a do not appear in f ′, for every heavy
monochromatic edge B [say, of color j(B)], there exists a vertex b(B) ∈ R(B) such that
there is no configurations of Type 1 with a leading heavy edge D such that b(B) is a special
vertex in D and B is a Type B edge in this configuration. For every monochromatic heavy
edge B, recolor b(B) with color j(B) + 1 (modulo t). By the choice of b(B), we recolored
only some high vertices.

We claim that the new coloring f ′′ does not have monochromatic heavy edges. Indeed,
suppose that some heavy edge D is monochromatic of color j in f ′′. This means that it was
not monochromatic of color j in f ′, since in that case, a vertex of R(D) would be recolored

Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 2. An example of a Configuration of Type 2b.

to j + 1. So, there are vertices b1, . . . , bm′ in H(D) that were recolored from color j − 1,
and for each bi, there is a heavy edge Bi with bi ∈ R(Bi) that was monochromatic in f ′ and
bi = b(Bi). So, we have a configuration of Type 1 in f ′ that contradicts the definition of the
vertex b(B1).

Second recoloring: Let C be a monochromatic edge of color j(C) in the new coloring f ′′.
By above, it is a light edge, and in f ′ C either was monochromatic of the same color, or some
vertices b1, . . . , bm′ ∈ H(C) were of color j(C)−1, and each bi was in R(Bi) for some heavy
monochromatic edge Bi and was recolored because of this edge. Suppose that for every c ∈
R(C), there is a configuration of Type 1 in coloring f ′′ with m1 = m2 = · · · = mm = 0 = m′

and the leading edge containing c as a special vertex, where C is a Type C edge. Then,
each such configuration in f ′′ corresponds to some more general configuration of Type 1 in
coloring f ′. It follows that we encounter a configuration of Type 2b in f ′, a contradiction
to the choice of f ′. Thus, every monochromatic edge C in the new coloring f ′′ contains a
vertex c(C) ∈ R(C) such that there is no configuration of Type 1 in coloring f ′′ with the
leading edge containing c as a special vertex such that m1 = m2 = · · · = mm = 0 = m′ and
C is a Type C edge in this configuration.

For every monochromatic edge C in f ′′, recolor c(C) with color j(C) + 1. Observe that
at this second recoloring, we recolored only low vertices. Assume that some edge D is
monochromatic in the new coloring f [of color j(D)]. If it was also monochromatic in
f ′′, then D is light, and some vertex of R(D) would be recolored; so this is not the case.
Thus, there are vertices c1, . . . , cm in L(D) that were recolored from color j(D) − 1, and
for each ci, there is a light edge Ci with ci ∈ R(Ci) that was monochromatic in f ′′ of color
j(D) − 1 and ci = c(Ci). Furthermore, since Ci was monochromatic in f ′′, either it also
was monochromatic in f ′ or there are vertices ai,1, . . . , ai,mi ∈ H(C) of color j(D) − 2 that
were recolored in the first stage. In this case, in f ′ each ai,i′ was in R(Ai,i′) for some heavy
monochromatic edge Ai,i′ and was recolored in first stage because of this edge. Some vertices
b1, . . . , bm′ in H(D) also could be recolored in the first stage. Thus, we have a configuration
of Type 1 in f ′, a contradiction to the choice of c(C1). As we recolored high vertices in the
first stage and low at the second, no vertex is recolored more than once.

Thus, the theorem will be proved when we show that for every vertex p in H, the total con-
tribution of configurations of Type 1 containing p such that at least one of m, m′, m1, . . . , m′

m
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Fig. 3. An example of a Configuration of Type 1a.

exceeds k is o(1/r) and that the total contribution of configurations of Types 2a and 2b
containing p is o(1/r).

2.4. Handling Configurations of Type 1

We will first consider some partial cases.

2.4.1. Configuration of Type 1a. This is a configuration of Type 1 in which m1 = m2 =
· · · = mm = 0 and k ≤ m + m′ ≤ r

10bk .
For convenience of notation in handling configurations of Type 1a, define Bm′+i = Ci for

i = 1, . . . , m and let M = m+m′. For q = 1, . . . , M, call edge Bq determined if it intersects
with ∪i≤q−1Bi in at least b + 1 vertices. Let p ∈ V(H) and z be a non-negative integer. Then
the total contribution φ1a(p, M, z, D) of all configurations of Type 1a, containing p such that
p ∈ D and exactly z edges in {B1, . . . , BM} are determined is estimated as follows (Fig. 3):

(β1) The number of candidates for D containing p is at most deg(p) ≤ trr.
(β2) The number of ways to choose b1, . . . , bM in D is at most

( r
M

)
.

(β3) The number of choices of colors for vertices in D such that vertices b1, . . . , bM are
colored with j and other are colored with j + 1 is t.

(β4) The number of ways to choose which z edges Bi will be determined is
(M

z

)
.

(β5) By Lemmas 6 and 7, the number of ways to choose a non-determined Bi when we
know the corresponding special vertex is at most tr

rε
4k
r .

(β6) Since every determined edge contains some (b + 1)-tuple of vertices in the union of
“previous” edges and these (b + 1)-tuples should be distinct for different edges, the
number of ways to choose a determined Bi when we know the corresponding special

vertex is at most
( Mr

b+1

)
<

( r2

b+1

)
< r2b+2.

(β7) Since ∣∣∣∣∣
i⋃

l=1

Bl −
i−1⋃
l=1

Bl

∣∣∣∣∣ ≥
{

r − b, if Bi is non-determined,
r − Mb, if Bi is determined,

(12)

and Mb ≤ r/10k, the size of each such configuration is at least r+(M−z)(r−b)+z 9r
10 .

Random Structures and Algorithms DOI 10.1002/rsa



356 KOSTOCHKA AND KUMBHAT

Hence

φ1a(p, M, z, D) ≤ trrt

(
r

M

)(
M

z

) (
4ktr

r1+ε

)M−z

r2z(b+1)

(
r

t(r − 1)

)r+(M−z)(r−b)+0.9zr

.

Since
( r

M

)(M
z

) ≤ rM and ( r
r−1 )

r+(M−z)(r−b)+0.9zr ≤ 31+M , the last expression is at most

31+M(4k)M−z tr+1+r(M−z)−r−(M−z)(r−b)−0.9zr r1+M−(M−z)(1+ε)+2z(b+1).

Denoting the last expression by ψ1a(M, z), we have

ψ1a(M, z + 1)

ψ1a(M, z)
≤ 1

4k
t−r+(r−b)−0.9rr(1+ε)+2(b+1) = 1

4k
t−b−0.9rr2b+3+ε ,

which is less than 1/4 for large r. Therefore,

M∑
z=0

φ1a(p, M, z, D) < 2ψ1a(M, 0)

= 31+M2(4k)Mtr+1+rM−r−M(r−b)r1+M−M(1+ε) = 6tr

(
12k tb

rε

)M

. (13)

Since for large r, 12ktb < rε/2, the last expression is less than 6tr1−0.5Mε . Since M ≥
k ≥ 20

ε
, this is less than 6t r−9 = o(r−8). Thus, the total contribution φ1a(p, D) of all

configurations of Type 1a such that p ∈ D is less than

r∑
M=k

2ψ1a(M, 0) < r · o(r−8) = o(r−7).

Now, we calculate the contribution of configurations of Type 1a containing p such that
p /∈ D. In this case, fix an edge Bi containing p in at most trr ways. Then, we can choose
vertex bi ∈ R(Bi) in at most k ways and the edge D containing Bi in at most k trr ways. To
choose the remaining M −1 special vertices in D there are only

( r−1
M−1

)
ways. Then, using the

same argument and almost the same calculations as earlier we get that the total contribution
here is at most k r times greater than

∑r
M=1 2ψ1a(M, 0). Hence the total contribution, φ1a(p)

of all configurations of Type 1a containing p is o( 1
r6 ).

2.4.2. Configuration of Type 1b. We need this structure to handle configurations of Type
1 in which m1 = m2 = · · · = mm = 0 and m + m′ ≥ r

10bk . But we consider a somewhat
different situation: it is a configuration of Type 1 in which m1 = m2 = · · · = mm = 0 and
m + m′ =  r

10bk �, but non-special vertices in D also allowed to be colored with color j (and
not only with j + 1). We will estimate the contributions of such new configurations.

As in case of Type 1a, define Bm′+i = Ci for i = 1, . . . , m and let M = m + m′.
For p ∈ V(H) and an integer z, let φ1b(p, z, D) denote the total contribution of all

configurations of Type 1b, containing p such that p ∈ D and exactly z edges among Bi

are determined. We repeat the first half of the argument for Type 1a, replacing (β3) by the
following:

(β ′
3) The number of choices of colors for vertices in D such that vertices b1, . . . , bM are

colored with j and other are colored with j or j + 1 is t 2r−M .
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Because of the extra factor of 2r−M , instead of (13), we get

M∑
z=0

φ1b(p, z, D) < 6t r

(
12k tb

rε

)M

2r−M .

Again, for large r, 12k tb < rε/2, and the last expression is at most 2r−M6t r1−0.5Mε . Since
M =  r

10bk � this is o(r−8).
Similarly, to the argument for configurations of Type 1a, the contribution of configura-

tions of Type 1b containing p such that p /∈ D cannot exceed the last expression more than
r2 times. Thus, the total contribution φ1a(p) + φ1b(p) of all configurations of Types 1a and
1b containing p is o(r−6).

From now on, we consider only t-colorings of V(H) such that no configurations of types
1a or 1b occur.

2.4.3. Configuration of Type 1c. This is a configuration of Type 1 in which k ≤
m + m′ ≤ r

5bk .
By (α8) and (α9) in the definition configurations of Type 1, for every i = 1, . . . , m, the set

Ci ∪⋃mi
i′=1 Ai′ with our coloring form a configuration of Type 1a or 1b if mi ≥ k. Since such

configurations are forbidden, we assume that mi < k for every i. Similarly, if m′ ≥ r
10bk ,

then the set B1 ∪ . . . Bm′ ∪ D with our coloring forms a configuration of Type 1b, and so,
we consider only the case m′ < r

10bk .
To calculate carefully the contributions of configurations of Type 1c, let m̂i denote the

number of edges in {Ai,1, . . . , Ai,mi} that are distinct from all Al,l′ for all l < i.
Let p ∈ V(H), k ≤ m + m′ ≤ r

5bk , and z, z′, m̂1, . . . , m̂m be non-negative integers. Let

M̂ = m̂1 + · · · + m̂m. Let φ1c(p, m′, m, m̂1, . . . , m̂m, z, z′, D) denote the total contribution
of all configurations of Type 1c with parameters m′, m, m̂1, . . . , m̂m containing p such that
p ∈ D, exactly z edges among B1, . . . , Bm′ , C1, . . . , Cm are determined, and exactly z′ other
edges are determined. We can estimate it as follows:

(γ1) The number of candidates for D containing p is at most deg(p) ≤ trr.
(γ2) The number of ways to choose b1, . . . , bm′ and c1, . . . , cm in D is at most

( r
m+m′

)(m+m′
m

)
.

(γ3) The number of choices of colors for vertices in D such that vertices b1, . . . , bm′ and
c1, . . . , cm are colored with j and all others are colored with j + 1 is t.

(γ4) The number of ways to choose which z edges among B1, . . . , Bm′ , C1, . . . , Cm will be
determined is

(m′+m
z

)
.

(γ5) By Lemmas 6 and 7, the number of ways to choose a non-determined Bi when we
know bi ∈ R(Bi) or Ci when we know ci ∈ R(Ci) is at most tr

rε
4k
r .

(γ6) The number of ways to choose a determined edge Bi when we know bi ∈ R(Bi) or Ci

when we know ci ∈ R(Ci) is at most
(
(m+m′)r

b+1

)
<

( r2

b+1

)
< r2b+2.

(γ7) The number of ways to choose all vertices ai,i′ in C1 ∪ . . . Cm that will be colored with
j − 1 is at most

(mr
M̂

)
.

(γ8) The number of ways to choose which z′ edges among Ai,i′ will be determined is
(M̂

z′
)
.

(γ9) The number of ways to choose a non-determined Ai,i′ when we know ai,i′ ∈ R(Ai,i′) is
at most tr

rε
4k
r .

(γ10) The number of ways to choose a determined edge Ai,i′ when we know ai,i′ ∈ R(Ai,i′) is

at most
(mrk

b+1

)
<

( r2

b+1

)
< r2b+2.
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(γ11) To estimate the size of such a configuration, recall that m′+m ≤ r
5bk and that m̂i ≤ mi ≤

k −1 for each i. Therefore, m′ +m+ M̂ ≤ k(m′ +m) ≤ r
5b . Similarly to (12), when we

add edges one by one to the configuration, every non-determined edge adds at least r−b
vertices and every determined edge adds at least r −b(m′ +m+ M̂) ≥ r − r/5 = 4r/5
vertices to the union. It follows that the size of each such configuration is at least
r + (m + m′ + M̂ − z − z′)(r − b) + (z + z′) 4r

5 .

Hence, φ1c(p, m′, m, m̂1, . . . , m̂m, z, z′, D) is at most

trr

(
r

m + m′

)(
m + m′

m

)
t

(
m′ + m

z

) (
m∏

i=1

(
r

m̂i

)) (
M̂

z′

)

×
(

4ktr

r1+ε

)m+m′+M̂−z−z′

r(z+z′)(2b+2)

(
r

t(r − 1)

)r+(m+m′+M̂)(r−b)−(z+z′)(0.2r−b)

.

Since r
r−1 < 31/r and

(
r

m + m′

)(
m + m′

m

) (
m′ + m

z

) (
m∏

i=1

(
r

m̂i

)) (
M̂

z′

)

≤ rm+m′
(m + m′)zrM̂M̂z′ ≤ rm+m′+M̂+z+z′ ,

φ1c(p, m′, m, m̂1, . . . , m̂m, z, z′, D) is at most

tr+1+r(m+m′+M̂−z−z′)−r−(m+m′+M̂)(r−b)+(z+z′)(0.2r−b)(4k)m+m′+M̂−z−z′

× r1+m+m′+M̂+z+z′−(1+ε)(m+m′+M̂−z−z′)+(z+z′)(2b+2)31+m+m′+M̂

= t1+b(m+m′+M̂)−(z+z′)(0.8r+b)(4k)m+m′+M̂−z−z′r1−ε(m+m′+M̂)+(z+z′)(2b+4+ε)31+m+m′+M̂ .

Denoting the last expression by ψ1c(m + m′ + M̂, z + z′), we have

ψ1c(m + m′ + M̂, z + z′ + 1)

ψ1c(m + m′ + M̂, z + z′)
≤ 1

4k
t−0.8r−b r2b+4+ε ,

which is less than 1/4r for large r. Therefore,

m′+m∑
z=0

M̂∑
z′=0

φ1c(p, m′, m, m̂1, . . . , m̂m, z, z′, D)<2ψ1c(m + m′ + M̂, 0) = 6t r

(
12k tb

rε

)m+m′+M̂

.

(14)

Observe that the last bound depends only on M̂ and not on the values of particular
m̂1, . . . , m̂m. Let

φ1c(p, m′, m, M̂, D) =
∑

(m̂1,...,m̂m):m̂1+···+m̂m=M̂

m+m′+M̂∑
z+z′=0

φ1c(p, m′, m, m̂1, . . . , m̂m, z, z′, D).
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Since the number of m-tuples (m̂1, . . . , m̂m) with m̂1 + · · · + m̂m = M̂ is
(m+M̂−1

m−1

)
< 2m+M̂ ,

for large r, by (14),

φ1c(p, m′, m, M̂, D) ≤ 6t r

(
12k tb

rε

)m+m′+M̂

2m+M̂ ≤ 6t r1−0.5ε(m+m′+M̂).

Since m + m′ ≥ k ≥ 20
ε

, the last expression is o(r−8). Since m′ < k, m < r/k, and

M̂ < mk < r, the total contribution of all configurations of Type 1c containing p such that
p ∈ D, is at most

o(r−8)k
r

k
r = o(r−6).

Similarly, to the case of configurations of Type 1a, the total contribution of all configurations
of Type 1c containing p such that p ∈ Bi, is at most r2 times greater than our bound above.
The bound for the total contribution of all configurations of Type 1c containing p such
that p is in a light edge Ci or in Ai,i′ is only k times greater than the bound above, since
R(Ci) and R(Ai,i′) consist only of low vertices. Hence, the total contribution, φ1c(p), of all
configurations of Type 1c containing p is o(r−4).

2.4.4. Configuration of Type 1d. We need it to handle configurations of Type 1 in which
m + m′ ≥ r

5bk . Since the situation with m′ ≥ r
10bk is covered by configurations of Type 1b, it

is enough to consider the following situation: Configuration of Type 1d is a configuration
of Type 1 in which m =  r

10bk � and m′ = 0 but non-special vertices in D also allowed to be
colored with color j. We will estimate the contributions of such configurations.

Let p ∈ V(H), and z, z′, m̂1, . . . , m̂m be non-negative integers. Let M̂ = m̂1+· · ·+m̂m. Let
φ1d(p, m̂1, . . . , m̂m, z, z′, D) denote the total contribution of all configurations of Type 1d with
parameters m̂1, . . . , m̂m containing p such that p ∈ D, exactly z edges among C1, . . . , Cm are
determined, and exactly z′ other edges are determined. The ingredients for an upper bound
on φ1d(p, m̂1, . . . , m̂m, z, z′, D) are almost the same as for φ1c(p, m′, m, m̂1, . . . , m̂m, z, z′, D)

above with m′ = 0; the only difference is that Item (γ3) is replaced with.
(γ ′

3) The number of choices of colors for vertices in D such that vertices c1, . . . , cm are
colored with j and all others are colored either with j or with j + 1 is t 2r−m.

Thus, repeating the argument for configurations of Type 1c, instead of (14), we will
obtain

m∑
z=0

M̂∑
z′=0

φ1d(p, m̂1, . . . , m̂m, z, z′, D) < 2r−m6t r

(
12k tb

rε

)m+M̂

. (15)

Since m =  r
10bk �, the extra factor of 2r−m does not hurt our upper bounds, and we essentially

repeat the argument from (14) above for configurations of Type 1c.
Forbidding configurations of Types 1c and 1d forbids all configurations of Type 1 with

m + m′ ≥ k.

2.5. Handling Configurations of Type 2

2.5.1. Configuration of Type 2a. Let j ∈ {1, 2, . . . , t}. Suppose that there exist k config-
urations of Type 1a (for the same j) with edge sets (for l = 1, . . . , k) {D(l), B(l)

1 , . . . , B(l)
m′(l)}

such that
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i. B(1)

1 = B(2)

1 = · · · = B(k)

1 ,
ii. all b(1)

1 , b(2)

1 , . . . , b(k)

1 are distinct vertices, so that {b(1)

1 , b(2)

1 , . . . , b(k)

1 } = R(B(1)

1 ),
iii. all edges D(l) and B(l)

i are heavy.

Then the union of these k configurations is a configuration of Type 2a.
It is possible that D(l) = D(l′) for l �= l′, but in this case, (since both b(l)

1 and b(l′)
1 are

colored with j) b(l)
1 coincides with some b(l′)

i such that B(l′)
i is distinct from B(1)

1 . Thus,
in any case, there are at least k distinct edges among D(l) and B(l)

i . On the other hand,
since large configurations of Type 1a are forbidden, m′ and each of m′(l) is at most k.
So, the total number of involved edges is at most (k + 1)2. Since we have so few edges, in
calculations we will not care about determined edges, our only concern will be repetitions of
edges.

Given a configuration of Type 2a, let x denote the number of distinct D(l). Order the
edges of our configuration so that the first edge is B(1)

1 followed by all of the D(l), and then
all the other edges. With a given ordering, for all suitable l, let m̂(l) denote the number of
corresponding edges that do not appear earlier in the order. Let M = ∑k

l=1 m̂(l).
Let p ∈ V(H). Let 	 = φ2b(p, m̂(1), . . . , m̂(k), x, B(1)

1 ) denote the total contribution of
all configurations of Type 2a with the corresponding given parameters containing p such
that p ∈ B(1)

1 .
We can estimate 	 as follows:

(δ1) The number of candidates for B(1)

1 containing p is at most trr.
(δ2) The number of partitions of R(B(1)

1 ) into x non-empty sets is less than kx.
(δ3) The number of ways to choose for every of the x parts in the partition an edge containing

this class is at most (trr−ε)x, since the number of heavy edges containing any given
vertex is at most trr−ε . These edges will be our edges D(1), . . . , D(k).

(δ4) The number of choices of color j is t.
(δ5) The number of ways to choose for every l ∈ {1, . . . , k}, vertices b1(l), . . . , bm̂(l)(l) is

at most
∏k

l=1

( r
m̂(l)

) ≤ (kr
M

) ≤ (kr)M .

(δ6) By Lemma 7, the number of ways to choose a B(l)
i when we know bi(l) ∈ R(B(l)

i ) is at
most tr

rε
4k
r .

(δ7) To estimate the size of such a configuration, recall that in total we have at most
(k + 1)2 edges. Therefore, each edge has at most (k + 1)2b vertices that are common
with any other edge. It follows that the size of each such configuration is at least
(r − (k + 1)2b)(1 + x + M).

Hence

	 ≤ trr

(
ktr

rε

)x

t(kr)M

(
4ktr

r1+ε

)M (
r

t(r − 1)

)(r−(k+1)2b)(1+x+M)

≤ kx+M+M4Mr1−εx+M−(1+ε)Mtr+rx+1+rM−(r−(k+1)2b)(1+x+M)31+x+M

= kx+2M4M r1−ε(x+M) t1+(k+1)2b(1+x+M)31+x+M ≤ tr1+ε

(
12k2t(k+1)2b

rε

)1+x+M

.

The number of different presentations of M in the form M = ∑k
l=1 m̂(l) is at most

(M+k−1
M

)
<

2M+k−1. Therefore, the total contribution, φ2b(p, x, M, B(1)

1 ), of all configurations of Type 2a
with given x and M containing p such that p ∈ B(1)

1 for large r is at most
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2M+k−1tr1+ε

(
12k2t(k+1)2b

rε

)1+x+M

≤ 2k−xtr1+ε−0.5ε(1+x+M).

By construction, M + x ≥ k. Hence, since k ≥ 0.20/ε,

φ2a

(
p, x, M, B(1)

1

) ≤ 2ktr−8 = o(r−7).

Since x ≤ k and M ≤ k2, the total contribution of all configurations of Type 2a containing
p such that p ∈ B(1)

1 is also o(r−7). The total contribution of all configurations of Type 2a
containing p such that p ∈ D(l) for some l is estimated in practically the same steps and
also is o(r−7). The same holds for the total contribution of all configurations of Type 2a
containing p such that p ∈ B(l)

i for some l and i. Thus, the total contribution, φ2a(p), of all
configurations of Type 2a containing p is o(r−6).

2.5.2. Configuration of Type 2b. Let j ∈ {1, 2, . . . , t}. Suppose that there exist k
configurations of Type 1c (for the same j) with edge sets (for l = 1, . . . , k){

D(l), B(l)
1 , . . . , B(l)

m′(l), C(l)
1 , . . . , C(l)

m(l), A(l)
1,1, . . . , A(l)

1,m1(l), . . . , A(l)
m(l),mm(l)(l)

}
such that C(1)

1 = C(2)

1 = · · · = C(k)

1 and all c(1)

1 , c(2)

1 , . . . , c(k)

1 are distinct vertices, so that
{c(1)

1 , c(2)

1 , . . . , c(k)

1 } = R(C(1)

1 ). Then the union of these k configurations is a configuration
of Type 2b. As in configurations of Type 1c, some representative vertices can coincide, in
which case the corresponding edges also should coincide.

It is possible that D(l) = D(l′) for l �= l′, but in this case, (since both c(l)
1 and c(l′)

1 are
colored with j) c(l)

1 coincides with some c(l′)
i such that C(l′)

i is distinct from C(1)

1 . Thus, in any
case, there are at least k distinct edges among D(l) and C(l)

i . On the other hand, since large
configurations of Type 1c are forbidden, each of m(l), m′(l), mi(l) is at most k. So, the total
number of involved edges is at most k(k + 1).

Given a configuration of Type 2b, let x denote the number of distinct D(l). Order the
edges of our configuration so that first is listed the edge C(1)

1 , then all D(l), then all B(l)
i (in

any order), then all C(l)
i , and then all other edges. With a given ordering, for all suitable i and

l, let m̂(l), m̂′(l), and m̂i(l) denote the number of corresponding edges that do not appear
earlier in the order. Let M = ∑k

l=1(m̂(l) + m̂′(l)) and

M̂ =
k∑

l=1

m∑
i=1

m̂i(l). (16)

Let p ∈ V(H). Let

	 = φ2b

(
p, m̂′(1), . . . , m̂′(k), m̂(1), . . . , m̂(k), m̂1(1), . . . , m̂1(k), . . . , m̂m(k), x, C(1)

1

)
denote the total contribution of all configurations of Type 2b with the corresponding
parameters containing p such that p ∈ C(1)

1 .
We can estimate 	 as follows:

(κ1) The number of candidates for C(1)

1 containing p is at most trr.
(κ2) The number of partitions of R(C(1)

1 ) into x non-empty sets is less than kx.
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(κ3) The number of ways to choose for every of the x parts in the partition an edge containing
this class is at most (trr−ε)x, since every vertex in R(C(1)

1 ) is a low vertex. These edges
will be our edges D(1), . . . , D(k).

(κ4) The number of choices of color j is t.
(κ5) The number of ways to choose for every l ∈ {1, . . . , k}, vertices b1(l), . . . , bm̂′(l)(l) and

c2(l), . . . , cm̂(l)(l) in D(l) is at most
∏k

l=1

( r
m̂(l)+m̂′(l)

)(m̂(l)+m̂′(l)
m̂′(l)

)
.

(κ6) By Lemmas 6 and 7, the number of ways to choose a B(l)
i when we know bi(l) ∈ R(B(l)

i )

or C(l)
i when we know ci(l) ∈ R(C(l)

i ) is at most tr

rε
4k
r .

(κ7) The number of ways to choose all vertices ai,i′(l) in ∪k
l=1 ∪m̂(l)

i=1 C(l)
i that will be colored

with j − 1 is at most
(k2r

M̂

)
.

(κ8) The number of ways to choose an A(l)
i,i′ when we know ai,i′(l) ∈ R(A(l)

i,i′) is at most tr

rε
4k
r .

(κ9) To estimate the size of such a configuration, recall that in total we have at most
(k + 1)3 edges. Therefore, each edge has at most (k + 1)3b vertices that are common
with any other edge. It follows that the size of each such configuration is at least
(r − (k + 1)3b)(1 + x + M + M̂).

Hence

	 ≤ trr

(
ktr

rε

)x

t
k∏

l=1

(
r

m̂(l) + m̂′(l)

)(
m̂(l) + m̂′(l)

m̂′(l)

)(
k2r

M̂

) (
4ktr

r1+ε

)M+M̂

×
(

r

t(r − 1)

)(r−(k+1)3b)(1+x+M+M̂)

.

Since ( r
r−1 )

(r−(k+1)3b)(1+x+M+M̂) ≤ 31+x+M+M̂ and

k∏
l=1

(
r

m̂(l) + m̂′(l)

)(
m̂(l) + m̂′(l)

m̂′(l)

)(
k2r

M̂

)
≤ rM (k2r)M̂ ,

we have

	 ≤ kx+M+3M̂ 4M+M̂r1−xε−ε(M+M̂)tr+rx+1+r(M+M̂)−(r−(k+1)3b)(1+x+M+M̂)31+x+M+M̂

= kx+M+3M̂ 4M+M̂r1−ε(x+M+M̂)(3t(k+1)3b)1+x+M+M̂ ≤ r1+ε

(
12k3t(k+1)3b

rε

)1+x+M+M̂

.

The last bound does not depend on values of m̂(l), m̂′(l), and mi(l), but only on x, M, and
M ′. The number of different presentations of M in the form M = ∑k

l=1(m̂(l) + m̂′(l)) is at
most

(M+2k−1
M

)
< 2M+2k−1. Similarly, the number of different presentations of M̂ in the form

(16) is at most the number of different presentations of M̂ as a sum of at most k2 nonnegative
summands, which is at most

k2∑
q=1

(
M̂ + q

q

)
≤

k2∑
q=1

(
M̂ + k2

q

)
≤ 2k2+M̂ .

Random Structures and Algorithms DOI 10.1002/rsa



COLORING UNIFORM HYPERGRAPHS WITH FEW EDGES 363

Therefore, the total contribution, φ2b(p, x, M, M̂, C(1)

1 ), of all configurations of Type 2b with
given x, M, and M̂ containing p such that p ∈ C(1)

1 is at most

2M+2k−1 2k2+M̂ r1+ε

(
12k3t(k+1)3b

rε

)1+x+M+M̂

< 2(k+1)2
r1+ε

(
12k3t(k+1)3b

rε

)1+x+M+M̂

For large r, this does not exceed 2(k+1)2
r1+ε−0.5ε(1+x+M+M̂). As observed earlier, x+M ≥ k ≥

20/ε. Thus for large r, φ2b(p, x, M, M̂, C(1)

1 ) = o(r−8). Since x ≤ k, M ≤ 2k2, and M̂ ≤ k3,
the total contribution, of all configurations of Type 2b containing p such that p ∈ C(1)

1 is
also o(r−8). Similarly, to the argument for configurations of Type 1c, the total contribution,
of all configurations of Type 2b containing p such that p ∈ D(l), or p ∈ Bi(l), or p ∈ Ci(l),
or p ∈ Ai,i′(l) does not exceed the obtained bound more than r2 times. Thus for large r, the
total contribution, φ2b(p), of all configurations of Type 2b containing p is o(r−6).

3. LOWER BOUNDS ON THE NUMBER OF EDGES

3.1. Trimming

To get lower bound on the number of edges in an r-uniform (t + 1)-chromatic simple
hypergraph, Erdős and Lovász [2] applied a simple but quite useful technique of trimming.
A trimming of a hypergraph H is the hypergraph F(H) obtained from H by deleting from
each edge a vertex of maximum possible degree. Trimming has two useful properties: (a)
if H is not t-colorable, then F(H) also is; and (b) if H is simple and F(H) has a vertex of
degree at least d, then H has at least d + 1 vertices of degree at least d. We will somewhat
elaborate upon the notion of trimming.

For positive integers x and D, an edge A of a hypergraph H is (x, D)-heavy, if at least
x vertices in A have degree at least D in H. An (x, D)-trimming of a hypergraph H is the
hypergraph Fx,D(H) obtained from H in two steps: first choose in each edge A a vertex a(A)

that is contained in the most (x, D)-heavy edges; then replace each edge A with A − a(A).
The ordinary trimming above can be considered as a (1, 1)-trimming.

Let F(m)

x,D (H) denote the hypergraph obtained from H by applying (x, D)-trimming m
times.

Lemma 8. Let b, x, y, d, s, and D be positive integers and H be a hypergraph.

a. If H is b-simple, F(b)

x,D(H) has a vertex that belongs to at least d (x, D)-heavy edges
and H has y vertices that belong to at least d (x, D)-heavy edges each, then

(y
b

) ≥ d.

b. If H has girth at least 2s + 1, b ≤ s, and F(b)

x,D(H) has a vertex that belongs to at least
d (x, D)-heavy edges, then H has at least (d − 1)b vertices at distance exactly b from
v that belong to at least d (x, D)-heavy edges each.

Proof. For convenience, denote F(0)

x,D(H) = H. By definition, every edge A ∈ E(H)

contains distinct vertices a(1)(A), . . . , a(b)(A) such that for i = 1, . . . , b,

E
(
F(i)

x,D(H)
) = {A − {a(1)(A), . . . , a(i)(A)} : A ∈ E(H)}

and vertex a(i)(A) is contained in the most of (x, D)-heavy edges of the hypergraph F(i−1)

x,D (H)

among the vertices in A(i−1) := A − {a(1)(A), . . . , a(i−1)(A)}.
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Suppose that H is b-simple and v is a vertex in F(b)

x,D(H) that belongs to at least d (x, D)-
heavy edges. Suppose that the edges A(b)

1 , . . . , A(b)

d of F(b)

x,D(H) contain v. By the definition of
(x, D)-trimming, each of the vertices a(b)(A1), . . . , a(b)(Ad) is contained in at least d (x, D)-
heavy edges in F(b−1)

x,D (H) (otherwise, v would be the corresponding a(b)(Ai)). Similarly,
each of the vertices a(b−1)(A1), . . . , a(b−1)(Ad) is contained in at least d (x, D)-heavy edges
in F(b−2)

x,D (H), and so on.
Let Y be the set of vertices in H that are contained in at least d (x, D)-heavy edges. By the

previous paragraph, each of the vertices a(j)(Ai) for i = 1, . . . , d and j = 1, . . . , b is in Y . Ver-
tices a(j)(Ai) and a(j′)(Ai′) may coincide for distinct i and i′, but the sets {a(1)(Ai), . . . , a(b)(Ai)}
should be distinct for distinct i, since H is b-simple. Thus, the number of b-element subsets
of Y is at least d. This proves (a).

Suppose now that the girth of H is at least 2s + 1, b ≤ s, and v is a vertex in F(b)

x,D(H) that
belongs to at least d (x, D)-heavy edges. Suppose that the edges A(b)

1 , . . . , A(b)

d of F(b)

x,D(H)

contain v. As above, each of the vertices a(b)(A1), . . . , a(b)(Ad) is contained in at least
d (x, D)-heavy edges in F(b−1)

x,D (H). Moreover, since the girth of H is at least three, all
a(b)(A1), . . . , a(b)(Ad) are distinct and each of them is a neighbor of v. Thus, each of a(b)(Ai)

is contained in some d (x, D)-heavy edges A(b−1)

i,1 , . . . , A(b−1)

i,d . If b = 1, then we are done.
Suppose b ≥ 2. Then the girth of H is at least five and for each 1 ≤ i ≤ d, exactly one

edge among A(b−1)

i,1 , . . . , A(b−1)

i,d (namely, A(b)

i ) contains v, and all others are almost disjoint
amongst them and are disjoint from all other A(b−1)

j,1 , . . . , A(b−1)

j,d for j �= i. It follows that for

all i1, i2 = 1, . . . , d such that A(b−1)

i1,i2
�= A(b)

i1
, all vertices a(b−1)(A(b−1)

i1,i2
) are distinct and each

such a(b−1)(A(b−1)

i1,i2
) belongs to at least d (x, D)-heavy edges A(b−2)

i1,i2,1, . . . , A(b−2)

i1,i2,d in F(b−2)

x,D (H)

and is at distance 2 from v in H. In particular, there are at least d(d − 1) of them. Again,
if b = 2, then we are done. Otherwise the girth of H is at least seven and for all triples
(i1, i2, i3) such that A(b−2)

i1,i2,i3
�= A(b−1)

i1,i2
, the sets A(b−2)

i1,i2,i3
− a(b−1)(A(b−1)

i1,i2
) are disjoint from each

other and from all edges (j1, j2, j3) for (j1, j2) �= (i1, i2).
Continuing in this way, finally, we construct d(d − 1)b−1 distinct vertices a(1)(Ai1,i2,...,ib)

such that each of them belongs to at least d (x, D)-heavy edges in F(0)

x,D(H) and is at distance
exactly b from v.

3.2. Size of (t + 1)-Chromatic b-Simple Hypergraphs

Theorem 9. Let t and b be positive integers, ε > 0, and r be sufficiently large in
comparison with t, b, and ε. Let H be a (t + 1)-chromatic r-uniform b-simple hypergraph.
Then H has at least tr(1+1/b)r−ε edges.

Proof. Let x = 
(r − b)/2� and D = 
tr−b/rε/3�. Let H1 = F(b)

1,1 (H). By construction, H1

is (r − b)-uniform and b-simple. Since H is not t-colorable, H1 is also not t-colorable. So,
by Theorem 4, either

i. H1 has a vertex of degree at least tr−b(r − b), or
ii. H1 has a vertex contained in at least D (x, D)-heavy edges.

If (i) holds, then by Lemma 8(a), H has at least (tr−b(r −b))1/b vertices of degree at least
tr−b(r − b). Hence the number of edges in H is at least

1

r
(tr−b(r − b))1+1/b ≥ tr(1+1/b).
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Suppose now that (ii) holds. Let Y be the set of vertices of degree at least D in H1. Each
(x, D)-heavy edge containing v intersects Y − v in at least x − 1 vertices. No b-tuple of
vertices of Y − v is contained in more than one edge containing v. Therefore,(|Y |

b

)
≥ D

(
x − 1

b

)
.

For large r, this implies |Y |b ≥ D(r/3)b, so that the number of edges in H1 is at least

1

r
D1+1/b r

3
≥ 1

3

(
tr−b

rε/3

)1+1/b

≥ tr(1+1/b)r−ε .

3.3. Size of (t + 1)-Chromatic Hypergraphs of Girth 2s + 1 and 2s + 2

Theorem 10. Let t and s be positive integers, ε > 0, and r be sufficiently large in
comparison with t, s, and ε. Let H be a (t + 1)-chromatic r-uniform hypergraph of girth
at least 2s + 1. Then H has at least tr(1+s)r−ε edges. Moreover, if the girth of H is at least
2s + 2, then H has at least tr(1+s)r1−ε edges.

Proof. Let x = 
(r − 2s + 1)/2� and D = 
tr−2s+1/rε/3s�. Let H1 = F(s)
1,1(H) and H2 =

F(s−1)

x,D (H1). By construction, H2 is (r − 2s + 1)-uniform. Since H is not t-colorable, H2 is
also not t-colorable. So, by Theorem 4, either

i. H2 has a vertex of degree at least tr−2s+1(r − 2s + 1), or
ii. H2 has a vertex contained in at least D (x, D)-heavy edges.

If (i) holds, then H1 also has a vertex of degree at least tr−2s+1(r − 2s + 1). By Lemma
8(b), H has at least (tr−2s+1(r − 2s + 1) − 1)s vertices of degree at least tr−2s+1(r − 2s + 1).
Hence, the number of edges in H is at least

1

r
(tr−2s+1(r − 2s + 1) − 1)1+s ≥ tr(1+s)r.

Suppose now that (ii) holds. By Lemma 8(b), H1 contains a set F(s, v) of at least (D−1)s−1

vertices at distance exactly s − 1 from v such that each of them is contained in at least D
(x, D)-heavy edges. Since the girth of H1 is at least 2s + 1, each u ∈ F(s, v) is contained in
exactly one edge M(u) on the unique shortest path from u to v. Also, if for u ∈ F(s, v) an
edge A(u) �= M(u) meets or coincides with any edge containing any vertex w at distance at
most s − 1 from v, then H1 contains a cycle of length at most 2s, a contradiction.

Thus, we have a set F ′(s, v) of at least (D − 1)s (x, D)-heavy edges such that each edge
in F ′(s, v) contains exactly one of our (D − 1)s−1 special vertices at distance s − 1 from v
and no other vertices at distance at most s − 1 from v. This means that each of the edges in
F ′(s, v) contains at least x − 1 vertices of degree at least D that do not belong to any other
edge in F ′(s, v). Since x is about r/2 and r is much larger than s and t, it follows that the
number of edges in H1 is at least

1

r
(D − 1)s+1(x − 1) ≥ 1

3
Ds+1 ≥ 1

3

(
tr−2s+1

rε/3s

)1+s

≥ tr(1+s)r−ε .
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This proves the statement for girth 2s + 1.
Suppose that the girth of H is at least 2s + 2. It (i) holds, then the statement is already

proved above. Suppose that (ii) holds. Then we construct F ′(s, v) exactly as in the previous
paragraph. Consider an edge A ∈ F ′(s, v) and any vertex z ∈ A of degree at least D that
does not belong to other edges in F ′(s, v). If any of the at least D − 1 distinct from A edges
containing z contains also a vertex from any other edge in F ′(s, v), then H has a cycle of
length 2s + 1 or less. Thus, all these edges are distinct and the total number of them is at
least

|F ′(s, v)|(x − 1)(D − 1) ≥ r

3
Ds+1 ≥ r

3

(
tr−2s+1

rε/3s

)1+s

≥ tr(1+s)r1−ε .

4. UPPER BOUND ON f (r , t , b)

The Erdős–Lovász bound (1) can be easily extended to b-simple hypergraphs as follows.

Theorem 11. If b ≥ 1 and t ≥ 2 are fixed and r is sufficiently large, then

f (r, t, b) ≤ 10t2(2trr2)(b+1)/b.

Proof. We follow the lines of the proof of Theorem 1′ in [2] by Erdős and Lovász.
Let

n = 
4t(2trr2(b+1))1/b� and m = 4n tr+1 ∼ 8t2(2trr2)(b+1)/b. (17)

We let H0 be the edgeless hypergraph with |V(H0)| = tn and for i = 1, . . . , m will
obtain Hi from Hi−1 by adding an edge ei so that

a. Hi remains b-simple and
b. xi ≤ (1 − 1/4tr)xi−1, where xi is the number of n-element subsets of V(H0) = V(Hi)

not containing edges of Hi.

As in [2], if we manage (a) and (b) until i = m, then

xm ≤ x0

(
1 − 1

4tr

)m

=
(

tn

n

) (
1 − 1

4tr

)4ntr+1

≤ (te)n

etn
=

(
te

et

)n

< 1.

Suppose that (a) and (b) hold for i = 0, 1, . . . , j. Let S be an n-element subset of V(Hj)

not containing any edge of Hj. If an r-tuple R ⊂ S cannot be added to Hj because (a) would
fail, then R has b + 1 elements in common with some ei, i ≤ j. The number of such R ⊂ S
is at most

j

(
r

b + 1

)(
n − b − 1

r − b − 1

)
≤ mrb+1

(b + 1)!
(

n

r

)
rb+1

(n − b)b+1
= mr2(b+1)

(b + 1)!(n − b)b+1

(
n

r

)
.

By (17), for fixed b and t and for large r, we have

m
r2(b+1)

(b + 1)!(n − b)b+1
≤ 4ntr+1 2r2(b+1)

(b + 1)!nb+1
≤ 4tr+1 2r2(b+1)

2!(4t)b2trr2(b+1)
≤ 1

2
.
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It follows that every n-element S ⊂ V(Hj) not containing any edge of Hi contains at least
0.5

(n
r

)
candidates for ej+1. Therefore, some r-element subset ej+1 of V(Hi) is a candidate

for at least

xj · 0.5

(
n

r

)(
tn

r

)−1

≥ xj n(n − 1) · · · (n − r + 1)

2(tn)r
.

n-element subsets of V(Hj) not containing any edge of Hj. Since n ≥ 8r2,

xj n(n − 1) · · · (n − r + 1)

2(tn)r
≥ xj

2tr

(
n − r + 1

n

)r

≥ xj

4tr
.

Thus, if we choose this ej+1, then (a) and (b) hold for i = j + 1.

5. COMMENTS

1. Although all b, t, s, and ε are considered fixed, they also can be viewed as very slowly
growing functions of r. For example, it is possible to consider ε = c log log log r

log log r for a small
positive constant c.

2. Condition (7) in the definition of (t, ε)-sparse r-uniform hypergraphs can be weakened
by any polynomial factor of r. The problem in sharpening our results is in (8).

3. The proofs of Theorems 4 and 3 and inequalities (4) and (5) can be adapted to list
coloring. In particular, the following statement holds (and implies the other results).

Theorem 12. If b ≥ 1, t ≥ 2, and ε > 0 are fixed and r is sufficiently large, then every
r-uniform b-simple (t, ε)-sparse hypergraph H is list t-colorable.

We start from a random coloring f of vertices of H where each vertex v is colored with
a color f (v) uniformly at random chosen from its list List(v) independently from all other
vertices. To adapt the proof of Theorem 4, for each vertex v ∈ V(H), fix any bijection
νv of the list List(v) onto itself with νv(α) �= α for each α ∈ List(v). In all recolorings

Fig. 4. Configuration of Type 1 for list colorings.
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during the proof, each vertex v of color j will be tried to be recolored (if at all) into the
color νv(j) (instead of color j + 1, as it was in the proof in Section 2). So, the Configuration
of Type 1 in Fig. 1 will look more like in Fig. 4. In this picture, if the “main color” of
the edge D is j, then f (v) = ν−1

v (j), f (z) = ν−1
z (j), f (x) = ν−1

x (f (z)) = ν−1
x (ν−1

z (j)),
f (y) = ν−1

y (f (z)) = ν−1
y (ν−1

z (j)), and so on. So, the colors of vertices v and z (likewise, of
x and y) can be different, but the structure remains the same, and for each vertex, only one
color is “dangerous” for the configuration. Similarly, we define the other configurations.
After these definitions and before any recoloring is done, all the calculations will be the
same as in Section 2, and the result follows.
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