Constructions of Sparse Uniform Hypergraphs With High Chromatic Number*

A. V. Kostochka, ${ }^{\mathbf{1 , 2}}{ }^{\mathbf{V}}$. Rödl ${ }^{\mathbf{3}}$
${ }^{1}$ Department of Mathematics, University of Illinois, Urbana, Illinois 61801
${ }^{2}$ Sobolev Institute of Mathematics, Novosibirsk-90, 630090, Russia; e-mail: kostochk@math.uiuc.edu
${ }^{3}$ Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322; e-mail: rodl@mathcs.emory.edu

Received 12 August 2008; accepted 10 March 2009; received in final form 25 May 2009
Published online 29 October 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/rsa. 20293

Abstract

A random construction gives new examples of simple hypergraphs with high chromatic number that have few edges and/or low maximum degree. In particular, for every integers $k \geq 2, r \geq 2$, and $g \geq 3$, there exist r-uniform non- k-colorable hypergraphs of girth at least g with maximum degree at most $\left\lceil r k^{r-1} \ln k\right\rceil$. This is only $4 r^{2} \ln k$ times greater than the lower bound by Erdős and Lovász (Colloquia Math Soc János Bolyai 10 (1973), 609-627) that holds for all hypergraphs (without restrictions on girth). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 36, 46-56, 2010

Keywords: girth; simple hypergraphs; hypergraph coloring

1. INTRODUCTION

A number of articles discuss chromatic number of sparse (hyper)graphs. Measures of sparseness could be the girth or clique number, maximum degree, degeneracy, number of edges, etc. Recall that a cycle of length $k \geq 2$ in a hypergraph \mathcal{H} is an alternating cyclic sequence $e_{0}, v_{0}, e_{1}, v_{1}, \ldots, e_{k-1}, v_{k-1}, e_{0}$ of distinct edges and vertices in \mathcal{H} such that $v_{i} \in e_{i} \cap e_{i+1}$ for all i modulo k. In particular, if two distinct vertices x and y both belong to distinct edges e_{0} and e_{1}, then $e_{0}, x, e_{1}, y, e_{0}$ is a cycle of length 2 . The girth of a hypergraph is the length of its shortest cycle. In this article, we consider hypergraphs with restrictions on girth, in

[^0]particular, simple hypergraphs (i.e., having girth at least 3). A variation of this is the notion of b-simple hypergraphs-hypergraphs in which no two distinct edges share more than b vertices. We present a simple random construction that improves known upper bounds on the maximum degree and on the number of edges of b-simple r-uniform hypergraphs that are not k-colorable for r large in comparison with k and b. The case when k is large in comparison with r was studied in $[1,8]$.

Let $\Delta(G)$ denote the maximum degree of G. For $k, r, g \geq 2$, let $\Delta(k, r)$ (respectively, $\Delta(k, r, g)$) denote the minimum D such that there exists an r-uniform non- k-colorable hypergraph G (respectively, and with girth g) with maximum degree D.

In their seminal article [3], Erdős and Lovász proved the following bound.
Theorem 1 ([3]). If $k, r \geq 2$, then

$$
\Delta(k, r)>\frac{1}{4} k^{r} r^{-1} .
$$

Radhakrishnan and Srinivasan [10] improved the bound for $k=2$ and large r. They showed that for large r,

$$
\Delta(2, r)>\frac{0.17}{\sqrt{r \ln r}} 2^{r} .
$$

Szabó [12] showed that the bound of Theorem 1 for simple hypergraphs can be improved further.

Theorem 2 ([12]). If $k \geq 2$ and $\epsilon>0$ are fixed and r is sufficiently large, then

$$
\Delta(k, r, 3)>k^{r} r^{-\epsilon} .
$$

On the other hand, it follows from Theorem 1' in the article of Erdős-Lovász [3] that for every $k \geq 2, r \geq 2$, and $g \geq 3$,

$$
\begin{equation*}
\Delta(k, r, g) \leq 20 r^{2} k^{r+1} \tag{1}
\end{equation*}
$$

We refine bound (1) as follows.
Theorem 3. Let $k \geq 2$ and $r \geq 2$ be integers. If d is a positive integer such that

$$
\begin{equation*}
\left(1-\frac{1}{k^{r-1}}\right)^{d / r}<1 / k \tag{2}
\end{equation*}
$$

then for every $g \geq 3, \Delta(k, r, g) \leq d$. In particular, $\Delta(k, r, g) \leq\left\lceil r k^{r-1} \ln k\right\rceil$.
This bound is only $r^{1+\epsilon} \ln k$ times larger than the lower bound in Theorem 2. Although in this article we are concerned with r that are much larger than k and g, as a byproduct, Theorem 3 gives also good bounds for $r=2$, i.e., for graphs. It yields a simple proof for a couple of known upper bounds on $\Delta(k, 2, g)$. Recall that Kim [5] proved that $\Delta(k, 2,5)>(k+o(k)) \ln k$ for sufficiently large k. On the other hand, random constructions by Kostochka and Mazurova [7] and Bollobás [2] show that $\Delta(k, 2, g) \leq\lceil 2 k \ln k\rceil$ for any g. This bound is a partial case of Theorem 3. Tashkinov [13] proved that $\Delta(3,2, g) \leq 6$
for every g, i.e., there exist non-3-colorable graphs of arbitrary girth with maximum degree at most 6 . Observe that this result immediately follows when we plug $k=3$ and $d=6$ into (2). It is not known whether there are non-3-colorable graphs of large girth with maximum degree 5 .

Let $f(r, k)$ denote the minimum number of edges in an r-uniform hypergraph that is not k-colorable. Let $f(r, k, b)$ denote the minimum number of edges in an r-uniform b-simple hypergraph that is not k-colorable. It is known (see, e.g., $[3,10]$) that $f(k, r) \leq k^{r} r^{2} \ln k$. Erdős and Lovász [3] proved that $f(k, r, 1)$ is much larger:

$$
\begin{equation*}
\frac{k^{2(r-2)}}{16 r(r-1)^{2}} \leq f(r, k, 1) \leq 1600 r^{4} k^{2(r+1)} . \tag{3}
\end{equation*}
$$

The lower bound in (3) is obtained from Theorem 1. The same idea with the help of Theorem 2 gives a better lower bound on $f(r, k, 1)$ for fixed k and ϵ and large r : if $r \geq r(k, \epsilon)$, then

$$
\begin{equation*}
f(r, k, 1) \geq \frac{k^{2 r}}{r^{1+\epsilon}} . \tag{4}
\end{equation*}
$$

Recently, Kostochka and Kumbhat [6] improved Szabó's bound by a factor of r and generalized the bound to b-simple graphs as follows.

Theorem 4 ([6]). Let $k \geq 2, b \geq 1$ and $\epsilon>0$ be fixed. There exists $r_{0}=r_{0}(k, b, \epsilon)$ such that for every $r \geq r_{0}$,

$$
\begin{equation*}
f(r, k, b) \geq \frac{k^{r(1+1 / b)}}{r^{\epsilon}} \tag{5}
\end{equation*}
$$

They also gave the following upper bound on $f(r, k, b)$: for large r,

$$
\begin{equation*}
f(r, k, b) \leq 40 k^{2}\left(k^{r} r^{2}\right)^{1+1 / b} . \tag{6}
\end{equation*}
$$

Our second construction allows us to improve the upper bounds on $f(r, k, b)$ in (3) and (6) so that the ratio of the new bounds to the lower bounds (5) for fixed k and b is of order $r^{1+\epsilon+1 / b}$.

Theorem 5. Let $k \geq 2$ and $b \geq 1$ be integers. There is $c=c(k, b)$ such that for every sufficiently large r, there are b-simple non- k-colorable r-uniform hypergraphs with at most $c \cdot(r \ln k)^{1+1 / b} k^{r+r / b}$ edges.

In the next section, we describe the idea of our construction. In Section 3, we prove Theorem 5 modulo somewhat technical Lemma 6. In Section 4, we discuss constructions of hypergraphs with low maximum degrees; in particular, we prove Theorem 3. In the last section, we give a (rather standard) proof of Lemma 6 for Section 3.

2. TEMPLATE OF THE CONSTRUCTION

For a hypergraph G, let S-property be either the property "to have girth at least g " or the property "to be b-simple" for some $b<r$. We want to construct r-uniform non- k-colorable hypergraphs with a given S-property either with few edges or with low maximum degree.

Let $0<\alpha<1$. We will say that an r-uniform hypergraph H_{1} satisfies α-Condition if the following holds: Let R be a set with $|R|:=\left|V\left(H_{1}\right)\right|$ and let f be any fixed k-coloring of R. Then
the probability that for a random placement of H_{1} onto R,

$$
\begin{equation*}
f \text { is not a proper coloring of } H_{1} \text { is at least } \alpha . \tag{7}
\end{equation*}
$$

The construction goes as follows.

- Consider an r-uniform hypergraph $H_{1}=H_{1}(k, r, S)$ with S-property. Let $r_{1}=\left|V\left(H_{1}\right)\right|$. For a fixed r_{1}, we want H_{1} to satisfy α-Condition with α as large as possible.
- Another part of the construction is an r_{1}-uniform hypergraph H_{2} with the S-property that has as large average degree as possible.
- Now we let \mathbf{G} be the random r-uniform hypergraph obtained from H_{2} by replacing each edge with a randomly placed copy of H_{1}. For each such edge of H_{2}, every of the possible r_{1} ! placements of a copy of H_{1} has the same probability $1 / r_{1}$!, and for different edges of H_{2} the placements are independent.

As both H_{1} and H_{2} possess the S-property, every value of the random variable \mathbf{G} also has this property. Also, since by the definition of S-property any two edges of H_{2} share less than r vertices, $|E(\mathbf{G})|=\left|E\left(H_{1}\right)\right|\left|E\left(H_{2}\right)\right|$. By the independence of the placements of distinct copies of H_{1} and by Condition (7), for every k-coloring f of $V\left(H_{2}\right)$, the probability $P(f)$ that f is a proper coloring for \mathbf{G} is at most $(1-\alpha)^{\left|E\left(H_{2}\right)\right|}$.

Let $n=\left|V\left(H_{2}\right)\right|$. Since there are only k^{n} different k-colorings of $V\left(H_{2}\right)$, if

$$
\begin{equation*}
k^{n}(1-\alpha)^{\left|E\left(H_{2}\right)\right|}<1, \tag{8}
\end{equation*}
$$

then with positive probability, \mathbf{G} is not k-colorable.
So, the proofs below provide that (A) H_{1} and H_{2} have the desired S-property, (B) H_{1} satisfies (7) (the larger is α, the better), (C) (8) holds, and (D) either the number of edges of \mathbf{G} or its maximum degree is "small".

3. HYPERGRAPHS WITH FEW EDGES

In this section, we prove Theorem 5.
Let r be large in comparison with k and b. Let $q=q(r)$ be the smallest prime that is larger than r. It is known that $q=r+o(r)$. Let $H_{1}=H_{1}(r, b)$ be the r-uniform hypergraph with $r q$ vertices defined as follows. (We use a construction from Kuzjurin's paper [9].) The vertex set of H_{1} is $S=S_{1} \cup \ldots \cup S_{r}$ where all S_{i} are disjoint copies of $G F(q)=\{0,1, \ldots, q-1\}$. The edges of $H_{1}(r, b)$ are r-tuples $\left(x_{1}, \ldots, x_{r}\right) \in S_{1} \times \cdots \times S_{r}$ that are solutions of the system of linear equations

$$
\begin{equation*}
\sum_{i=1}^{r} i^{j} x_{i}=0, \quad j=0,1, \ldots, r-b-2 \tag{9}
\end{equation*}
$$

over $G F(q)$.

For any arbitrarily fixed $b+1$ variables in (9), we have a square system of linear equations with Vandermond's determinant which has a unique solution over $G F(q)$. This means:
(a1) $\left|E\left(H_{1}(r, b)\right)\right|=q^{b+1}$; and
(b1) no two distinct edges can share more than b vertices; i.e., $H_{1}(r, b)$ is b-simple.
The next lemma says that H_{1} satisfies α-Condition with $\alpha=0.5^{b} e^{-k} q^{b+1} / k^{r}$.
Lemma 6. Let $k \geq 2$ and $b \geq 1$ be integers and let r be large in comparison with k and b and $q=q(r)$ be the smallest prime that is larger than r. Let f be any k-coloring of a set V with $|V|=r q$. If we randomly place a copy of H_{1} on V, then the probability that f is a proper coloring of H_{1} is at most $1-\alpha$, where $\alpha=0.5^{b} e^{-k} q^{b+1} / k^{r}$.

The proof of the lemma is intuitively clear and is a standard application of the second moment method. So, we postpone the proof to the last section.

Let p be a prime such that

$$
\begin{equation*}
2 e^{k} k^{r / b}(r \ln k)^{1 / b} / q<p \leq 4 e^{k} k^{r / b}(r \ln k)^{1 / b} / q \tag{10}
\end{equation*}
$$

Similarly to H_{1}, define an $r q$-uniform hypergraph $H_{2}=H_{2}(r, b, p)$ as follows. The vertex set of H_{2} is $T=T_{1} \cup \ldots \cup T_{r q}$, where all T_{i} are disjoint copies of $G F(p)=\{0,1, \ldots, p-1\}$. The edges of $H_{2}(r, b, p)$ are $r q$-tuples $\left(x_{1}, \ldots, x_{r q}\right) \in T_{1} \times \cdots \times T_{r q}$ that are solutions of the system of linear equations

$$
\begin{equation*}
\sum_{i=1}^{r q} i^{j} x_{i}=0, \quad j=0,1, \ldots, r q-b-2 \tag{11}
\end{equation*}
$$

over $G F(p)$.
Similarly to H_{1}, we have
(a2) $\left|E\left(H_{2}(r, b, p)\right)\right|=p^{b+1}$; and
(b2) no two distinct edges can share more than b vertices; i.e., $H_{2}(r, b, p)$ is b-simple.
As in the previous section, let \mathbf{G} be the random r-uniform hypergraph obtained from H_{2} by replacing each edge with a random copy of H_{1}.

As H_{1} and H_{2} are b-simple, every value of \mathbf{G} is a b-simple r-uniform hypergraph. Note that by (10) always

$$
|E(\mathbf{G})|=q^{b+1}\left|E\left(H_{2}\right)\right|=(q p)^{b+1} \leq\left(4 e^{k} k^{r / b}(r \ln k)^{1 / b}\right)^{b+1} \leq\left(4 e^{k}\right)^{b+1}(r \ln k)^{\frac{1+b}{b}} k^{\frac{r(1+b)}{b}}
$$

Thus, \mathbf{G} satisfies (A) and (D) stated at the end of the previous section. By Lemma 6, (B) is also satisfied for $\alpha=0.5^{b} q^{b+1} e^{-k} / k^{r}$.

Therefore, we only need to verify (8). We prove the slightly stronger inequality $n \ln k<$ $\alpha\left|E\left(H_{2}\right)\right|$ which in our case is

$$
0.5^{b}(q p)^{b+1} / e^{k} k^{r}>|V(\mathbf{G})| \ln k=r q p \ln k
$$

This is equivalent to $q p>2\left(r e^{k} k^{r} \ln k\right)^{1 / b}$ which holds by (10).

4. HYPERGRAPHS WITH LOW MAXIMUM DEGREE

Let f be a k-coloring of a set M with $|M|=m r$. Let $\phi(f, M)$ be the probability that a randomly chosen r-element subset of M is not monochromatic and let $\phi(k, r, m)=\max \{\phi(f, M)\}$, where the maximum is taken over all k-colorings f of M. Similarly, let $\psi(f, M)$ be the probability that, in a random placement of m disjoint r-element hyperedges onto M, none of the edges is monochromatic, and let $\psi(k, r, m)=\max \{\psi(f, M)\}$, where the maximum is taken over all k-colorings f of M.

Suppose that for $i=1, \ldots, k, x_{i}$ vertices of M have color i in f. Then by definition,

$$
\begin{equation*}
\phi(f, M)=1-\sum_{i=1}^{k} \frac{\binom{x_{i}}{r} r!((m-1) r)!}{(m r)!}=1-\sum_{i=1}^{k}\binom{x_{i}}{r}\binom{m r}{r}^{-1} \tag{12}
\end{equation*}
$$

As $x_{1}+\cdots+x_{k}=m r$,

$$
\phi(k, r, m) \leq 1-k\binom{m r / k}{r}\binom{m r}{r}^{-1} \leq 1- \begin{cases}\left(\frac{1-k / m}{k}\right)^{r-1}, & \text { if } k<m \tag{13}\\ 0, & \text { if } k \geq m\end{cases}
$$

To give a bound for $\psi(k, r, m)$, we need the following lemma.

Lemma 7. Let $k \geq 2, r \geq 2$ and m be positive integers. Then

$$
\begin{equation*}
\psi(k, r, m) \leq \prod_{i=1}^{m} \phi(k, r, i) \tag{14}
\end{equation*}
$$

Proof. We use induction on m for fixed k and r. For $m=1$, the statement is evident. Suppose that (14) holds for all $m^{\prime}<m$. Let f be any k-coloring of an $m r$-element set M. Let H_{1} be the r-uniform hypergraph on $m r$ vertices comprising a matching of m edges. Let A be an edge in H_{1}. Consider random placements of $V\left(H_{1}\right)$ onto M. Let $P_{1}(A, f)$ be the probability that A will be monochromatic in f, and let $P_{2}(A, f)$ be the conditional probability that some edge of H_{1} distinct from A will be monochromatic in f under condition that A is not monochromatic. As $P_{1}(A, f)=1-\phi(f, M)$,

$$
1-\psi(f, M)=P_{1}(A, f)+\left(1-P_{1}(A, f)\right) P_{2}(A, f)=1-\phi(f, M)+\phi(f, M) P_{2}(A, f)
$$

By definition, $P_{2}(A, f) \geq 1-\psi(k, r, m-1)$ and $\phi(f, M) \leq \phi(k, r, m)$. Hence,

$$
1-\psi(f, M) \geq 1-\phi(k, r, m) \psi(k, r, m-1)
$$

As f is arbitrary, we get $\psi(k, r, m) \leq \phi(k, r, m) \psi(k, r, m-1)$. Applying the induction hypothesis, we are done.

By the lemma and (13), for every $m \geq k+1$,

$$
\begin{equation*}
\psi(k, r, m) \leq \prod_{i=k+1}^{m}\left(1-\left(\frac{1-k / i}{k}\right)^{r-1}\right) \tag{15}
\end{equation*}
$$

Corollary 8. Let $k \geq 2$ and $r \geq 2$ be integers. For every $\epsilon>0$, there exists an $m_{0}=$ $m_{0}(k, r, \epsilon)$ such that for every $m \geq m_{0}$,

$$
\begin{equation*}
\psi(k, r, m) \leq\left(1-\frac{1-\epsilon / 2}{k^{r-1}}\right)^{m(1-\epsilon / 3)} \tag{16}
\end{equation*}
$$

In particular, for such m,

$$
\begin{equation*}
\psi(k, r, m) \leq \exp \left\{-m(1-\epsilon) / k^{r-1}\right\} . \tag{17}
\end{equation*}
$$

Proof. We may assume that $\epsilon<0.1$. Choose m_{0} so that $\left(1-k / 3 \epsilon m_{0}\right)^{r-1}>1-\epsilon / 3$. For any $m \geq m_{0}$, let $i_{0}=\lceil 3 \epsilon m\rceil$. By definition, $i_{0}>k$. Then by (15) and the choice of m_{0} and i_{0},

$$
\begin{aligned}
& \psi(k, r, m) \leq \prod_{i=i_{0}}^{m}\left(1-\left(\frac{1-k / i}{k}\right)^{r-1}\right) \leq\left(1-\left(\frac{1-k / i_{0}}{k}\right)^{r-1}\right)^{m-i_{0}+1} \\
& \leq\left(1-\frac{1-\epsilon / 2}{k^{r-1}}\right)^{m(1-\epsilon / \mathcal{B})} \leq \exp \left\{-\frac{1-\epsilon / 2}{k^{r-1}} m(1-\epsilon / 3)\right\}<\exp \left\{-m(1-\epsilon) / k^{r-1}\right\} .
\end{aligned}
$$

Now we are ready to prove Theorem 3.
Let d satisfy (2). As (2) holds, there exists an $\epsilon>0$ so small that

$$
\begin{equation*}
\left(1-\frac{1-\epsilon / 2}{k^{r-1}}\right)^{d(1-\epsilon / 3) / r}<1 / k \tag{18}
\end{equation*}
$$

Let m_{0} be the number guaranteed by Corollary 8 for this ϵ.
It is known that for every integers $d, g, R \geq 2$, there exists an R-uniform d-regular hypergraph with girth at least g. Some constructions of such hypergraphs are given by Sauer ${ }^{1}$ [11] and (in the language of biregular bipartite graphs of girth $2 g$) by Füredi et al. ${ }^{2}$ [4]. Thus, there exists an $m_{0} r$-uniform d-regular hypergraph $H_{2}=H_{2}\left(m_{0} r, d, g\right)$ of girth at least g. Let $V=V\left(H_{2}\right)$ and $n=|V|$. By construction, $\left|E\left(H_{2}\right)\right|=d n /\left(m_{0} r\right)$. As suggested in Section 2 , we form the random r-uniform d-regular hypergraph \mathbf{G} by replacing each edge (of size $\left.m_{0} r\right)$ of H_{2} with a random matching of m_{0} edges of size r. Replacement of each edge is independent of all other replacements. By construction, each value of the random variable \mathbf{G} is d-regular and has no cycles shorter than g. It remains to verify (8). In our case, the left-hand side of (8) is at most

$$
k^{n}\left(1-\frac{1-\epsilon / 2}{k^{r-1}}\right)^{m_{0}(1-\epsilon / 3) \mathrm{d} n / m_{0} r}<k^{n}\left[\left(1-\frac{1-\epsilon / 2}{k^{r-1}}\right)^{d(1-\epsilon / 3) / r}\right]^{n} .
$$

By (18), the last expression is less than 1 . This finishes the proof.

[^1]
5. PROOF OF LEMMA 6

Suppose that for $i=1, \ldots, k, x_{i}$ vertices of V have color i in f. Our sample space consists of ($q r$)! equiprobable placements of $V\left(H_{1}\right)$ onto V. For an edge A of H_{1}, let $Y(A)$ be the event that A is monochromatic. Then for any A,

$$
\begin{equation*}
\operatorname{Pr}[Y(A)]=\sum_{i=1}^{k} \frac{\binom{x_{i}}{r} r!(r q-r)!}{(r q)!}=\sum_{i=1}^{k}\binom{x_{i}}{r}\binom{r q}{r}^{-1} . \tag{19}
\end{equation*}
$$

If two edges A_{1} and A_{2} share $y>0$ vertices, then similarly

$$
\begin{equation*}
\operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right]=\sum_{i=1}^{k}\binom{x_{i}}{2 r-y}\binom{r q}{2 r-y}^{-1} . \tag{20}
\end{equation*}
$$

If A_{1} and A_{2} are disjoint, then

$$
\begin{equation*}
\operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right]=\binom{r q}{2 r}^{-1}\left[\sum_{i=1}^{k}\binom{x_{i}}{2 r}+2\binom{2 r}{r}^{-1} \sum_{1 \leq i<j \leq k}\binom{x_{i}}{r}\binom{x_{j}}{r}\right] . \tag{21}
\end{equation*}
$$

Case 1. $x_{1} \geq r+1.5 r^{2} / k$. Let A be any edge of H_{1}. Since r is large, by (19),
$\operatorname{Pr}[Y(A)] \geq\binom{ r+\frac{3 r^{2}}{2 k}}{r}\binom{r q}{r}^{-1}=\frac{\left(r+\frac{3 r^{2}}{2 k}\right)\left(r-1+\frac{3 r^{2}}{2 k}\right) \cdots\left(1+\frac{3 r^{2}}{2 k}\right)}{(r q)(r q-1) \cdots(r q-r+1)}$

$$
\geq\left(\frac{\frac{3 r^{2}}{2 k}}{r q}\right)^{r} \geq\left(\frac{3 r}{2 k q}\right)^{r}>\frac{(r+1)^{1+b}}{k^{r}} .
$$

Since $q=r+o(r)$ and r is large, the last expression is at most $(q / 2)^{b+1} k^{-r}$. Let Y be the event that at least one edge becomes monochromatic in f. Since $Y=\cup_{A} Y(A)$, we have $\operatorname{Pr}[Y] \geq \operatorname{Pr}[Y(A)]$. It follows that $1-P[Y] \leq 1-(q / 2)^{b+1} k^{-r}<1-q^{b+1} 2^{-b} e^{-k} k^{-r}$, i.e., the lemma holds.

Case 2. For every $1 \leq i \leq k, x_{i} \leq r-1+1.5 r^{2} / k$. We will use the simple second moment inequality:

$$
\begin{equation*}
\operatorname{Pr}[Y] \geq \sum_{A \in E\left(H_{1}\right)} \operatorname{Pr}[Y(A)]-\sum_{A_{1} \in E\left(H_{1}\right)} \sum_{A_{2} \in E\left(H_{1}\right), A_{2} \neq A_{1}} \operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right] . \tag{22}
\end{equation*}
$$

To this end we will need to show that $\operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right]$ is small in comparison with $\operatorname{Pr}\left[Y\left(A_{1}\right)\right]$ for all possible A_{1} and A_{2}.

In our case, the ratio of every summand in (20) to the corresponding summand in (19) is

$$
\begin{align*}
\binom{x_{i}}{2 r-y}\binom{r q}{2 r-y}^{-1}\binom{x_{i}}{r}^{-1}\binom{r q}{r} & =\frac{\left(x_{i}-r\right) \cdots \cdots\left(x_{i}-2 r+1+y\right)}{(r q-r) \cdots \cdots(r q-2 r+y+1)} \\
& \leq\left(\frac{x_{i}-r}{r q-r}\right)^{r-y} \leq\left(\frac{1.5 r^{2} / k}{r q-r}\right)^{r-y} \leq\left(\frac{3}{2 k}\right)^{r-b} . \tag{23}
\end{align*}
$$

It follows that for any two edges A_{1} and A_{2} sharing at least one vertex,

$$
\operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right] \leq\left(\frac{3}{2 k}\right)^{r-b} \operatorname{Pr}\left[Y\left(A_{1}\right)\right]
$$

Similarly, we will show that

$$
\begin{equation*}
\operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right] \leq 2 e^{2 k}\left(\frac{3}{2 k}\right)^{r} \operatorname{Pr}\left[Y\left(A_{1}\right)\right] \tag{24}
\end{equation*}
$$

for any disjoint A_{1} and A_{2}. For this, we compare the ratios of every summand in (21) to the corresponding summand in (19) and show that

$$
\begin{equation*}
2 e^{2 k}\binom{x_{i}}{r}\binom{r q}{r}^{-1}\binom{r q}{2 r} \geq\left(\frac{2 k}{3}\right)^{r}\left(\binom{x_{i}}{2 r}+k\binom{2 r}{r}^{-1}\binom{x_{i}}{r}\binom{r-1+\frac{3 r^{2}}{2 k}}{r}\right) \tag{25}
\end{equation*}
$$

which will yield (24). The proof of the fact that $\binom{x_{i}}{r}\binom{r q}{r}^{-1}\binom{r q}{2 r} \geq\left(\frac{2 k}{3}\right)^{r}\binom{x_{i}}{2 r}$ is the same as that of (23).

Suppose that

$$
e^{2 k}\binom{x_{i}}{r}\binom{r q}{r}^{-1}\binom{r q}{2 r}<k\left(\frac{2 k}{3}\right)^{r}\binom{2 r}{r}^{-1}\binom{x_{i}}{r}\binom{r-1+\frac{3 r^{2}}{2 k}}{r}
$$

Cancelling several factors yields

$$
e^{2 k} \frac{(r q-r)!}{(r q-2 r)!}<k\left(\frac{2 k}{3}\right)^{r} \frac{\left(r-1+\frac{3 r^{2}}{2 k}\right)!}{\left(-1+\frac{3 r^{2}}{2 k}\right)!}
$$

As the left-hand side of this for fixed r and k grows with q when $q \geq r$, we have

$$
e^{2 k} \frac{\left(r^{2}-r\right)!}{\left(r^{2}-2 r\right)!}<k\left(\frac{2 k}{3}\right)^{r} \frac{\left(r-1+\frac{3 r^{2}}{2 k}\right)!}{\left(-1+\frac{3 r^{2}}{2 k}\right)!}
$$

Dividing both sides by $\frac{\left(r^{2}-r\right)!}{\left(r^{2}-2 r\right)!}$ and cancelling some factors from the right-hand side, we obtain

$$
\begin{equation*}
e^{2 k}<k\left(\frac{2 k}{3}\right)^{r} \prod_{i=1}^{r} \frac{i-1+\frac{3 r^{2}}{2 k}}{r^{2}-2 r+i} \leq k\left(\frac{2 k}{3}\right)^{r}\left(\frac{r-1+\frac{3 r^{2}}{2 k}}{r^{2}-r}\right)^{r}<k\left(\frac{\frac{2 k}{3 r}+r}{r-1}\right)^{r} \tag{26}
\end{equation*}
$$

As under the conditions of the lemma $r \gg k$,

$$
\left(\frac{\frac{2 k}{3 r}+r}{r-1}\right)^{r} \leq\left(\frac{1 / 2+r}{r-1}\right)^{r}=\left(1+\frac{3 / 2}{r-1}\right)^{r}<e^{1.5 r /(r-1)}<9
$$

Thus, in (26) we have $e^{2 k}<9 k$ which is not true for $k \geq 2$. This proves (24).

So, for any distinct edges A_{1} and A_{2} in H_{1},

$$
\begin{equation*}
\operatorname{Pr}\left[Y\left(A_{1}\right) \cap Y\left(A_{2}\right)\right] \leq\left(\frac{3}{2 k}\right)^{r} \operatorname{Pr}\left[Y\left(A_{1}\right)\right] \max \left\{2 e^{2 k},\left(\frac{2 k}{3}\right)^{b}\right\} . \tag{27}
\end{equation*}
$$

Let $\lambda(k, b)=\max \left\{2 e^{2 k},\left(\frac{2 k}{3}\right)^{b}\right\}$. We plug it into (22).
By (22), (27) and the fact that $\left|E\left(H_{1}\right)\right|=q^{b+1}$, we have

$$
\operatorname{Pr}[Y] \geq \sum_{A \in E\left(H_{1}\right)} \operatorname{Pr}[Y(A)]\left(1-q^{b+1} \lambda(k, b)\left(\frac{3}{2 k}\right)^{r}\right)
$$

As r is large in comparison with k and b and $r<q=r+o(r)$, we have $q^{b+1} \lambda(k, b)\left(\frac{3}{2 k}\right)^{r}<$ $1 / 2^{b}$. So,

$$
\operatorname{Pr}[Y] \geq\left|E\left(H_{1}\right)\right| \operatorname{Pr}[Y(A)]\left(1-2^{-b}\right) \geq 0.5 q^{b+1} \operatorname{Pr}[Y(A)] .
$$

Recall that $\operatorname{Pr}[Y(A)]=\sum_{i=1}^{k}\binom{x_{i}}{r}\binom{r q}{r}^{-1}$. The minimum of $\sum_{i=1}^{k}\binom{x_{i}}{r}$ under condition $x_{1}+\cdots+x_{k}=r q$ is attained when $x_{1}=\cdots=x_{k}=r q / k$. Therefore,

$$
\operatorname{Pr}[Y(A)] \geq k\binom{\frac{r q}{k}}{r}\binom{r q}{r}^{-1} \geq k\left(\frac{r q}{k}-r+1\right)^{r}(r q)^{-r} \geq k^{1-r}\left(1-\frac{k(r-1)}{r q}\right)^{r}>\frac{k^{1-r}}{e^{k}}
$$

It follows that $\operatorname{Pr}[Y] \geq 0.5 q^{b+1} k^{1-r} e^{-k} \geq 0.5^{b} e^{-k} q^{b+1} / k^{r}$, which proves the lemma.

ACKNOWLEDGMENTS

The authors thank the referees for the helpful comments.

REFERENCES

[1] N. Alon, Hypergraphs with high chromatic number, Graphs Combin 1 (1985), 387-389.
[2] B. Bollobás, Random graphs, Academic Press, London, 1984.
[3] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Infinite and finite sets, Colloquia Math Soc János Bolyai 10 (1973), 609-627.
[4] Z. Füredi, F. Lazebnik, Á Seress, V. A. Ustimenko, and A. J. Woldar, Graphs of prescribed girth and bi-degree, J Combin Theory Ser B 64 (1995), 228-239.
[5] J. H. Kim, On Brooks' theorem for sparse graphs, Comb Probab Comput 4 (1995), 97-132.
[6] A. Kostochka and M. Kumbhat, Coloring simple uniform hypergraphs with few edges, Random Struct Algorithms 35 (2009), 348-368.
[7] A. V. Kostochka and N. P. Mazurova, An inequality in the theory of graph coloring, Met Diskret Analiz 30 (1977), 23-29 (in Russian).
[8] A. Kostochka, D. Mubayi, V. Rödl, and P. Tetali, On the chromatic number of set systems, Random Struct Algorithms 19 (2001), 87-98.
[9] N. N. Kuzjurin, On the difference between asymptotically good packings and coverings, European J Combin 16 (1995), 35-40.
[10] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph twocoloring, Random Struct Algorithms 16 (2000), 4-32.
[11] N. Sauer, On the existence of regular n-graphs with given girth, J Combin Theory 9 (1970), 144-147.
[12] Z. Szabó, An application of Lovász' local lemma - A new lower bound for the van der Waerden number, Random Struct Algorithms 1 (1990), 343-360.
[13] V. A. Tashkinov, A lower bound for the chromatic number of graphs with a given maximal degree and girth, Sib Elektron Mat Izv 1 (2004), 99-109 (in Russian).

[^0]: Correspondence to: A. V. Kostochka
 *Supported by NSF Grants (DMS-0650784, DMS-0300529, DMS-0800070); Russian Foundation for Fundamental Research (08-01-00673).
 © 2009 Wiley Periodicals, Inc.

[^1]: ${ }^{1}$ Formally, Sauer does not consider cycles of length 2 as cycles. But his construction produces appropriate hypergraphs without cycles of length 2 .
 ${ }^{2}$ They construct bipartite graph of girth at least $2 g$ in which all vertices in one partite set have degree R, and in the other partite set have degree d. But such graphs are exactly the incidence graphs of R-uniform d-regular hypergraphs with girth at least g.

