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a b s t r a c t

A graph G is (1, 1)-colorable if its vertices can be partitioned into subsets V1 and V2 such
that every vertex inG[Vi]has degree atmost 1 for each i ∈ {1, 2}.Weprove that every graph
with maximum average degree at most 14

5 is (1, 1)-colorable. In particular, it follows that
every planar graphwith girth at least 7 is (1, 1)-colorable. On the other hand, we construct
graphs with maximum average degree arbitrarily close to 14

5 (from above) that are not
(1, 1)-colorable.

In fact, we establish the best possible sufficient condition for the (1, 1)-colorability of
a graph G in terms of the minimum, ρG, of ρG(S) = 7|S| − 5|E(G[S])| over all subsets S of
V (G). Namely, every graph G with ρG ≥ 0 is (1, 1)-colorable. On the other hand, we con-
struct infinitely many non-(1, 1)-colorable graphs G with ρG = −1. This solves a related
conjecture of Kurek and Ruciński from 1994.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A graphG is called improperly (d1, . . . , dk)-colorable, or just (d1, . . . , dk)-colorable, if the vertex set ofG can be partitioned
into subsets V1, . . . , Vk such that the graph G[Vi] induced by the vertices of Vi has maximum degree at most di for all
1 ≤ i ≤ k. This notion generalizes those of proper k-coloring (when d1 = · · · = dk = 0) and d-improper k-coloring
(when d1 = · · · = dk = d ≥ 1).

The first result on d-improper colorings with d > 0 belongs to Gerencsér [13], who proved that every graph G with
maximum degree ∆(G) is 1-improperly (⌊∆(G)

2 ⌋ + 1)-colorable; in particular, every subcubic graph is (1, 1)-colorable. This
was extended by Lovász [17] as follows: every graphG is (d1, . . . , dk)-colorablewhenever (d1+1)+· · ·+(dk+1) ≥ ∆(G)+1.
These bounds are attained by the complete graphs.

As shown by Appel and Haken [1,2], every planar graph is 4-colorable, i.e. (0, 0, 0, 0)-colorable. Cowen, Cowen, and
Woodall [11] proved that every planar graph is 2-improperly 3-colorable, i.e. (2, 2, 2)-colorable.

Another important extension of proper coloring was introduced by Vizing [19] and, independently, by Erdős, Rubin, and
Taylor [12]. Suppose that for each list L(v) of colors admissible for v such that |L(v)| ≥ k, there is a proper coloring in which
a color of vertex v is taken from L(v); then G is k-choosable. Clearly, if L(v) is the same set of cardinality k for all vertices,
then we have the case of proper k-coloring.

Borodin and Kostochka [8] extended the notion of (d1, . . . , dk)-colorability as follows: Let fi, 1 ≤ i ≤ s, be functions from
V (G) to the non-negative integers. A graph G is called (f1, . . . , fs)-choosable if V (G) can be partitioned into subsets V1, . . . , Vs
such that each vertex v ∈ Vi (i.e., colored with i), where 1 ≤ i ≤ s, has strictly fewer than fi(v) neighbors in Vi. Clearly, if
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fi(v) ≡ di + 1 for all v ∈ V (G), 1 ≤ i ≤ s, then we have the case of (d1, . . . , ds)-colorability. Note also that if fi(v) = 0 then
v cannot be colored with i by definition, so k-choosability is precisely the case of (f1, . . . , fs)-choosability if fi(v) ∈ {0, 1} for
all v ∈ V (G), 1 ≤ i ≤ s and


v∈V (G) fi(v) ≥ k for all 1 ≤ i ≤ s. Indeed, it suffices to define the set of admissible colors at v

as follows: L(v) = {i : fi(v) = 1, 1 ≤ i ≤ s}. More generally, if fi(v) ∈ {0, t + 1}, for all v ∈ V (G) and 1 ≤ i ≤ s, where t
is a non-negative integer, then we have the case of t-improper k-choosability, provided that


v∈V (G) fi(v) ≥ k(t + 1) for all

1 ≤ i ≤ s. The theorem of Lovász [17] was extended in [8] as follows: If (f1(v) + 1) + · · · + (fs(v) + 1) ≥ d(v) + 1 for each
v ∈ V (G), where d(v) is the degree of v, then G is (f1, . . . , fs)-choosable.

A naturalmeasure of sparseness for a graphG ismad(G) = max


2|E(H)|

|V (H)|
,H ⊆ G


, themaximumover the average degrees

of the subgraphs of G. For planar graphs G the sparseness can be measured in terms of the girth, g(G), which is the length of
a shortest cycle in G. It is an easy consequence of Euler’s formula that each planar graph G satisfies mad(G) <

2g(G)

g(G)−2 .
We now survey the known results on probably the simplest version of improper coloring, namely improper colorings

of sparse graph with two colors, and, more generally, k-improper 2-choosability. Mihók [18] constructed a planar graph
that is not (k, k)-colorable for arbitrarily large k. Havet and Sereni [15] proved, for every k ≥ 0, that every graph G with
mad(G) < 4k+4

k+2 is k-improperly 2-choosable, i.e. (k, k)-choosable.
For non-negative integers j and k, let F(j, k) denote the supremum of x such that every graph Gwithmad(G) ≤ x is (j, k)-

colorable. It is easy to see that F(0, 0) = 2. Indeed, since the odd cycle C2n−1 has mad(G) = 2 and is not (0, 0)-colorable,
F(0, 0) ≤ 2. On the other hand, each graph with mad(G) < 2 has no cycles and therefore is bipartite, i.e., (0, 0)-colorable.

Glebov and Zambalaeva [14] proved that every planar graph Gwith g(G) ≥ 16 is (0, 1)-colorable. This was strengthened
by Borodin and Ivanova [3]: they proved that every graph G with mad(G) < 7

3 is (0, 1)-colorable, which implies that every
planar graph G with g(G) ≥ 14 is (0, 1)-colorable. Borodin and Kostochka [9] proved that F(0, 1) =

12
5 . In particular, this

implies that every planar graph G with g(G) ≥ 12 is (0, 1)-colorable.
For each integer k ≥ 2, Borodin et al. [5] proved that every graph G with mad(G) < 3k+4

k+2 = 3 −
2

k+2 is (0, k)-colorable.
On the other hand, for all k ≥ 2 [5] presents non-(0, k)-colorable graphs with mad arbitrarily close to 3k+2

k+1 = 3 −
1

k+1 .
Recently, it was proved by Borodin et al. [6] that every graph G with mad(G) < 10k+22

3k+9 , where k ≥ 2, is (1, k)-colorable.
On the other hand, [6] presents a construction of non-(1, k)-colorable graphs whose maximum average degree is arbitrarily
close to 14k

4k+1 .
Borodin and Kostochka [10] obtained an exact result for a wide range of j and k: if j ≥ 0 and k ≥ 2j + 2 then F(j, k) =

2

2 −

k+2
(j+2)(k+1)


. In particular, together with [9], this yields exact values for F(0, k) for every k.

From [10] we easily deduce:

Corollary 1. Let G be a planar graph, then G is:

(i) (0, 2)-colorable if g(G) ≥ 8,
(ii) (0, 4)-colorable if g(G) ≥ 7,
(iii) (1, 4)-colorable if g(G) ≥ 6, and
(iv) (2, 6)-colorable if g(G) ≥ 5.

Borodin et al. [5] constructed a planar graph with girth 6 which is not (0, k)-colorable for any k, and proved that every
planar graph G with g(G) ≥ 7 is (0, 8)-colorable, and if g(G) ≥ 8 then G is (0, 4)-colorable. It follows from [6] that every
planar graph G with g(G) ≥ 7 is (1, 2)-colorable, and every one with g(G) ≥ 6 is (1, 5)-colorable. Borodin et al. [7] also
proved, among other results, that planar graphs with girth 5 are (2, 13)- and (3, 7)-colorable. Note that all these bounds
are now strengthened by Corollary 1. Still, we suspect that Corollary 1 can be further improved. Also, the result of Havet
and Sereni [15] yields that every planar graph G with g(G) ≥ 5 (respectively, g(G) ≥ 6, and g(G) ≥ 8) is (4, 4)-choosable
(respectively, (2, 2)-choosable, and (1, 1)-choosable).

The purpose of this paper is to prove Theorems 2 and 4.

Theorem 2. Every graph G withmad(G) ≤
14
5 is (1, 1)-colorable, and the restriction onmad(G) is sharp.

Corollary 3. Every planar graph G with g(G) ≥ 7 is (1, 1)-colorable.

Note that Theorem 2 and Corollary 3 improve the above mentioned sufficient conditions for the (1, 1)-colorability due
to Havet and Sereni [15]: mad(G) ≤

8
3 for arbitrary graph G and g(G) ≥ 8 if G is planar. Borodin and Ivanova [4] proved that

every graph Gwith g(G) ≥ 7 andmad(G) < 14
5 can be partitioned into two strong linear forests (each connected component

of such forests is allowed to have at most two edges). Clearly, this result also follows from Theorem 2.
A. Pokrovskiy pointed out that Theorem2has an application to sparse vertex Ramsey graphs.We say thatG

v
→(H1, . . . ,Hk)

if for every partition of the vertex set of G into subsets V1, . . . , Vk there exists i such that Hi is a subgraph of G[Vi]. Let
mcr(H1, . . . ,Hk) = inf{mad(F) : F(H1, . . . ,Hk)}.

It is clear that a graph is (d1, . . . , dk)-colorable if and only ifG v9(K1,d1+1, . . . , K1,dk+1). Furthermore, F(j, k) = mcr(K1,j+1,
K1,k+1). Borodin and Kostochka’s results [9,10] directly state exact values formcr(K1,j+1, K1,ℓ+1) if ℓ ≥ 2j+2 or j = 0. Kurek
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Fig. 1. A non-(1, 1)-colorable graph G3 with ρG3 = −1.

and Ruciński [16] proved that
k

i=1

max
H ′
i≤Hi

δ(H ′

i ) ≤ mcr(H1, . . . ,Hk) ≤ 2
k

i=1

max
H ′
i≤Hi

δ(H ′

i ).

As a corollary, it follows thatmcr(Ks, . . . , Ks) = k(s − 1). However,mcr(H1, . . . ,Hk) is still unknown in general.
In the same paper, Kurek and Ruciński showed that 8/3 ≤ mcr(K1,2, K1,2) ≤ 14/5. Ruciński offered a 400,000 PLZ cash

prize for the exact value ofmcr(K1,2, K1,2). Theorem 2 proves thatmcr(K1,2, K1,2) = 14/5.
In Theorem 4 we use a refined measure of sparseness employed in [9,10]. For S ⊆ V (G), let ρG(S) = 7|S| − 5|E(G[S])|.

This is the potential of S. When there is no chance for confusion, we may use the notation ρ(S). In fact, we establish the best
possible sufficient condition for the (1, 1)-colorability of a graphG in terms of theminimum,ρG, ofρG(S) = 7|S|−5|E(G[S])|,
over all non-empty subsets S of V (G).

Theorem 4. Every graph G with ρG ≥ 0 is (1, 1)-colorable. On the other hand, there are infinitely many non-(1, 1)-colorable
graphs G with ρG = −1.

2. Sharpness of the restrictions in Theorems 2 and 4

We construct non-(1, 1)-colorable graphs Gp with ρGp = −1 for all p ≥ 1 and with mad(Gp) tending to 14
5 as p grows.

Let p ≥ 1 be an integer. Let Gp be the graph obtained from a cycle C2p+1 = y1 · · · y2p+1 as follows. For each i ∈ {1, 4,
6, . . . , 2p}, we add a path uiviwi and edges yiui, yivi, and yiwi. Also we add a vertex z and edges zy1 and zy2 (see Fig. 1 for
p = 3).

Suppose that c is a (1, 1)-coloring of Gp. The following simple observation is useful: one of the vertices ui, vi, and wi is
colored the same as yi whenever i ∈ {1, 4, 6, . . . , 2p}. This implies, in particular, that c(y4) = c(y6) because otherwise
y5 cannot be colored. Hence, c(y4) = c(y6) = · · · = c(y2p) = c(y1). It follows that each of the vertices z, y2, and y3 is
colored differently from y1 and y4. Therefore, c(z) = c(y2) = c(y3), a contradiction. Finally, it is easy to check that ρGp =

7 × (2p + 1 + 3p + 1) − 5 × (2p + 1 + 5p + 2) = −1 and mad(Gp) =
2(7p+3)
5p+2 →

14
5 as p → ∞.

3. Preliminaries

The structure of the proof of Theorem 4 is as follows:
(1) we will describe all non-trivial subgraphs of a minimum counterexample with potential at most 3 as belonging to a

finite set of special graphs,
(2) assuming the absence of special graphs, we will give structural results concerning a subgraph G′ of a minimum

counterexample with ρG′ ≥ 4, and
(3) we conclude the proof with discharging.

A similar method was used in [9,10]. In particular, an introduction to this method is [9], where the argument has fewer
technicalities.

If G′ is a pendant block and w is the unique cut vertex in G′ of G, then w is the base of G′. A flag is a pendant block
isomorphic to K4 − e, where the base is one of the vertices of degree 3 in K4 − e. A flag attached at a vertex u is a flag whose
base has been glued to u. (In Fig. 1, we see flags attached at bases y1, y4, and y6.) The significance of a flag F in a graph G
attached at u is that in each (1, 1)-coloring, there is a neighbor of u in F that is colored with the same color. Moreover, all
other neighbors of u in G are colored with the other color. For the rest of the paper, we will assume that at most one flag is
attached to each vertex. If two flags are attached to one vertex, then that subgraph is isomorphic to G1 from Section 2.

Unimportant vertices in a graph are (a) vertices of degree at most 1, (b) vertices of degree 2 contained in a triangle,
(c) vertices of degree 3 contained in a flag. Semi-important vertices are vertices of degree 2 not contained in a triangle.
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All other vertices are important. (In Fig. 1, we see unimportant vertices ui, vi, wi, z, semi-important vertices y3, y5, y7, and
important vertices y1, y2, y4, and y6.)

We say that a graph H is smaller than a graph G (and denote this by H ≺ G) if (i) G has more important vertices than H ,
or (ii) G and H have the same number of important vertices and G has more semi-important vertices than H , or (iii) G and H
have the same amounts of important and semi-important vertices, and |V (G)| > |V (H)|, or (iv) G has the same number of
vertices in each class as H and

u∈V (H)

d(u)2 >


v∈V (G)

d(v)2.

Note that by this definition, if H is a proper subgraph of G, then H is smaller than G. Let G be a counterexample to the main
statement in Theorem 4 smallest with respect to the order above. In particular, ρG ≥ 0. It is easy to see that G is connected,
G has no separating edges, and hence δ(G) ≥ 2. A setW ⊆ V (G) will be called an i-set if ρG(W ) = i.

By a B-subgraph we mean the six-vertex subgraph of G obtained from a flag and a triangle by gluing the base of the flag
to a vertex of the triangle. The base and one other vertex in the triangle are considered as special. The point of this is that in
each (1, 1)-coloring of B, each of the special vertices has neighbors of both colors, and they have distinct colors.

A super-flag W is a B-subgraph of G such that only special vertices of W may have neighbors in G outside of W . In Fig. 1,
the subgraph induced by {v1, w1, u1, y1, y2, z} is a super-flag in which y1 and y2 are special. Recall once more that in each
(1, 1)-coloring of a super-flagW , each of the special vertices has neighbors of both colors, and they have distinct colors.

Let G′ be a graph, A∪ B = V (G′), φA be a coloring of G′
[A], and φB be a coloring of G′

[B]. If φA(u) = φB(u) for all u ∈ A∩ B,
then we define φA ∪ φB to be a coloring φ of G′ such that φ(w) = φA(w) when w ∈ A and φ(v) = φB(v) otherwise.

Lemma 5. No super-flag is a separating set.

Proof. Suppose that a super-flagW is a separating set. Let V (G) − W = X ∪ Y such that E(X, Y ) = ∅.
By the minimality of G, let fX be a coloring of X ∪W and fY be a coloring of Y ∪W . Let y1 and y2 be the special vertices of

W . By the symmetry of the coloring, we can assume that fX (y1) = fY (y1) and fX (y2) = fY (y2). Furthermore, if v ∈ N(y1)−W
then (fX ∪ fY )(v) ≠ f (y1) and if u ∈ N(y2) − W then (fX ∪ fY )(u) ≠ f (y2).

Let f be a coloring such that if u ∈ X∪W then f (u) = fX (u) and f (u) = fY (u) otherwise. Then f is a (1, 1)-coloring ofG. �

Lemma 6. If xy ∈ E(G), then max{d(x), d(y)} ≥ 3. Furthermore, if xy is not part of a flag then x or y is important.

Proof. If d(x) = d(y) = 2, then let g ′ be a (1, 1)-coloring on G − x − y. Let ux, vy ∈ E(G). We create a (1, 1)-coloring g on
G by setting g|G−x−y = g ′, g(x) ≠ g ′(u), and g(y) ≠ g ′(v). This is a contradiction.

Without loss of generality, assume that d(x) ≥ 3. If x is not important, then d(x) = 3 and x is in a flag. But then xy is a
part of that flag. �

Recall that the potential of a vertex set S of a graph G′ is ρG′(S) = 7|S| − 5|E(G′
[S])|. It follows that ρK1(V (K1)) = 7,

ρK2(V (K2)) = 9, ρK3(V (K3)) = 6, and ρK4(V (K4)) = −2. The minimum potential over all non-empty subsets of V (G′) is ρG′ .
Let G be a smallest graph, with respect to the order of graphs defined above, such that ρG ≥ 0 and G is not (1, 1)-colorable.
By minimality, every proper subgraph of G is (1, 1)-colorable.

Fact 7. Let G′ be a graph and A, B, C ⊆ V (G′) be such that A ⊃ B and A∩C = ∅. Then ρG′(A−B) = ρG′(A)−ρG′(B)+5|EG′(A−

B, B)| (equivalently, ρG′(A ∪ C) = ρG′(A) + ρG′(C) − 5|EG(A, C)|).

We will use Fact 7 throughout the rest of the paper.

4. Sets with potential 2

Proposition 8. Let ∅ ≠ T ( V (G) be a set such that either (i) ρ(T ) ∈ {0, 1}, or (ii) ρ(T ) = 2 and for every T ′ ( T , ρ(T ′) ≥ 3.
Let F be a flag in G. Under these assumptions,
(a) δ(G[T ]) ≥ 2,
(b) if w ∉ T then |N(w) ∩ T | ≤ 1,
(c) either F ⊂ T or F ∩ T = ∅, and
(d) every vertex u in T incident to an edge uv leaving T is important.

Proof. Because ρ(T ) ≤ 6, we have that |T | ≥ 2.
If v ∈ T is such that |N(v) ∩ T | ≤ 1, then ρ(T − v) ≤ ρ(T ) − 7 + 5. If ρ(T ) ≤ 1, then this contradicts the assumption

that ρG ≥ 0. If rho(T ) = 2, then this contradicts that ρ(T − v) ≥ 3 under assumption (ii). This proves (a).
Let w ∉ T with |N(w) ∩ T | ≥ 2. Then ρ(T + w) ≤ ρ(T ) + 7 − 10 ≤ −1, which contradicts that ρG ≥ 0. This proves (b).
If |T ∩ F | = 1, then T ∪ F has three more vertices and at least five more edges than T . So in this case ρ(T ∪ F) ≤

ρ(T )−5·5+7·3 ≤ 2−25+21 = −2, which is a contradiction. Similarly, if |T ∩F | = 2, then ρ(T ∪F) ≤ ρ(T )−5·4+7·2 ≤

2 − 20 + 14 = −4, and if |T ∩ F | = 3, then ρ(T ∪ F) ≤ ρ(T ) − 5 · 2 + 7 ≤ 2 − 10 + 7 = −1. This proves (c).
Let uv ∈ E(G) with u ∈ T and v ∉ T . Due to (a), we have d(u) ≥ 3. Therefore, if u is not important, then it must be in a

flag. But if u is in a flag F , then by (c), F is contained in T , which implies that d(u) ≥ 4. �



2642 O.V. Borodin et al. / Discrete Mathematics 313 (2013) 2638–2649

Proposition 9. Let B be a super-flag with special vertices y1 and y2. There is no S ( V (G) such that ρ(S) ≤ 2 and B ≺ G[S].

Proof. By way of contradiction, let S ( V (G) be a set with potential at most 2. Let f : S → {α, β} be a (1, 1)-coloring of
G[S]. Let Sα be the set of vertices in S colored α, and Sβ be the set of vertices in S colored β . Let Nα = N(Sα) ∩ (V (G) − S)
and Nβ = N(Sβ) ∩ (V (G) − S). Let G′ be defined as follows:

V (G′) = V (G) − S + V (B)

and

E(G′) = E(G − S) + E(B) + {uy1 : u ∈ Nα} + {vy2 : v ∈ Nβ}.

Because B ≺ G[S] and the unimportant vertices of G are unimportant in G′, it follows that G′
≺ G. Suppose that there

exists a T ⊆ V (G′)with ρ(T ) ≤ −1. Because such a T was not in G, we have T ∩B ≠ ∅. Wemay assume that B ⊂ T , because
a quick examination of all possibilities will show that ρG′(T ∪ B) ≤ ρG′(T ). But then ρG(T − B + S) ≤ ρG′(T ), which is a
contradiction. Therefore G′ has a coloring g ′.

By the symmetry of the coloring we may assume that g ′(y1) = α. By the configuration of a super-flag, it follows that
g ′(y2) = β . Moreover, it must be the case that g ′(u) = β for all u ∈ Nα and g ′(v) = α for all v ∈ Nβ . Therefore the coloring
g on G defined by g = g ′

∪ f is a (1, 1)-coloring. �

Proposition 10. Suppose that ∅ ≠ S ( V (G) with potential at most 2 and x ∈ S. Under these conditions |S| ≥ 5 and
E(S − x, V (G) − S) ≠ ∅.

Proof. The smallest solution to the Diophantine relation 7|S| − 5|E(G[S])| ∈ {0, 1, 2} that is realized by a simple graph is
|S| = 5, |E(G[S])| = 7.

By way of contradiction, let S ( V (G) have potential at most 2 and E(S − x, V (G) − S) = ∅. Let G′
= G − (S − x) + F ,

where F is a flag attached to x. Because δ(G) ≥ 2, and by Lemma 6, there must be at least two important vertices in S. Hence
G′

≺ G.
Suppose that there is a T ⊂ V (G′) with ρG′(T ) ≤ −1. Because ρG ≥ 0, it follows that T ∩ (F − x) ≠ ∅. We

may assume that F ⊂ T , because a quick examination of all possibilities will show that ρG′(T ∪ F) ≤ ρG′(T ). But then
ρG(T − (F − x) + (S − x)) ≤ −1 + 4 + 2 − 7, which contradicts ρG ≥ 0. By the minimality of G, we have that G′ has a
(1, 1)-coloring g ′.

Without loss of generality, assume that g ′(x) = α. By construction, it must be the case that for all u ∈ N(x)∩ (V (G)− S),
we have g ′(u) = β . Let f be a (1, 1)-coloring of G[S] with f (x) = α. Then g = f ∪ g ′ is a (1, 1)-coloring of G. �

Corollary 11. If ∅ ≠ S ( V (G) has potential at most 2, then S contains exactly two important vertices and no semi-important
vertices. Furthermore, |S| ≤ 6.

Proof. Let S ′
⊂ S be a minimal non-empty set with potential at most 2. By Propositions 8.d and 10, S ′ contains at least two

important vertices. By Proposition 9, S contains at most two important vertices and four unimportant vertices. �

Proposition 12. There is no S ( V (G) such that ρ(S) = 0 and |S| = 5.

Proof. Suppose that such an S exists. By Corollary 11, S has important vertices {x1, x2} and unimportant vertices {z1, z2, z3}.
If G[S] contains a flag, then |E(G[S])| ≤ 6 and ρ(S) ≥ 5. Therefore each of {z1, z2, z3} has degree 2 and is in a triangle. By
Lemma 6, the zi’s are not adjacent to each other. Therefore N(z1) = N(z2) = N(z3) = {x1, x2} and x1x2 ∈ E(G).

Define G′
= G − S + F , where the base of F is v, and N(v) = (N(x1) ∪ N(x2)) − S. If there exists a T ⊂ V (G′) with

ρG′(T ) ≤ −1 then because ρG ≥ 0, it follows that F ∩ T ≠ ∅. We may assume that F ⊂ T , because a quick examination of
all possibilities will show that ρG′(T ∪ F) ≤ ρG′(T ). But then ρG(T − F + S) ≤ −1 − 3 + 0 ≤ −1, which is a contradiction.
By construction, G′

≺ G. By minimality of G, there is a coloring g ′ of G′.
Without loss of generality, let g ′(v) = α. For all u ∈ N(v) − F , g ′(u) = β . Create a coloring g of G as follows: Set

g|V (G)−S = g ′
|V (G′)−F , g(x1) = g(x2) = α, and g(z1) = g(z2) = g(z3) = β . This is a (1, 1)-coloring of G. �

Lemma 13. If ∅ ≠ S ( V (G) has potential at most 2, then G[S] is a super-flag.

Proof. Let {y1, y2} be the important vertices in S described by Corollary 11.
By Corollary 11 and Proposition 12, we conclude that if G[S] is not a super-flag then |S| = 6 and S contains four vertices

of degree 2 contained in a triangle. By Lemma 6, the neighborhood of each unimportant vertex is {y1, y2} and y1y2 ∈ E(G).
But then G[S] contains nine edges and ρ(S) ≤ −3, a contradiction. So G[S] is a super-flag. �

As a corollary to Lemma 13, if G′ ( G, then ρG′ ≥ 2. Because adding one vertex and two edges reduces the potential by
3, we immediately have the following corollary.

Corollary 14. Let ∅ ≠ T ⊂ V (G) and x1, x2 ∉ T . Let G′
= G − T + x′, where N(x′) = {x1, x2}. If x1 and x2 are not in the same

super-flag, then ρG′ ≥ 0.
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5. Sets with potential 3

A 3-set is standard if it is a flag or has at least |V (G)| − 1 vertices. The goal of this section is to prove that all 3-sets of G
are standard. We will do this through a sequence of smaller statements on a nonstandard 3-set X with fewest vertices in G.
Let X0 denote the set of vertices in X that have neighbors outside of X .

Proposition 15. G[X] is connected and δ(G[X]) ≥ 2.

Proof. If G1, . . . ,Gk are connected components of G[X] and k ≥ 2, then for some i, ρG(V (Gi)) ≤ ⌊3/k⌋ ≤ 1, a contradiction
to Lemma 13. If x ∈ X and d(x) ≤ 1, then ρG(X − x) ≤ 3 − 7 + 5 = 1, a contradiction to Lemma 13. �

Proposition 16. No vertex outside X has more than one neighbor in X.

Proof. Suppose that z ∈ V (G) − X has at least two neighbors in X . Let X ′
= X + z. Since X is nonstandard, X ′

≠ V (G), but
ρ(X ′) ≤ ρ(X) + 7 − 2 · 5 = 0, a contradiction to Lemma 13. �

Corollary 17. Each x ∈ X0 is important.

Proof. By Proposition 15 and the definition of X0, d(x) ≥ 3. Suppose that x is a 3-vertex in a flag F . Then exactly one vertex
of F is outside of X , and this vertex has at least two neighbors in F , a contradiction to Proposition 16. �

Proposition 18. G[X] has no (1, 1)-coloring in which all vertices in X0 have the same color.

Proof. Suppose that G[X] has a (1, 1)-coloring f such that f (x) = 1 for each x ∈ X0. Let G′ be obtained from G − X by
adding a new flag F with base x0 and adding an edge zx0 for each z ∈ V (G) − X that had a neighbor in X . Since the potential
of F is the same as that of X in G, we have ρG′(A) ≥ 0 for every A ⊆ V (G′). By Lemma 6 and Proposition 15, X had more
than one important vertex. And any important vertex in V (G′) − x0 was important in G. So, G′ is smaller than G. Thus, G′

has a (1, 1)-coloring g . We may assume that g(x0) = 1. Since x0 has a neighbor of color 1 in F , it has no such neighbors in
V (G′) − F . So g|V (G)−X ∪ f is a (1, 1)-coloring of G. �

Proposition 19. Each x ∈ X0 has a neighbor in V (G) that is either important or semi-important.

Proof. Suppose that a vertex z ∈ V (G) − X adjacent to x ∈ X0 is unimportant. Since δ(G) ≥ 2, by Proposition 16 there is a
w ∈ N(x) ∩ N(z) ∩ (V (G) − X). By Lemma 6, w is important unless w is in a flag F . By Proposition 16, F ∩ X = {x}. This is a
contradiction, because ρ(X + F) ≤ 3 + 21 − 25 = −1. �

Proposition 20. |X0| ≥ 3.

Proof. By Proposition 18, |X0| ≥ 2 and if X0 = {x1, x2}, then f (x1) ≠ f (x2) for every (1, 1)-coloring f of G[X]. By definition,
{x1, x2} is a separating set. If x1 and x2 are the special vertices of some super-flag H of G, then H is also a separating set. But
that contradicts Lemma 5. Therefore vertices x1 and x2 are not in the same super-flag of G.

Let G0 be obtained from G[X] by adding a vertex y adjacent to x1 and x2. Adding a vertex of degree 2 to a subgraph
decreases its potential by 3; therefore by Lemma 13 the potential of every subgraph of G[X] is still non-negative. We claim
that G0 is smaller than G. Indeed, by Proposition 19, each of x1 and x2 has a neighbor in V (G)−X that is not unimportant, and
by Proposition 16 they are different. But y is either semi-important or unimportant. Thus, G0 is smaller than G and hence has
a (1, 1)-coloring f . By Proposition 18, f (x1) ≠ f (x2). By symmetry we may assume that f (x1) = f (y) = 1 and f (x2) = 2. Let
G1 be obtained from G − (X − x1 − x2) by adding an edge x1x2 (if it is not in E(G)) and placing a flag F on x2. Note that the
potential of G1[F ] is 3 and that of G1[F + x1] is 3 + 7 − 5 = 5. So, G1 has no sets of negative potential. Thus if G1 is smaller
than G, then it has a (1, 1)-coloring g . Since x2 has a neighbor of its color in F , g(x1) ≠ g(x2). Therefore, renaming colors
such that g(x1) = 1 and g(x2) = 2, we would have that f |X ∪ g|V (G)−X is a (1, 1)-coloring of G. Hence G1 is not smaller than
G. In this case, all vertices in X − x1 − x2 are unimportant and |X | ≤ 5. Since no unimportant vertex can be an intermediate
vertex in a shortest path and G[X] is connected, x1x2 ∈ E(G). So ρG({x1, x2}) = 14 − 5 = 9. Adding a flag to a set decreases
the potential by 4, adding a 2-vertex decreases it by 3, and adding two adjacent 2-vertices generates a subgraph forbidden
by Lemma 6. Because ρG(X) = 3, it follows that X − {x1, x2} is two 2-vertices adjacent to x1 and x2. But then G[X] does have
a (1, 1)-coloring f with f (x1) = f (x2), a contradiction to Proposition 18. �

Proposition 21. In every (1, 1)-coloring of G[X], each vertex in X0 has neighbors of both colors.

Proof. Suppose that in (1, 1)-coloring f ofG[X], a vertex x ∈ X0 has no neighbors of color 1. Then by Proposition 15, f (x) = 1.
By Proposition 19, x has a neighbor z ∈ V (G) − X that is not unimportant. Let G′ be obtained from G − X as follows:

(a) add a flag F attached to z;
(b) add a super-flag Y with special vertices y1 and y2;
(c) for each v ∈ V (G) − X − z that is adjacent to a vertex of color i in f , join v by an edge to yi.
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By Proposition 16, there will be no confusion with (c).
Case 1: G′ has a (1, 1)-coloring g . We claim that f ∪ g is a (1, 1)-coloring. Indeed, if g(z) = 2, then this follows from the

construction of G′. Moreover, if g(z) = 1, then because of F , z has no neighbor of color 1 in G′
− (F − z). So, even though

vertices x and z of color 1 are adjacent to each other, they do not have other neighbors of color 1 in G.
Case 2: G′ has no (1, 1)-colorings. By Proposition 20, X contains at least three important vertices. So, since z was not

unimportant, G′ is smaller than G. Thus G′ has a set Z with ρG′(Z) ≤ −1.
Case 2.1: Z ∩ Y ≠ ∅. The subgraph of a super-flag with smallest potential is the whole super-flag, so we may assume

that Y ⊆ Z . If z ∉ Z , then F ∩ Z = ∅, and

ρG(X ∪ (Z − Y )) ≤ ρG′(Z) − ρG′(Y ) + ρG(X) ≤ −1 − 2 + 3 = 0,

a contradiction to Lemma 13. So z ∈ Z . Then ρG′−(F−z)(Z − (F − z)) ≤ −1 − 21 + 25 = 3. So, because of the edge xz,

ρG(X ∪ (Z − (F − z) − Y )) ≤ ρG′−(F−z)(Z − (F − z)) − ρG′(Y ) + ρG(X) − 5|E(X, {z})| ≤ 3 − 2 + 3 − 5 = −1,

which contradicts the assumption that ρG ≥ 0.
Case 2.2: Z ∩ Y = ∅. Then z ∈ Z . By the same calculation as in Case 2.1, ρG(Z − (F − z)) ≤ 3 and

ρG (X ∪ (Z − (F − z))) ≤ ρG(X) + ρG(Z − (F − z)) − 5|E(X, Z − (F − z))| ≤ 3 + 3 − 5 = 1.

By Lemma 13, we get X ∪ (Z − (F − z)) = V (G). But since there are at least two edges between X and V (G) − X , we then
have ρG(V (G)) ≤ 3 + 3 − 10 = −4, which contradicts the assumption that ρG ≥ 0. �

Proposition 22. For every x, x′
∈ X0 such that x and x′ are not in the same super-flag of G, there is a (1, 1)-coloring f of G[X]

such that f (x) = f (x′).

Proof. Let G′′ be obtained from G[X] by adding a new vertex v adjacent to x and x′. By Corollary 14, ρG′′ ≥ 0. By
Proposition 19, G′′ is smaller than G. So by the minimality of G, G′′ has a (1, 1)-coloring f . By Proposition 21, both x and
x′ have neighbors of both colors in G′′

− v. Thus f (v) ≠ f (x) and f (v) ≠ f (x′). It follows that f (x) = f (x′). �

Lemma 23. Graph G has no nonstandard 3-sets.

Proof. Suppose that X is aminimum size nonstandard 3-set and X0 is the set of vertices in X adjacent to V (G)−X . Since G[X]

is smaller than G, it has a (1, 1)-coloring f1. Let X1 be the set of vertices x ∈ X0 with f1(x) = 1 and X2 = X0 − X1. By changing
the names of colors if needed, wemay assume that |X1| ≥ |X2|. Since |X0| ≥ 3, we have |X1| ≥ 2. By Proposition 18, X2 ≠ ∅.
Let x, x′

∈ X1 and y ∈ X2. Since each super-flag has only two important vertices, y and x are not in the same super-flag or y
and x′ are not in the same super-flag. So by Proposition 22, there is a (1, 1)-coloring f2 ofG[X] such that f2(y) ∈ {f2(x), f2(x′)}.
Thus, we have proved that

there is a (1, 1)-coloring f2 of G[X] distinct from f1. (1)

Let Y1 = {z ∈ X0 : f1(z) = f2(z)} and Y2 = X0 − Y1. By switching the names of the colors in f2, we can achieve that

|Y1| ≥ |Y2|. (2)

Case 1: All vertices in Y2 have the same color in f1. Let G1 be obtained from G − X by

(a) adding a flag F with base y0,
(b) adding a copy H of a super-flag disjoint from F with special vertices y1 and y2,
(c) adding the edge (z, y0) for every z ∈ V (G) − X that is adjacent to some w ∈ Y2, and
(d) adding the edge (z, y3−j) for every z ∈ V (G) − X that is adjacent to some w ∈ Y1 with f1(w) = j, for j = 1, 2.

Suppose first that G1 has a (1, 1)-coloring g . Wemay assume that g(y1) = 1. Then g ∪ f1 or g ∪ f2 is a (1, 1)-coloring of G.
So, G1 has no (1, 1)-colorings. Suppose now that ρG1(Z) ≤ −1 for some Z ⊆ V (G1) and Z has the smallest potential in

G1. Then Z either contains F or is disjoint from F , and similarly either contains H or is disjoint from H . By the construction
of G1, it contains F or H .

Case 1.1: F ⊂ Z and H ⊂ Z . Then the potential of (Z − F − H) ∪ X in G is at most

ρG1(Z) − ρG1(F) − ρG1(H) + ρG(X) ≤ −1 − 3 − 2 + 3 ≤ −3,

which contradicts the assumption that ρG ≥ 0.
Case 1.2: F ⊂ Z and H ∩ Z = ∅. Following the calculation of Case 1.1, the potential of (Z − F) ∪ X in G is at most

−1 − 3 + 3 ≤ −1, a contradiction.
Case 1.3: F ∩ Z = ∅ and H ⊂ Z . Following the calculation of Case 1.1, the potential of (Z − H) ∪ X in G is at most

ρG1(Z) − 2 + 3 ≤ 0. If (Z − H) ∪ X ≠ V (G), this contradicts Lemma 13. If (Z − H) ∪ X = V (G), then we did not take into
account the contribution of edges connecting Y2 with V (G)−X . So, in this case, the potential of (Z−H)∪X = V (G) is atmost

ρG1(Z) − ρG1(H) + ρG(X) − 5|E(Y2, V (G) − X)| ≤ −1 − 2 + 3 − 5 ≤ −5,

a contradiction.
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Thus,G1 satisfies the conditions of the theorem and has no (1, 1)-colorings. By the choice ofG, it cannot be smaller thanG.
Let us check how this may happen. By Corollary 17, every vertex in X0 is important. Since we have added to V (G)−X at most
three important vertices, we conclude that X0 = {x, x′, y} and every other vertex of X is unimportant. By Proposition 15,
G[X] is connected and because no unimportant vertex can be an intermediate vertex in a shortest x, x′-path (or x, y-path or
x′, y-path), it follows that G[X0] is connected. So, G[X0] has either two or three edges.

Case 1.A: G[X0] has three edges. Then ρ(X0) = 6. Since adding a 2-vertex decreases the potential by 3 and adding a flag
decreases it by 4, the only way to get ρ(X) = 3 is that we obtain X by adding one 2-vertex. In this case, G[X] = K4 − e. If
we color the vertices of degree 3 in G[X] with color 1, and the vertices of degree 2 in G[X] with color 2, then the latter will
have only neighbors of color 1, a contradiction to Proposition 21.

Case 1.B: G[X0] has two edges. This means that G[X0] is a path of length 2, say (x1, x2, x3), where {x1, x2, x3} = {x, x′, y}.
Then ρ(X0) = 11 and ρ(X) − ρ(X0) = −8. Since the only way to express 8 as a sum of 3’s and 4’s is 8 = 4 + 4, G[X] is
obtained from G[X0] by adding two flags. Then there is a (1, 1)-coloring h of G[X] such that h(x1) = h(x3) ≠ h(x2). So, the
vertex in X0 not contained in a flag will have neighbors of only one color, a contradiction to Proposition 21.

Case 2: The set Y2 has vertices of both colors in f1. Then 2 ≤ |Y2| ≤ |Y1|. The proof almost repeats the one for Case 1 with
more case analysis at the end. Let G2 be obtained from G − X by
(a) adding two disjoint copies H1 and H2 of a super-flag with special vertices y1,1 and y1,2 in H1 and y2,1 and y2,2 in H2, and
(b) adding the edge (z, yi,3−j) for every z ∈ V (G) − X that is adjacent to some w ∈ Yi with f1(w) = j, for all i, j ∈ {1, 2}.

Suppose first that G2 has a (1, 1)-coloring g . Wemay assume that g(y1,1) = 1. Then g∪ f1 or g∪ f2 is a (1, 1)-coloring of G.
So, G2 has no (1, 1)-colorings. Suppose now that ρG1(Z) ≤ −1 for some Z ⊆ V (G2) and Z has the smallest potential in

G2. Then for i = 1, 2, Z either contains Hi or is disjoint from Hi. By construction, Z contains H1 or H2.
Case 2.1: H1 ⊂ Z and H2 ⊂ Z . Then the potential of (Z − H1 − H2) ∪ X in G is at most

ρG2(Z) − ρG2(H1) − ρG2(H2) + ρG(X) ≤ −1 − 2 − 2 + 3 ≤ −2,

which contradicts the assumption that ρG ≥ 0.
Case 2.2: H1 ∩ Z = ∅ and H2 ⊂ Z . Following the calculation of Case 2.1, the potential of (Z − H2) ∪ X in G is at most

−1−2+3 ≤ 0. If (Z−H2)∪X ≠ V (G), this contradicts Lemma 13. If (Z−H2)∪X = V (G), thenwe did not take into account
the contribution of edges connecting Y1 with V (G) − X . So, in this case, the potential of (Z − H2) ∪ X = V (G) is at most

ρG2(Z) − ρG2(H2) + ρG(X) − 5|E(Y1, V (G) − X)| ≤ −1 − 2 + 3 − 5 ≤ −5,

a contradiction.
Case 2.3: H2 ∩ Z = ∅ and H1 ⊂ Z . The case is symmetric to Case 2.2.
Thus, G2 satisfies the conditions of the theorem and has no (1, 1)-colorings. By theminimality of G, G2 is not smaller than

G. Let us check how this may happen. We have added to V (G) − X only four important vertices. Using the same logic as at
the end of Case 1, we conclude that |X0| = 4, every other vertex of X is unimportant, and G[X0] is connected. So, G[X0] has
three, four or five edges.

Case 2.A: G[X0] has five edges. Then ρ(X0) = 3 and hence X = X0. In this case, G[X] = G[X0] = K4 − e. So we get a
contradiction to Proposition 21 exactly as at the end of Case 1.A.

Case 2.B: G[X0] has four edges. Then ρ(X0) − ρ(X) = 5 and there is no way to express 5 as a sum of 4’s and 3’s.
Case 2.C: G[X0] has three edges. Then ρ(X0) − ρ(X) = 10. Since the only way to express 10 as a sum of 3’s and 4’s is

10 = 4 + 3 + 3, G[X] is obtained from G[X0] by adding one flag and two unimportant 2-vertices. Note that G[X0] is either
K1,3 or P4. By Proposition 15, if w is a leaf of G[X0], then

w belongs to a flag or is adjacent to an unimportant 2-vertex. (3)

Case 2.C.1: G[X0] = K1,3. Let x0 be the vertex of degree 3 in G[X0] and x1, x2, x3 be the remaining vertices in X0. By (3) we
may, up to reordering of x1, x2, x3, assume that x1 belongs to a flag, one unimportant 2-vertex is adjacent to x0 and x2, and
one unimportant 2-vertex is adjacent to x0 and x2. Then there is a (1, 1)-coloring f of G[X] such that all neighbors of x0 have
the same color, a contradiction to Proposition 18.

Case 2.C.2: G[X0] = P4. We may assume that this path is (x1, x2, x3, x4). By symmetry, we may assume that the vertex in
the flag is either x1 or x2. Suppose first that it is x2. Then by (3), one unimportant 2-vertex, say v1, is adjacent to x1 and x2,
and the other unimportant 2-vertex, say v2, is adjacent to x3 and x4. Then we let f (x1) = f (v1) = f (x3) = f (v2) = 1 and
f (x2) = f (x4) = 2. In this coloring, both neighbors of x4 have color 1, a contradiction to Proposition 21.

So, x1 belongs to the flag. By (3), there is an unimportant 2-vertex v1 adjacent to x3 and x4. Let v2 be the other unim-
portant 2-vertex. Let f (x1) = f (x3) = 1 and f (x2) = f (x4) = f (v1) = f (v2) = 2. Then either this coloring extends to a
(1, 1)-coloring of G[X] (by coloring the vertices in the flag), or v2 is adjacent to x3 and x4. In the former case, all neighbors
of x3 are colored with 2, a contradiction to Proposition 21. In the latter case, we recolor v2 with 1, and get a (1, 1)-coloring
of G[X] in which both neighbors of x2 are colored with 1, again a contradiction to Proposition 21. �

Attaching a flag to a vertex reduces the potential by 4. Therefore we immediately get the following corollary from
Lemmas 13 and 23.

Corollary 24. Let T ⊂ V (G) and w ∉ T . Let G′
= G − T + F , where F is a flag attached at w. If |T | ≥ 2 and w is not in a flag

or super-flag, then ρG′ ≥ 0.
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6. Reducible configurations

For every super-flag, exactly one of the two special vertices is in a flag. We will call the special vertex not in a flag the
secondary base of the super-flag. We will show in Lemma 26 that every secondary base has degree at least 4.

Lemma 25. Let each of u and v be a base of a flag or a secondary base of a super-flag. If u and v are not special vertices of the
same super-flag, then the distance between u and v is at least 3.

Proof. Let A1 be the flag or super-flag attached at u and A2 be the flag or super-flag attached at v. Let P be a shortest path
between u and v. If |V (P)| < 3 then ρG(A1 + P + A2) ≤ 3 + 3 − 3. Because A1 + P + A2 is neither a super-flag nor a flag,
and by Lemmas 13 and 23, A1 + P + A2 = V (G). But then G has a (1, 1)-coloring. �

Lemma 26. Let v ∈ V (G) be a vertex with degree 3. If v is adjacent to a vertex of degree 2, then v is in a flag.

Proof. By way of contradiction, let N(v) = {x, y, z} and v not be in a flag. Note that v is important and every neighbor of v
with degree at least 3 is important.

Case 1: v is in a super-flag. If v is in a super-flag, has degree 3, and is not in a flag, then v is the secondary base of that
super-flag. Without loss of generality, let x be outside of that super-flag, z be the other special vertex of the super-flag, and
N(y) = {v, z}. Let F be the flag attached at z.

Case 1.1: d(x) ≥ 3. Let G′
= G − y + y′, where N(y′) = {x, z}. Note that v is important in G, but v and y′ are at most

semi-important in G′. Therefore G′
≺ G. By Corollary 14, ρG′ ≥ 0. Therefore we may find a function g ′

: G′
→ {α, β} such

that g ′ is a (1, 1)-coloring of G′.
Without loss of generality, assume that g ′(z) = α. Because F is attached to z in G′, it follows that g ′(v) = g ′(y′) = β .

From this, we deduce that g ′(x) = α. We may generate a (1, 1)-coloring g of G by setting g|V (G)−y = g ′

V (G′)−y′ and g(y) = β .
Case 1.2: N(x) = {v, a}. By Lemma 6, a is important. Let S = F + v + y; in other words, G[S] is the super-flag containing

v. Let G′
= G − {v, x, y} + F ′, where F ′ is a flag attached at a. Because v and awere important in G, G′

≺ G.
By Lemma 25, a is not in a flag or super-flag. So by Corollary 24, ρG′ ≥ 0. By the minimality of G, there exists a (1, 1)-

coloring g ′ ofG′.We create a (1, 1)-coloring g ofG by setting g|G−v−x−y = g ′
|G′−(F ′−a), g(x) = g ′(z), and g(v) = g(y) ≠ g ′(z),

which is a contradiction.
For Cases 2–4, assume that v is not in a super-flag.
Case 2: v is adjacent to exactly two neighbors of degree 2. Let N(x) = {v, a} and N(y) = {v, b}. By Lemma 6, a and b are

important. Without loss of generality, assume that d(a) ≥ d(b).
Case 2.1: a ≠ b and b ≠ z. LetG′

= G−y+y′, whereN(y′) = {v, a}.We claim thatG′ is smaller thanG. Because a and b are
important in G, they cannot be more important in G′. Suppose that y′ is more important than y. Then ywas in a triangle and
b = z, which contradicts the assumption. Therefore G′ is smaller by the condition on the degrees. By Corollary 14, ρG′ ≥ 0.
By minimality of G, there exists a (1, 1)-coloring g ′ of G′.

Without loss of generality, let g ′(a) = α. Let g be a coloring of G where g|V (G)−x−y−v = g ′
|V (G)−x−y′−v .

• If g ′(z) = β , then color g(x) = β , g(v) = α, and g(y) ≠ g(b).
• If g ′(z) = α and g ′(v) = β then either g ′(x) = α or g ′(y′) = α. Furthermore, for all u ∈ NG′(a)−{x, y′

}, g ′(u) = β . Color
g(x) = α, g(v) = β , and g(y) ≠ g(b).

• If g ′(z) = g ′(v) = g ′(b) = α then color g(x) = g(y) = β and g ′(v) = α.
• If g ′(z) = g ′(v) = α and g ′(b) = β , then color g(x) = g(v) = β and g(y) = α.

The above assumptions exhaust all possibilities for g ′. Moreover, each provides a (1, 1)-coloring of G.
Case 2.2: a ≠ b and b = z. Let G′

= G − {v, x, y} + F , where F is a flag attached at z. If z was in a flag F ′ in G, then F ′, v, b
form a super-flag containing v, which contradicts the assumption that v is not in a super-flag. So by Corollary 24, ρG′ ≥ 0.
Because v and z are important in G, we have G′

≺ G.
By minimality of G, there exists a (1, 1)-coloring g ′ of G′. Note that if w ∈ NG′(z) − F then g ′(w) ≠ g ′(z). Let g be a

coloring of Gwhere g|V (G)−x−y−v = g ′
|V (G)−(F−z), g(x) = g(y) ≠ g ′(a), and g(v) = g ′(a). Either g(z) = g(v) or g(z) = g(y),

but not both. Therefore there is only one neighbor with the same color for each vertex in g .
Case 2.3: a = b. Since v is not in a flag, z ≠ a. Let G′

= G − y + y′, where N(y′) = {v, z}. Because y was half important
and y′ is unimportant, G′ is smaller than G. By Corollary 14, ρG′ ≥ 0. By minimality of G, there exists a (1, 1)-coloring
g ′

: V (G′) → {α, β}.
Without loss of generality, let g ′(z) = α. Thus g ′(x) = α or α ∈ {g ′(v), g ′(y′)}. If neither of these statements is true then

g ′(v) = g ′(x) = g ′(y′) = β , and v is adjacent to two vertices with the same color in g ′.
Let g be a coloring on Gwhere g|V (G)−x−y−v = g ′

|V (G)−x−y′−v and

• if g ′(x) = α then g(x) = α, g(y) ≠ g(a), and g(v) = β , or
• otherwise if α ∈ {g ′(v), g ′(y′)}, then g(x) = g(y) ≠ g ′(a), and g(v) = g ′(a).
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Then g is a (1, 1)-coloring.
Case 3: v is adjacent to exactly one vertex of degree 2. Let N(x) = {v, a}.
Case 3.1: a ∉ {y, z}. Then x is semi-important. Let G′

= G − x + x′, where N(x′) = {y, z}. Because x′ and v are at most
semi-important in G′, it follows that G′ is smaller than G. If y and z are in the same super-flag Y , then ρG(Y + v) ≤ −1,
which is a contradiction. So by Corollary 24, ρG′ ≥ 0. By minimality of G, there exists a (1, 1)-coloring g ′ of G′. Without loss
of generality, let g ′(y) = α.

If g ′(z) = α, then create a coloring g|V (G)−x−v = g ′
|V (G)−x′−v , g(v) = β , and g(x) ≠ g ′(a). This is a (1, 1)-coloring of G.

Sowemay assume that g ′(z) = β . Because g ′ is a (1, 1)-coloring, it follows that g ′(v) ≠ g ′(x′), or else y or z will have two
neighbors with the same color. Without loss of generality wemay assume that g ′(v) = β and g ′(x′) = α. Therefore all other
neighbors of y have color β and all other neighbors of z have color α. We color G with coloring g|V (G)−x−v = g ′

|V (G)−x′−v ,
g(x) ≠ g ′(a), and g(v) = g ′(a). Note that g(v) may be the same as g(y) or g(z), but it will not be the same as both. Hence,
g is a (1, 1)-coloring of G.

Case 3.2: a = y. Let G′
= G− x− v + F , where F is a flag attached at y. Then G′

≺ G. If ywas in a flag F ′ in G, then F ′, v, x
form a super-flag containing v, which contradicts the assumption that v is not in a super-flag. So by Corollary 24, ρG′ ≥ 0.
By minimality of G, there exists a (1, 1)-coloring g ′ of G′.

Note that if w ∈ NG′(y) − F then g ′(w) ≠ g ′(y). Let g be a coloring of G where g|V (G)−x−v = g ′
|V (G)−(F−y), g(x) = g ′(z),

and g(v) ≠ g ′(z). Either g(y) = g(v) or g(y) = g(x), but not both. Therefore each vertex in G has at most one neighbor
with the same color in g , which is a contradiction because G is not (1, 1)-colorable.

Case 4: v is adjacent to three vertices of degree 2. Let G′
= G − v. Since G′ is a proper subgraph, it has a coloring g ′. In G′,

x, y, and z all have degree 1. Without loss of generality, we may assume that each of them has no neighbors with the same
color as themselves. Extend the coloring on G′ to a coloring on G by coloring v the color that appears the least often in the list
(g ′(x), g ′(y), g ′(z)). Because some color appears at most once and that vertex has no other neighbors with the same color,
this is a (1, 1)-coloring. �

Corollary 27. If y is a secondary base of a super-flag in G, then d(y) ≥ 4.

Proof. By construction, each special vertex of a super-flag is adjacent to a vertex of degree 2. By Lemma 6, d(y) ≥ 3. By
Lemma 26, d(y) ≠ 3. �

Lemma 28. Let F be a flag in G. Then |E(F , V (G) − F)| ≥ 3.

Clearly |E(F , V (G) − F)| ≥ 2, or else G would have a separating edge. In order to prove the above lemma, we will need
the following result.

Proposition 29. If F is a flag in G with base v and N(v) − F = {x, y}, then both x and y are important.

Proof. Byway of contradiction, assume that x is semi-important or unimportant. By Lemma 25, d(x) ≤ 2. If x is in a triangle,
then v and y are the special vertices of a super-flag and Proposition 10 is contradicted. Therefore x is semi-important and
N(x) = {v, a}. Let G′

= G − F − x + F ′, where F ′ is a flag attached at a.
By Lemma 25, a is not in a flag or a super-flag. So by Corollary 24, ρG′ ≥ 0. In G, v is important and x is semi-important.

No vertex is more important in G′ than in G, so G′
≺ G. By minimality of G, there exists a (1, 1)-coloring g ′ of G′.

We have g ′(a) ≠ g ′(z) for all z ∈ (NG′(a)− F ′). Then G has a (1, 1)-coloring g , where g|G−F−x = g ′
|G′−(F ′−a), g(v) ≠ g ′(y)

and g(x) = g ′(y). �

Proof of Lemma 28. Let v be in flag F and N(v) − F = {x, y}.
Case 1: xy ∉ E(G) and N(x) ∩ N(y) = {v}. Let G′

= G − F − x − y + z, where N(z) = (N(y) ∪ N(x)) − v. If u ∈ V (G′) − z
is important in G′, then u is important in G. Because both x and y are important in G, we have G′

≺ G.
If T ⊂ V (G′) such that ρG′(T ) ≤ −1, then z ∈ T . It follows that

ρG(T − z + x + y + F) = ρG′(T ) + 7(6 − 1) − 5(7) = ρG′(T ) ≤ −1,

which contradicts the assumption that ρG ≥ 0.
Therefore G′ has a (1, 1)-coloring, g ′. We can create a (1, 1)-coloring of g by setting g|G−F−x−y = g ′

|G′−z , g(x) = g(y) =

g ′(z), and g(v) ≠ g ′(z).
Case 2: xy ∈ E(G) or there exists a w such that w ∈ (N(x) ∩ N(y)) − v. Let G′

= G − F − x − y + z + F ′, where
N(z) = (N(y) ∪ N(x)) − v and F ′ is a flag attached at z. If u ∈ V (G′) − z is important in G′, then u is important in G. Because
both x and y are important in G, we have G′

≺ G.
If T ⊂ V (G′) such that ρG′(T ) ≤ −1, then z ∈ T . Because of edge xy or because |{wx, wy}| = |{wz}|+1, we get one extra

edge over Case 1, and so

ρG(T − F ′
+ x + y + F) ≤ ρG′(T ) + 7(6 − 4) − 5(7 + 1 − 5) ≤ −2,

which contradicts the assumption that ρG ≥ 0.
Therefore G′ has a (1, 1)-coloring, g ′. Furthermore, for all u ∈ NG′(z) − F ′, g ′(u) ≠ g ′(z). We can create a (1, 1)-coloring

of g by setting g|G−F−x−y = g ′
|G′−F ′ , g(x) = g(y) = g ′(z), and g(v) ≠ g ′(z). �
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Lemma 30. If v ∈ V (G) such that N(v) = {u1, u2, u3, u4} and N(ui) = {xi, v} for all i, then xi is in a flag or a super-flag for
all i.

Proof. Without loss of generality, let v, ui and xj be as above, and assume that x1 is not in flag or a super-flag. By Lemma 6,
each xj is important. Let G′

= G − {v, u1, u2, u3, u4} + F , where F is a flag attached at x1. By construction, G′
≺ G. By

Corollary 24, ρG′ ≥ 0. By minimality of G, there is a (1, 1)-coloring g ′ of G′.
Because of the flag F , for all w ∈ NG(x1) − u1, we have g ′(w) ≠ g ′(x1). We construct a (1, 1)-coloring g of G as follows:

• Set g|G−{v,u1,u2,u3,u4} = g ′
|G′−(F−x1).

• Set g(ui) ≠ g ′(xi) for i ∈ {2, 3, 4}.
• Set g(v) equal to the color that appears the least in the list (g(u2), g(u3), g(u4)).
• Set g(u1) ≠ g(v).

Then g is a (1, 1)-coloring of G, which is a contradiction. �

7. Proof of the theorem

By assumption, on G, we have
v∈V (G)

(5d(v) − 14) ≤ 0. (4)

The initial charge of each vertex v of G is µ(v) = 5d(v) − 14, and the final charge µ∗(v) is determined by applying the
following rules:

R1. Every 2-vertex in a flag gets charge 4 from the base of the flag.
R2. Let x be the base of a flag F or the secondary base of a super-flag H . Every vertex adjacent to x outside of F or H gets

charge 2.5 from x.
R3. Every 2-vertex u adjacent to a base x of a flag F , where u is not in F , gets from its other neighbor charge 1.5.
R4. Every 2-vertex u adjacent to a secondary base x of a super-flagH , where u is not inH , gets from its other neighbor charge

1.5.
R5. Every 2-vertex not adjacent to a base of a flag or a secondary base of a super-flag gets charge 2 from each of its neighbors.

By Lemma 25, the application of Rules 2–4 is well-defined. By Lemma 6, the application of Rule 5 is well-defined.

Lemma 31. For every v ∈ V (G), µ∗(v) ≥ 0. Moreover, if d(v) ∉ {2, 4}, then µ∗(v) > 0.

Proof. Recall that δ(G) ≥ 2. Note that by Lemma 28, each base of a flag has degree at least 6. If x is the base of a flag F , then
by R1, it gives charge 8 to the two 2-vertices in F and charge 2.5(d(x) − 3) to the neighbors outside of F . So

µ∗(x) = 5d(x) − 14 − 8 − 2.5(d(x) − 3) = 2.5d(x) − 14.5 ≥ 2.5 · 6 − 14.5 = 0.5.

A 3-vertex v in a flag does nothing to any other vertex, soµ∗(v) = µ(v) = 5d(v)−14 = 1. A 2-vertex v in a flag receives
charge 4 from the base of the flag, so µ∗(v) = 5 · 2 − 14 + 4 = 0.

If w is the 2-vertex in a super-flag H that is not in a flag, then w gets charge 2.5 from the base of the flag in H , because
w is not in the flag. Furthermore, w gets charge 1.5 from the secondary base of H , because w is in the same super-flag and
hence R3 applies and not R2. So

µ∗(w) = 5d(w) − 14 + 2.5 + 1.5 = 0.

Let y be a secondary base for a super-flag H . By R2, y receives 2.5 charge from the other special vertex y′ of H (because
y′ is the base of a flag). By R3, y sends 1.5 charge to its other neighbor in H (see the discussion immediately above). By
Corollary 27, every secondary base has degree at least 4. So

µ∗(y) ≥ 5d(y) − 14 − 1.5 + 2.5 − 2.5(d(y) − 2) = 2.5d(y) − 8 ≥ 2.

For vertices not in flags or super-flags, we consider cases according to their degrees.
Case 1: d(v) = 2. Since by Lemma 6, v has no neighbors of degree 2, by Rules R2–R5, v gets from its neighbors the total

charge at least 4, so µ∗(v) ≥ 5 · 2 − 14 + 4 = 0.
Case 2: d(v) = 3. Since v is not in a flag, by Lemma 26, v has no adjacent 2-vertices, so µ∗(v) ≥ µ(v) = 5d(v)− 14 = 1.
Case 3: d(v) ≥ 5. Since v is not in a flag, it gives at most 2 to each neighbor. So,

µ∗(v) = 5d(v) − 14 − 2d(v) = 3d(v) − 14 ≥ 3 · 5 − 14 = 1.

Case 4: d(v) = 4. Since v is not in a flag, it gives at most 2 charge to each neighbor of degree 2. So, if v has at most three
neighbors of degree 2, thenµ∗(v) ≥ 5 ·4−14−2 ·3 = 0. Suppose that all neighbors of v are 2-vertices. Then by Lemma 30,
each of these neighbors has a neighbor in a flag or a super-flag. So, by Rules R3 and R4, v sends to each neighbor only 1.5
charge. Thus, in this case, µ∗(v) = 5 · 4 − 14 − 1.5 · 4 = 0. �
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Remark 1. By the proof of Case 4, if d(v) = 4 and µ∗(v) = 0, then v has at least three neighbors of degree 2.

By the above lemma, in order for (4) to hold, we need µ∗(v) = 0 for every v ∈ V (G). Then by the same lemma, G has
only vertices of degree 2 and 4. By Remark 1, each 4-vertex has at most one neighbor of degree 4, and by Lemma 6, each
2-vertex has no neighbors of degree 2. In such a graph G, if we color all 4-vertices with color 1 and all 2-vertices with color
2, then we get a (1, 0)-coloring of G, a contradiction.
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